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 An Efficient R-Estimator for the ED
 BARRY R. JAMES, KANG LING JAMES, and HENRIQUE WESTENBERGER*

 Analogues of R-estimators are defined for the problem of
 estimating the median of a symmetric tolerance distri-
 bution in quantal bioassay. Asymptotic distributions are
 derived, and it is shown that the logistic scores estimator
 is, in a certain sense, asymptotically efficient. A Monte
 Carlo study is conducted to investigate the small-sample
 behavior of this estimator in relation to 10 competing es-
 timators. The results suggest that the logistic scores es-
 timator merits further consideration.

 KEY WORDS: Quantal bioassay; Median effective dose;
 Spearman-Karber; Trimmed Spearman-Karber; Logistic
 scores estimator; Asymptotic efficiency.

 1. INTRODUCTION

 In the past few years, several authors have considered
 the problem of extending the techniques used in robust
 estimation of location parameters, based on samples of
 iid random variables, to the problem of estimating the
 median effective dose (ED50) in quantal bioassay. Ham-
 ilton, Russo, and Thurston (1977), after criticizing the
 lack of robustness of classical methods based on the probit
 and logit models, suggested using trimmed Spearman-
 Karber estimators, which are analogues of the trimmed
 means of iid theory. Hamilton (1979) compared 10 esti-
 mators in terms of simulated mean squared error (MSE),
 finding the trimmed Spearman-Karber estimator to be es-
 pecially reliable in the sense that it reached a good bal-
 ance of efficiency, calculability, and robustness (insen-
 sitivity to an anomalous response). In his study, he
 considered estimators based on logits, as well as various
 trimmed means and analogues of some of the M-esti-
 mators of iid theory.

 Miller and Halpern (1980) generalized Hamilton's def-
 initions, defining L- and M-estimators of the ED50 to be
 explicit or implicit functionals of the empirical tolerance
 distribution, the functionals being the same as those ap-
 plied to the empirical distribution function in the iid case.

 They then determined the asymptotic distribution of L-
 and M-estimators and looked at efficiencies of some of
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 these estimators for various underlying symmetric tol-
 erance distributions, including both bounded and heavy-
 tailed distributions, as well as standard and contaminated
 normal and logistic distributions. Among the estimators
 considered were the Spearman-Karber estimator,
 trimmed means, and the Tukey biweight.

 In this article we study analogues of R-estimators in
 the quantal bioassay case. Since, in the iid case, R-esti-
 mators of the median of a symmetric distribution can also
 be defined as functionals applied to the empirical distri-
 bution function, we obtain R-estimators of the ED50 by
 applying these same functionals to a version of the em-
 pirical tolerance distribution. It will be seen that the "lo-
 gistic scores" estimator is, in a certain sense, asymptot-
 ically efficient when the underlying distribution is
 symmetric.

 In order to obtain some idea of the performance of the
 logistic scores estimator for small samples, we conducted
 a Monte Carlo study along the lines of Hamilton's. As a
 result, sample MSE's were obtained for various esti-
 mators, including estimators based on probits and logits,
 several trimmed Spearman-Karber estimators, and two
 R-estimators: the logistic scores estimator and the ana-
 logue of the Hodges-Lehmann estimator.

 Section 2 sets up the model we use throughout the ar-
 ticle. R-estimators are defined in Section 3, and the con-
 cept of asymptotic efficiency is discussed in Section 4,
 which considers questions of optimality and defines the
 logistic scores estimator. The framework and results of
 the simulations are given in Section 5, which also contains
 comments and suggestions for further study. The formal
 statement of the theorem on the asymptotic distribution
 of R-estimators, together with an outline of its proof, is
 given in the Appendix.

 2. THE PROBABILISTIC MODEL

 We use the same model as Miller and Halpern (1980).
 We assume that n subjects are to be tested at each of 2k
 + 1 equally spaced dose levels, X-k, . . ., x1, x1 , xl,

 . ,Xk, where in practice the xi usually represent log-
 arithms of actual dosages. There is no particular reason
 for considering only an odd number of dose levels, be-
 sides the notational convenience of having a middose xo;
 if we let d be the dose spacing, that is, d = xi - xo >
 0, then xi = xo + id V i. The number of subjects re-
 sponding at dose level xi will be denoted by ri. We assume
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 that the ri's are independent and that ri has a binomial
 distribution with parameters n and pi = F(xi), where F(x)
 is the probability of getting a positive response at dose
 level x from a subject chosen at random from the popu-
 lation at large. We assume also that F is a distribution
 function on the real line, symmetric about 0. We call F

 the tolerance distribution and 0 the median effective dose
 (ED50).

 The natural estimator of pi is pi = riln. But in the es-
 timation of the tolerance distribution, or at least of the

 vector p = (P-k, . , . ., Pk), the vector p is not
 a possible value of p unless the Pji are nondecreasing in
 i. In fact, the maximum likelihood estimator of p is the
 monotonized version of p defined by

 t

 E PI U
 U=S

 = max min
 s-i t2i (t - s + 1)

 See, for example, Barlow et al. (1972, p. 19). The vector

 (P -k, * . . . . . ., ik) is called the isotonic regression
 of p.

 In his study of robust estimates of 0, Hamilton consid-
 ered seven nonparametric estimators, all of them func-
 tions of the monotonized version of p. In fact, all of them
 were functions of an estimate of F obtained by linearly

 connecting the points of a graph (xi, 6i). Hamilton dealt
 only with small n and hoped to observe j-k = 0 and Ik
 = 1. If this condition were violated, the Spearman-Kar-
 ber estimator, for example, was said to be not calculable.
 However, since we will be considering the behavior of

 estimators as n -x o, we will follow Miller and Halpern
 and adopt the frequently used convention that defines

 P-k- I = 0 and Jk?1 = 1. Our version of the empirical
 tolerance distribution is then, the piecewise linear func-
 tion defined by the following:

 F(x)=3ii, if x=xi, -k'i'k

 = 0, if X x-k- I= Xo - (k + 1)d

 = 1, if X?Xk+l xo+(k+ 1)d

 = linear and continuous in [xi, xi+ I] V i

 Note that if F is strictly increasing in the interval where
 it takes on values >0 and < 1, then for a fixed dose mesh
 (X-k, . . ., Xk) the vector (fp-k, . . . , pk) will equal p
 for n sufficiently large (with probability one).

 3. R-ESTIMATORS

 In the iid case, R-estimators can be obtained from two-

 sample rank tests. Suppose first that XI, . .. , X, and
 Y , . . ., Yn are two independent samples from sym-
 metric distributions differing only in location, with the
 Xi's having common symmetric distribution F and the
 Yj's common distribution G satisfying G(x) = F(x - /v).
 A test of the hypothesis H: A = 0 versus the alternative
 K: lv $ 0 can be based on thle score function J(t), 0 K t

 < 1, by using as test statistic

 Sn = E J2 )

 where Ri is the rank of Xi in the combined sample. If J(l
 - t) = -J(t) and J is nondecreasing, then S, will take
 on a value near zero when the two samples are well in-

 termixed, and one will reject H when I Sn I is large.
 Now, if X1, .. . , Xn is a single sample from a sym-

 metric distribution F, one can obtain an estimator of the
 center of symmetry of F by choosing that value of 0 for
 which the two "samples" X1 - 0, . . . , X, - 0 and

 - (XI - 0), . . . , - (Xn - 0) are well intermixed, in the
 sense that the test statistic Sn(0) based on the two samples
 is equal to zero, or at least approximately so. The test
 statistic can also be based on the samples X1, . . ., Xn
 and 20 - X1, . . . , 20 - Xn, so that (if there are no ties
 in the combined sample) Ri = n[Fn(Xi) + 1 - Fn(20 -
 Xi)], where Fn is the empirical df of the sample XI, .
 X". Therefore, the estimator 0 will satisfy

 A n t([Fn(Xi) + 1 - Fn(20 -Xi)]
 0OSn(0)n J 2n+1 X

 ni=( 21 ) I

 fj(Fn(x) ? 1 Fn(20 - x))F)

 Thus the R-estimator based on J is customarily defined
 in the iid case to be T(Fn), where T(F) is the solution of
 the equation

 J R(F(x) + 1 - F(2T(F) - x))dF(x) = ?

 Examples of such R-estimators are the median, which
 corresponds to the score function of the sign test: J(t) =
 -1 for t < 2, J(t) = + 1 for t > 2; the Hodges-Lehmann
 estimator, obtained from the score function of the Wil-

 coxon test: J(t) = t - 2; and the normal scores estimator,
 obtained from the score function of the same name: J(t)
 = - `(t), where F is the standard normal distribution
 function.

 We now extend this definition to quantal bioassay.

 Definition 1. Let J be a nondecreasing integrable func-
 tion defined on (0, 1), such that J(1 - t) = -J(t) and J
 is not identically equal to zero. The R-estimator 0 based
 on J is the solution of the equation

 h(F, 0) def p j(F(x) + 1 - F(20 - x))d(X) = 0,

 (3.1)

 if a unique solution exists. If not, define

 sup{0: h(F, 0) > 0} + inf{0: h(F, 0) _ 0}

 2

 One notes that since h(F, 0) is a nonincreasing, con-
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 tinuous function of 0 and

 lim h(F, 0) = f J(F(x) 1) dF(x)

 = 2 J(t)dt > 0,
 1/2

 rl/2

 lim h(F, 0) = 2 J J(t)dt < 0,

 0 is well defined. (Note that continuity and the preceding
 limits are consequences of the facts that

 J (F(x) + 1 - F(20 - x))

 J | (x) + J(F(x) + 1)

 F is continuous, and J has at most a countable set of
 discontinuity points, which together with a change of var-
 iables under an integral allow application of the Domi-
 nated Convergence Theorem (DCT).) The Appendix
 (Lemma 1) shows that the equation h(F, 0) = 0 has a
 unique solution if F is strictly increasing in the interval
 in which it takes on values greater than zero and less than
 one.

 4. ASYMPTOTIC EFFICIENCY AND THE LOGISTIC
 SCORES ESTIMATOR

 As defined in the previous section, the R-estimator 0
 based on the score function J satisfies h(F, 0) = 0. For
 a fixed dose mesh Xk, . . ., x0, . . . , Xk, with distance
 d between successive doses, 0 is not necessarily a con-
 sistent estimator of 0 (it will be if xo = 0). In fact, as n

 oc, the empirical tolerance distribution F converges
 uniformly to the piecewise linear distribution function FD
 defined by

 FD(X) = Pi, if x =xi, i = -k - 1, ... , k +

 = 0, if X x-k- 1= Xo - (k + I)d

 = 1, if X-Xk+I =xO+ (k+ l)d

 =Pi-1 + d (Pi - Pi-l),

 if xi_j1?x?xi,i= -k. ... ,k + 1.

 Here we have adopted the convention p -k-1 = 0, Pk+
 = 1.A

 So we would expect 0 to be a consistent estimator of

 OD, defined to satisfy the equation h(FD, OD) = 0. (That
 this is in fact the case follows from Lemma 3 of the Ap-
 pendix, under regularity conditions on J.) We call OD the
 "discretized version" of 0 based on J. The letter D is
 used as a mnemonic device to remind us of the depen-

 dence on the dose mesh.

 It is not our purpose to consider ways of reducing the
 asymptotic bias 0D - 0. Rather we follow Miller and

 Halpern (1980) in obtaining the asymptotic distribution
 of (nld) 12 (0 - OD) as first n-k oc, and then the dose mesh
 becomes dense in the real line in the sense that d -O 0,
 Xk - + +0, and - k-* - (X. Of course, this order of taking
 the limits is not the ideal one. It would be more reasonable
 to take n -* cc and d -* 0 simultaneously, but we chose
 the present method because of its mathematical conven-
 ience.

 Since OD -* 0 as the dose mesh becomes dense (see
 Lemma 3 of the Appendix), the variance of this asymp-
 totic distribution is used as an inverse measure of asymp-
 totic efficiency. We emphasize that the asymptotic effi-
 ciency defined here is really a measure of the precision
 with which 0 estimates OD.

 Definition 2. Suppose that when F is the tolerance dis-
 tribution, (nld) 12(0 - OD) -B- N(0, ai2(F)) as first n
 X and then d -0, xk-- oo, andx-k- - c. Let cro2 (F)
 be the smallest possible asymptotic variance of an R-es-
 timator under F. Then a02(F)/crj2(F) is the asymptotic
 efficiency of the R-estimator based on J when F is the
 tolerance distribution.

 See the Appendix for the proof, under regularity con-
 ditions on J and F, of the result

 (nld)"1 (0 - OD) > N(0, uJ (F)),

 where (with f denoting the density of F)

 f (J'(F(x)))2 f2(x)F(x)(I -F(x))dx
 orj2(F) = X2 .(4.1)

 ( f7 J'(F(x))f 2(x)dx (

 Let I be the class of score functions that satisfy the
 regularity conditions of the Appendix, and, for notational
 convenience, let ij2(F) be defined by the right side of
 (4. 1) for all differentiable score functions J (not just those
 in a). We will now show that among these general J,

 inf uJ2(F) = [f Fex)(1-F(x)) dXl - (F),

 (4.2)

 with the infimum attained by any score function J sat-
 isfying J'(t) = cI[t(l - t)], where c > 0. That is, if the
 score function is of the form

 J(t) = c log t- (4.3)

 then it attains the infimum.

 Note that if J satisfies (4.3), then UJ2(F) = 1 '(F), and
 so it remains to check "2" in (4.2). If I(F) is infinite,
 which occurs for example when F is uniform, then the
 infimum is 0. So suppose I(F) < oo- It is sufficient to
 restrict attention to those J such that the numerator in
 (4.1) is finite (note that both the numerator and denom-
 inator are strictly positive). In this case, the Cauchy-

This content downloaded from 189.60.51.9 on Sat, 27 Apr 2019 12:43:28 UTC
All use subject to https://about.jstor.org/terms



 James et al.: Efficient R-Estimator for ED50 167

 Schwarz inequality implies

 oo ~~~~~~2

 jrJ (F(X))f 2(x)dx

 I I(F) f (J'(F(x)))2 f2(x)F(x)(1 - F(x))dx,

 which completes the proof of (4.2).

 Now let Jo(t) = log(t/(1 - t)). Then JO is just the logit
 function, or the "log odds." Since it equals the inverse
 G'-l of the standard logistic distribution function defined
 by G(x) = exl(l + ex), the rank test on which the esti-
 mator is based can be called the logistic scores test.
 Therefore, we shall call the estimator 0 corresponding to
 the score function Jo, the logistic scores estimator.

 We note that Jo - 1, since it is unbounded, and so it
 is not yet known whether the logistic scores estimator is

 asymptotically efficient. However, it is a natural candi-
 date in the search for an efficient estimator. We point out
 that one can easily obtain a sequence {Jm} of score func-

 tions with Jm E I for all m and limm,. (Ijm2 (F) = I - i(F).
 For this, one need only truncate the values of J at m and
 smooth the resulting bounded function. Thus by choosing
 m sufficiently large, one can find an estimator with guar-
 anteed asymptotic efficiency of, say, at least 99% under
 all 11 distributions considered in the next section.

 The smallest possible asymptotic variance, given by
 (4.2), equals the reciprocal of the Fisher information
 about the location parameter in an infinite dose mesh ex-
 periment with randomized middose xo, as defined in
 Brown (1961, especially formula (7.3)). This is exactly
 what Miller and Halpern found in the cases of L- and M-
 estimators.

 The most surprising point about this result is that the
 score function that minimizes (4.1) does not depend on
 the underlying distribution F. The optimal L- and M-
 estimators found by Miller and Halpern depend on F, and

 one would expect such dependence here too.

 5. A MONTE CARLO COMPARISON

 The asymptotic results given in Section 4 suggest that
 the logistic scores estimator may be an efficient estimator
 when the number of individuals tested at each level is

 large and the dose mesh is sufficiently dense. To deter-
 mine its efficiency in practical situations, however, one
 would hope to be able to calculate its mean squared error

 for small samples, which in our model means a small num-
 ber of doses with few individuals tested at each dose.

 Unfortunately, this is not practicable; in fact, the only
 estimator we consider whose MSE is easy to calculate
 for small samples is Spearman-Karber. Therefore, our
 study parallels Hamilton's in comparing sample MSE's
 of several estimators under various experimental condi-
 tions.

 5.1 Estimators Compared

 The 11 estimators we compare are of three types: R-

 estimators, trimmed and untrimmed Spearman-Karber

 estimators, and parametric estimators based on the probit
 and logit methods. Their descriptions follow.

 R-estimators. OLS iS the logistic scores estimator.

 OHL iS the analogue of the Hodges-Lehmann estimator of
 iid theory, obtained via the score function J(t) = t - 2
 in this case, the solution of the equation h(F, 0) = 0 is
 also the solution of

 f F(20 - x)dF(x) =
 =2'

 and the Hodges-Lehmann estimator is the median of (X
 + Y)12, where X and Y are independent random variables
 having common distribution F.

 In both cases, (3.1) was solved by first capturing the

 solution in an interval of the type [0j, Oj+1], with Oj =
 xo + (jd)12, and then finding the solution within the in-
 terval. Computing the value of h(F, 0) initially at points

 Oj has two advantages: (a) ease in computation, since in
 this case the argument of the function J is linear in the

 intervals [xi, xi+,,]; and (b) if J is strictly increasing, then
 h(F, 0) is strictly decreasing in [0j, Oj+,], unless h(F, Oj)
 = h(F, Oj+ 01). Thus if h(F, Oj) > 0 > h(F, Oj+ 1) for some
 j, then the unique solution of the equation lies in (0j, 0j+ l).
 Of course, if h(F, Oj) = 0 for somej, then one must check
 for zeroes at neighboring points, taking an average if such
 zeroes are found.

 After pinning down the interval containing OLS, the so-
 lution was obtained by iteration, using linear interpolation
 to determine successive iterates. The procedure was said
 to converge as soon as the distance between the last two
 iterates was less than 10', with the last iterate then used
 as the estimate. The Hodges-Lehmann estimate was cal-

 culated by solving a quadratic equation in A = (0 - Oj)l
 (0j+ 1 - Oj), as described in James and James (1979,
 Sec. 5).

 Trimmed and Untrimmed Spearman-Karber. OSK, the
 Spearman-Karber estimator, is the mean of the empirical
 tolerance distribution, so that

 k

 OSK = J xdF(x) = E (F(xi+1) - F(xi))(xi + d/2)
 i= -k+ I

 = Xk + dl2 - djE ij = Xk + d/2 - d E pi.

 0SKox% iS the ot%-trimmed Spearman-Karber estimator,
 which is defined by trimming ox% from each tail of the
 empirical tolerance distribution and taking the mean of
 the (appropriately normalized) remaining central part of
 the distribution:

 F 10 -ox/100)

 - 00) x dF(x)
 OSKcx% = <-(cISO) e -ca<50o.

 We used a = 5, 10, and 20. 5K50% iS the median, which
 is the limit of the (x%-trimmed Spearman-Karber esti-
 mator as a ->50.
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 Estimators Based on Probits and Logits. OPR and OL
 are the estimators of the ED50 obtained by probit and
 logit analysis; that is, the maximum likelihood estimators
 (MLE's) of 0 under the assumptions of normal and logistic
 tolerance distributions.

 The values of the probit and logit MLE's were obtained
 by similar methods. First, the data were screened for two
 special cases, in which the MLE's are usually considered

 incalculable: that in which the P5i consisted only of a se-
 quence of zeroes followed by a sequence of ones, and

 that in which only one value, pj, was different from zero
 and one, with zeroes to the left and ones to the right. In
 the former case, the MLE is indeterminate, whereas in
 the latter case, the supremum of the likelihood function

 can be obtained by a limit process, which yields xj and
 zero as MLE's of the mean and variance of the tolerance

 distribution. However, this definition is highly artificial,
 and, as Hamilton did, we decided to treat both cases as
 leading to incalculable MLE's.

 After screening, an iterative procedure was used to ap-

 proximate the value of the estimate. The procedure was
 considered to have converged when the difference be-
 tween successive iterates of 0 was less than 10-, with
 the estimates being called incalculable if convergence was
 not reached within 20 iterations.

 OMLC is a minimum logit chi-squared estimator based
 on the empirical logits 1i = log {(ri + ')I(n - ri + ')}
 and empirical weights wi = 1I{(ri + 2)-l + (n - ri +

 2 }, for - k ' i ' k. If more than one dose level yielded
 no response, only the largest was assigned a positive

 weight, the others being assigned weight wi = 0. Simi-
 larly, if more than one dose level yielded n responses,
 only the smallest was assigned positive weight. This def-
 inition is slightly different from that of Hamilton, who set

 Wi = Oifeitherr-k = * = ri+I = 0orri_1 = . = rk
 = n. Our method of calculation was chosen to keep out-
 liers in heavy-tailed and contaminated distributions from
 having their effects eliminated by smoothing, the point
 being to let the minimum logit chi-squared estimator show
 its pronounced sensitivity to contamination when it is
 based on raw response data. Finally, OMLCM is a minimum
 logit chi-squared estimator based on the monotonized se-

 quence P(X-k), . . ., F(PX), and is equal to the MLCSM
 of Hamilton (1979, Sec. 2.2.3).

 5.2 Set-up of the Simulations

 Two large simulation experiments were performed,
 corresponding to n = 10 and n = 20 individuals at each
 dose level. The calculations were carried out on an IBM
 3032 computer at Brazil's Census Bureau (IBGE), with
 programs written in PL/I. Each experiment consisted of
 generating bioassays with the 11 dose levels 1, 2, .. .
 11, so that k = 5 and xo = 6. An odd number of dose
 levels was chosen for convenience.

 We based each experiment on 1,800 replications of data

 sets consisting of 1lin pseudo-random uniform variates,
 generated by the multiplicative congruential method with

 modulus 23l and multiplier 65539. Each data set yielded
 121 estimates, corresponding to the evaluation of 11 es-
 timators at each of 11 tolerance distributions. The binom-

 ial response frequencies ri were calculated for each data
 set and each distribution F by counting the number of
 members of the ith block of n uniform variates in the data
 set that took on values less than or equal to F(xi). We
 chose 1,800 as the number of replications to agree, for
 the purpose of comparison, with Hamilton's study. As in
 that study, all tolerance distributions were assumed to be
 symmetric about xo (so that 6 was the true value of the
 ED50) and the scale parameters were adjusted so that
 98% of the distribution fell between the third smallest and
 third largest doses (3 and 9 in our case). Finally, we cal-
 culated the sample MSE's for each estimator at each un-
 derlying distribution, based on the pseudosamples of size
 1,800.

 The underlying distributions (models) used were the
 nine considered by Miller and Halpern (1980), plus con-
 taminated logistic and normal distributions with 10% con-
 tamination. The contamination used was that of the basic
 distribution with 100 times the variance. For example,
 the logistic distribution with 10% contamination, called
 10% Contam Logistic in the tables, was a weighted av-
 erage consisting of 90% of a basic logistic distribution
 with mean 6, and 10% of a contaminating logistic distri-
 bution with the same mean and 100 times the variance.
 Miller and Halpern considered 5% contamination with the
 same factor of 100 for the variance of the contaminating
 distribution.

 To aid in the interpretation of the empirical results,
 Table 1 presents asymptotic efficiencies of the seven L-
 and R-estimators for each of the 11 tolerance distribu-
 tions. The efficiency given is the ratio between the re-
 ciprocal of the Fisher information, I- ' (F), and the
 asymptotic variance of the estimator (or its formal value,
 as represented by (JJ(F)), as obtained from the results
 given in Miller and Halpern (1980) and James and James
 (1979). Asymptotic efficiencies were not calculated for

 Table 1. Asymptotic Efficiencies

 Estimator

 Distri-
 bution OSK OSK5% OSK10% OSK20% 6SK50% OLS 6HL

 Cauchy 0 .74 .84 .71 0 1.00 .88
 Logistic 1.00 .90 .80 .60 0 1.00 .83
 Normal .98 .86 .75 .55 0 1.00 .80
 Uniform 0 0 0 0 0 a o
 Laplace .96 .90 .82 .67 0 1.00 .87
 5% Contam
 Logistic .75 .96 .88 .67 0 1.00 .89
 10% Contam
 Logistic .63 .94 .91 .72 0 1.00 .91
 5% Contam
 Normal .75 .95 .85 .63 0 1.00 .87
 10% Contam
 Normal .63 .97 .90 .68 0 1.00 .90
 Angular .81 .68 .58 .24 0 1.00 .67
 Slash 0 .80 .88 .79 0 1.00 .94

 a Indeterminate (=0/0).
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 the parametric estimators, but it can be shown that the
 logit MLE has the same asymptotic variance as Spear-
 man-Karber. This is not surprising, since it is well known
 that the two estimators are similar in their behavior.

 5.3 Numerical Results

 Table 2 compares the sample MSE's obtained for the
 two cases n = 10 and n = 20. The third column gives
 the theoretical MSE of the Spearman-Karber estimator,
 which can be compared with the empirical value imme-
 diately following it. The fifth column gives the approxi-
 mate two-tailed p values for testing the differences be-
 tween the empirical and theoretical MSE's of Spearman-
 Karber. The sample variance of the MSE was used to
 estimate the true variance, and the p values were taken
 from tables of the normal distribution.

 The other estimators are compared directly with Spear-
 man-Karber via relative efficiencies, so that the value
 given in the table is the inverse ratio of the sample MSE' s.
 For each estimator and each distribution, the sample
 MSE was based on the number of data sets for which the
 estimator was calculable. All estimators but the probit
 and logit MLE's were calculable for all data sets. These
 two estimators turned out to be incalculable for the same
 distributions and data sets; except for one or two path-
 ological exceptions, all incalculable estimates belonged
 to the second case described in Section 5.1. The number
 of data sets for which the probit and logit MLE's were
 calculable can be found in the last column of Table 2.

 The significance of the differences among the sample
 MSE's is analyzed in Table 3. In order not to reduce our
 data base, the probit and logit MLE's were omitted from
 this analysis. This was no great loss as far as the logit
 MLE was concerned, because of its similarity with Spear-
 man-Karber. In fact, we calculated the sample correlation

 coefficient between the logit MLE and Spearman-Karber
 for each distribution for n = 10 and n = 20, based on
 the data sets for which the logit MLE was calculable, and
 found that it never fell below .998.

 The analysis was performed by obtaining simultaneous
 approximate level .05 confidence intervals for the 36 dif-
 ferences between the true MSE's of the 9 estimators, for
 each of the tolerance distributions. Bonferroni confidence
 intervals were obtained as described in Miller (1966, p.
 200, formula (50)), but the normal distribution was used
 in place of the t. For each distribution, Table 3 lists the
 estimators whose MSE's were not distinguishable at the
 overall 5% level. In other words, each entry under a given
 estimator corresponds to another estimator such that the
 confidence interval for the difference of the MSE's con-
 tained zero.

 5.4 Remarks

 The simulation results obtained here, although based
 on a small number of special models in which the un-
 derlying distribution was symmetric about the central
 dose, do suggest that the logistic scores estimator merits
 further study and should be considered a candidate to
 estimate the ED50 in many real bioassays. Even in the
 case n = 10, its relative efficiency with respect to the
 best of the 11 estimators was never lower than .85 for the
 distributions considered, and it was superior to the other
 estimators in this respect. Also, it was the most efficient
 estimator for virtually all the heavy-tailed and contami-
 nated distributions, being significantly better than the
 other estimators in the case n = 20. Since all estimators
 studied here are unbiased under our models, this leads
 us to believe that the logistic scores estimator performs
 well in relation to the other estimators, in terms of the
 variance, even with fairly small sample sizes. We believe,

 Table 2. Sample Relative Efficiencies Based on All Calculable Estimates

 Sample Efficiency Relative to 6SK
 Sample

 Theoretical MSE of p- Data
 Distribution MSE of OSK OSK value OSK5% OSK1O% OSKIO% OSK50% OLS OHL OPR OL OMLC OMLCM Sets

 Cauchy n = 10 .0384 .0379 .65 1.074 .972 .791 .691 1.075 .936 .667 .907 .231 .344 1388
 n = 20 .0192 .0189 .63 1.144 .994 .750 .588 1.302 .996 .688 1.007 .164 .257 1701

 Logistic n = 10 .0653 .0624 .16 .938 .871 .747 .636 .851 .791 .990 .996 .779 .812 1791
 n = 20 .0326 .0317 .40 .951 .886 .743 .526 .889 .796 .969 1.000 .866 .889 1800

 Normal n = 10 .0728 .0710 .46 .918 .841 .703 .555 .883 .777 1.025 .997 .875 .873 1797
 n 20 .0364 .0348 .18 .923 .835 .693 .452 .882 .758 1.011 .998 .883 .887 1800

 Uniform n = 10 .1003 .1019 .63 .864 .740 .545 .340 1.199 .775 1.094 .986 .663 .663 1800
 n = 20 .0502 .0495 .68 .866 .750 .551 .260 1.266 .803 1.085 .987 .699 .708 1800

 Laplace n = 10 .0582 .0554 .12 .963 .899 .768 .660 .860 .809 .950 .991 .696 .745 1770
 n = 20 .0291 .0278 .16 .986 .949 .780 .568 .913 .844 .924 1.002 .751 .804 1800

 5% Contam n = 10 .0376 .0368 .52 1.057 .954 .775 .677 1.069 .923 .671 .903 .239 .344 1345
 Logistic n = 20 .0188 .0186 .76 1.126 .978 .739 .581 1.295 .985 .690 1.005 .169 .253 1684
 10?hContam n = 10 .0386 .0371 .25 1.037 .946 .770 .671 1.043 .907 .717 .911 .311 .390 1380
 Logistic n = 20 .0193 .0188 .40 1.122 .983 .740 .578 1.257 .978 .731 1.019 .228 .291 1711
 5% Contam n = 10 .0362 .0357 .68 1.045 .939 .763 .670 1.094 .918 .652 .890 .238 .336 1262
 Normal n = 20 .0181 .0177 .53 1.118 .955 .721 .568 1.359 .981 .671 1.005 .151 .226 1645
 100/oContam n= 10 .0385 .0374 .38 1.037 .949 .773 .674 1.033 .908 .725 .911 .336 .399 1386
 Normal n = 20 .0193 .0188 .48 1.121 .983 .740 .579 1.246 .977 .740 1.019 .245 .301 1704
 Angular n = 10 .0859 .0863 .89 .888 .783 .619 .442 .978 .756 1.065 .993 .784 .777 1799

 n = 20 .0430 .0411 .19 .896 .794 .624 .346 .981 .755 1.054 .994 .838 .842 1800
 Slash n = 10 .0384 .0379 .63 1.074 .972 .790 .690 1.075 .936 .667 .907 .232 .344 1388

 n = 20 .0192 .0189 .57 1.143 .993 .749 .587 1.299 .995 .688 1.006 .164 .256 1703

 NOTE: Sample MSE's of 6pRand 6Lwere based on number of data sets appearing in the last column. Those of all other estimators were based on all 1,800 data sets.

This content downloaded from 189.60.51.9 on Sat, 27 Apr 2019 12:43:28 UTC
All use subject to https://about.jstor.org/terms



 170 Journal of the American Statistical Association, March 1984

 Table 3. Estimators Not Distinguishable at 5% Level

 Estimator

 Distribution OSK OSK5% OSK10o OSK20% OSK50% OLS OHL OMLC

 Cauchy n= 10 SK10% LS -
 n = 20 SK10%, HL - HL

 Logistic n = 10 - - LS, MLC, MLCM MLC, MLCM - MLC, MLCM MLC, MLCM MLCM
 n = 20 - - LS, MLC, MLCM - - MLC,MLCM -

 Normal n = 10 - LS, MLC LS, MLC, MLCM - - MLC, MLCM - MLCM
 n = 20 - LS, MLC, MLCM LS - - MLC, MLCM - MLCM

 Uniform n= 10 - - - - - - - MLCM
 n= 20 - - - - - - - MLCM

 Laplace n = 10 - - LS MLC, MLCM MLC - MLC, MLCM MLCM
 n = 20 SK5%, SK10% - LS MLC, MLCM - - MLCM

 5% Contam n = 10 SK10% LS
 Logistic n = 20 SK10%, HL - HL
 10% Contam n = 10 SK5%,SK10%,LS LS -
 Logistic n = 20 SK10%, HL - HL
 5% Contam n = 10 SK5%, SK10% -
 Normal n = 20 SK10%, HL -
 10% Contam n = 10 SK5%, SK10%, LS LS
 Normal n = 20 SK10%, HL - HL - - - - -
 Angular n = 10 LS - HL, MLC, MLCM - - - MLC, MLCM MLCM

 n= 20 LS - - - - - - MLCM
 Slash n = 10 SK10% LS

 n = 20 SK10%, HL - HL

 NOTE: Ordered pairs of estimators with indistinguishable MSE's are presented by listing the second estimator of the pair under the column headed by the first. The order used is
 that of Table 2, without the probit and logit MLE's. For convenience, only the subscripts of the estimators are listed.

 as does Hamilton (1979, Section 4.2), that for well-
 behaved estimators the contribution of the bias to the
 MSE will be small when the dose mesh is not symmetric
 about the ED50. It would be desirable, however, to have
 theoretical, or at least Monte Carlo, confirmation of this
 belief. We are presently looking at this problem.

 As for the other estimators, 5%-trimmed Spearman-
 Karber was quite good in our study, except when the
 tolerance distribution was uniform. The performance of
 the logit MLE was good, although this must be taken with
 a grain of salt because of the problem of calculability.
 Also, our results support Hamilton's conclusion that the
 minimum logit chi-squared estimator should not be used

 without first monotonizing the Pi.
 A comparison of the simulation results with Table 1

 shows that the estimators lined up in approximately the
 same order, in terms of efficiency, as they obey asymp-
 totically. The logistic scores estimator was significantly
 better than the other estimators under the uniform dis-
 tribution, where its asymptotic efficiency relative to the
 others is infinite. The median had uniformly poor per-
 formance, as could be expected from its asymptotic ef-
 ficiency of zero.

 Note that the p values presented in Table 2 lend some
 credibility to our results, since none of the sample MSE's
 of Spearman-Karber was significantly different from the
 true MSE at the 10% level.

 APPENDIX

 In the following, the function J is assumed to satisfy
 the conditions of Definition 1. F, Fl, F2, . . . , denote
 distribution functions, not necessarily symmetric unless
 explicitly assumed so. The interval {x: 0 < F(x) < I} is
 called the "support interval" of F.

 Lemma 1. If F is continuous and is strictly increasing
 in its support interval, then the solution of

 def J(F(x) + I - F(20 - x))dF(X) 0

 exists and is unique.

 Proof. Suppose for convenience that J is strictly in-
 creasing (the lemma holds without this assumption, but
 the proof is more complicated). It will be shown that, in
 this case, the function h is strictly decreasing in the in-
 terval in which it attains neither its supremum nor its
 infimum, that is, in

 {0: 2 f J(t)dt < h(0) < 2 12 J(t)dt}

 (see Section 3).
 Suppose that 0 1 and 02 both belong to this interval, with

 01 < 02. It then follows by the discussion in Section 3
 that there exists a point xo in the support interval of F
 such that 0 < F(201 - xo) < 1 (if there were no such
 point, one of the extreme values of h would be attained
 at 01). Since F is continuous and strictly increasing in a
 neighborhood of 20 - xo, there is a neighborhood of xo
 in which 0 < F(201 - x) < F(202 - x) < 1. Therefore,
 for x in that neighborhood of xo we have

 (F(x) + 1 - F(201 - x))

 > j(F(x) + 1 - F(202 - x))

 Since "-" holds in place of ">" in the preceding ine-
 quality for all x, the lemma follows.
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 Lemma 2. Suppose that F is a member of a location

 parameter family {F9: 0 E R}, where Fo is continuous,
 symmetric about 0, and strictly increasing in its support
 interval. If (nld)112(0 - OD) has a limit distribution when
 0 = 0, where the limit is taken as first n -- oc and then
 d - 0, Xk -+ +X0 and x k -* -00, then that distribution
 is the limit distribution regardless of the true value of 0.

 Proof. The middose xo is not held fixed as the dose
 mesh becomes dense in the line, and so if all the dose
 meshes are simultaneously shifted by a fixed amount 8,
 the limit distribution will be the same when 0 = 0. Since

 shifting the distribution by an amount 8 does not change
 the distribution of 0 - OD if the dose mesh is also shifted
 by 8, the limit distribution is the same under FH.

 Lemma 3. Suppose that F, w Fo as n --> o, where
 Fo and F, are continuous and are strictly increasing in
 their support intervals. If the score function J has a
 bounded derivative in (0, 1), then

 O(F,,) -* 0j(Fo) as n -> ,

 where O(F) is defined by

 J J(F(X) + 1 - F(20i(F) - x)) dF(x) = 0.

 Proof. By Lemma 1, Oj(FO) and Oj(F,) are uniquely
 defined. For i = 0, 1, 2, . . . and 0 E R, let

 () f (Fi(x) + 1 - Fi(20 - dFx(x)

 Because of the monotonicity of the functions hi and the
 uniqueness of the solutions of hi(0) = 0, it is sufficient
 to show that, for all 0, h,(0) -* ho(0) as n -* oo. (If this
 condition is satisfied, then for 0 < Oj(Fo) one has ho(0)
 > 0, h,,(0) > 0 for n sufficiently large, and consequently
 0 < Oj(F,) for n sufficiently large, with a similar argument
 holding for 0 > Oj(FO).)

 Since J' is bounded and Fn, converges uniformly to F0,
 the integrand involved in the definition of h,(0) converges
 uniformly to that involved in the definition of ho(0). To-
 gether with the Helly-Bray theorem, this implies the con-

 vergence of h,(0) to ho(0).

 In order to prove that 0 is asymptotically normal, we

 adopt the following conditions of regularity:

 Regularity conditions on the tolerance distribution F.

 FO: F is symmetric about 0.
 F1: F is strictly increasing in its support interval.
 F2: F has a bounded density, f, which is continuous

 almost everywhere.
 F3: There exists an L such that f is nondecreasing in

 (-00, L] and nonincreasing in [L, 00).

 Regularity conditions on the score function J. (These
 conditions include those given in Definition 1.)

 Jl: J is continuous and nondecreasing in (0, 1).

 J2: J is twice differentiable in (0, 1), with bounded sec-
 ond derivative J".

 J3: J is antisymmetric about 1/2, that is, J(t) = -J(1
 - t), so that J(1/2) = 0, J'(t) = J'(l - t), and

 fo J(t)dt = 0.
 J4: J is not constantly equal to zero.

 Theorem. Under the above regularity conditions on F

 and J,

 (nld) (0 - OD) 3

 / (J '(F(x)))2 f 2 (x)F(x)(I1 - F(x))dx\
 N O,- 2 ,

 (JJ (F(x))f 2 xdx)d

 where the limit is taken as first n -> oc and then d -O 0,
 Xk -> +?, and X-k -> -Xoc The integrals given in the
 numerator and denominator of the asymptotic variance
 are strictly positive and finite.

 Proof. Both integrals in the expression for the asymp-
 totic variance are finite because the integrands are
 bounded by a constant times the density f (J2 implies
 that J' is bounded). The integrals are positive, by J4, and,

 being invariant under shifts, do not depend on the pa-

 rameter 0. By Lemma 2, it is enough to prove the theorem

 under the assumption 0 = 0, which we make for the re-

 mainder of the proof.

 The method we use is an adaptation of that used by
 Hodges and Lehmann (1963). First note that by Fl, Jl,
 J4, and Lemma 1, the equation h(F, 0) = 0 will, with
 probability one, eventually have a unique solution 0.
 Since h(F, 0) is nonincreasing in 0, this implies that for
 any sequence of constants {c}, 0 ? C nif and only if h(F,
 cn) < 0, at least for n sufficiently large (with probability
 one). Therefore,

 lim P((n/d)"'2(0 - OD) a)

 = lim P(0 ? OD + a(dln)"2)
 n-o

 = lim P((nld) l"2 h (F, OD + a(dln) "/2) C 0),

 provided this last limit exists. Letting the dose mesh be-
 come finer, we see that

 lim P((nld)1 2(0 - OD) < a)

 = lim P((nld)1/2h(F, OD + a(dln)1/2) C 0), (A. 1)

 if the latter limit exists, where the limits are taken as first

 n-oandthend --0,Xk +c andXk--> -OC-
 Now recall that

 J j(FD(X) + 1 -FD(20D - X) dFD(x) = 0,

 and write

 (nld)"/2h(F, OD + a(d/n)"X2) = I + LI ? III,
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 where

 = (n/d) 2 f [J(FD( + I - FD(20 + 2a(d/n)112 - x))

 j(FD(x) + 1 FD(2D - X) dFD(X),

 II

 (n!d)12{ f ) + 1 - F(26D + 2a(d!n)"12 - X))

 - FD(X) + 1 - FD(20D ? 2a(d/n) "2- x))d(

 - JV 2 - yg~~~~~~dFD(X)

 FD 1 - FD(20D + 2a(d/n)12 -x))

 x d(F(x) - FD(X)4

 III~~~~~~~~~~~~~~~~~~~/

 1J(nld)2 f F(x) + I - F(20 D+ 2a(d!n)"2 - X))

 - FD(X) + 1 - FD(2OD + 2a(d/n)"2 - x))

 x d(F(x) -FD(x)).

 The theorem will follow from proofs of the following: (i) I - a f J' (F(x))f (x)dx,
 (ii) II -1-> N(O, f (J'(F(x)))2 f2(x)F(x)(I - F(x))dx),

 and

 (iii) III -> 0 in probability.

 To see that (i) through (iii) imply the theorem, note that

 they imply

 (n/d) 1/2 h(F, O D + a(d/n) 1/2)

 ^ ----+ (-a | J(F(X)) f 2 (X)dX N--

 (J' (F(x)))2f 2(x)F(x)(l - F(x))dx),
 and therefore (from (A.1)),

 lim P((nId) 1/2(O - OD) ? a)

 a J'(F(x))f2(x)dx

 1/2 '

 (J'(F(x)))2 f 2(x)F(x)(l - F(x))dx

 where P is the standard normal distribution function.
 Thus, (n/d)"'2 (0 - OD) has, asymptotically, the normal
 distribution stated in the theorem.

 We now sketch the proof of (i), (ii), and (iii). Details
 can be found in James and James (1979). It is important
 to keep in mind that we are assuming 0 = 0, so that in
 particular FO implies fix) = ft - x) V1 x.

 Part (i) is a consequence of the DCT, which first yields
 (by J2)

 lim IFD(X) + 1 -FD(20D - X) lm I = -a J J

 x FD'(20D - X)dFD(X),

 and then, together with F2, F3, and J2, yields the desired
 result when d -> 0, Xk --+ oc, and X-k-i - .

 Part (iii) can be proved by using the definitions of F
 and FD, applying the Central Limit Theorem to the re-

 sulting P5i - pi, and noting that the integrand in III is
 bounded (by J2) and converges to zero a.s.

 To prove (ii), start by using Taylor expansion for J in
 the first integral. The integrand is essentially equal to

 ,FD(X) +1 - FD(20D + 2a(dln)2 - x)
 (Ji~x + 1 2 xJ

 (F(x) - FD(X) - (F(20D + 2a(d!n) 12 - X)

 - FD(20D + 2(d/n) '2 - x)))

 2

 since the error term is asymptotically negligible as n ->
 x (use F1 and J2). Now integrate the second integral by
 parts; it equals

 U (F(x) - FD(X))
 3 2

 it (FiFD(X) + 1 - FD(20D + 2a(d/n)"2 - x))

 X (FDX(X) + FD (20D + 2a(d/n) 2 - x))dx.

 Then add the two integrals. Since dFD(x) = FD '(x)dx,
 the first term of each integral will cancel out. The second
 terms are equal, as can be seen by the change of variables
 y = 20D + 2a(d/n)"12 - x in the second term of the first
 integral, together with the fact that J'(t) = J'(1 - t),
 from J3. Therefore, II is asymptotically equivalent to

 l ,FD + I - FD(20D + 2a(dln)2 - x) -(nld) 1/2fJ + 2 )

 X FD'(20D + 2a(dln)"2 - x)(F(x) - FD(x))dx.

 Using F2, F3, J2, and the definitions of F and FD, it can
 be shown to be a consequence of the Central Limit Theo-
 rem, the DCT, and Slutsky's theorem, that as n -x oc

 IJ N(0, lid , Pi(l - pi)F1
 i= -k Xi-lI

 J, ( xD(x) + I -2ED(20D - X) (2 - )1

 where we have ignored another asymptotically negligible
 term. Part (ii) then follows by a calculus argument when
 d-O?,xk-* +00, andx Xk- -c.

 [Received November 1981. Revised June 1983.]
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