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Objectives:

Provide an understanding of the structural approach
to time series modelling under a Bayesian perspec-
tive. Students will be expected to finish the course
with the ability to analyse and criticise results ob-
tained for a time series of interest.

References:

Bayesian Forecasting and Dynamic Models by M.
West and P. J. Harrison. Springer. 2nd. Edition.
1997.

Applied Bayesian Forecasting and Time Series Anal-
ysis by A. Pole, M. West and P. J. Harrison. Chap-
man & Hall. 1994.

Main software:

BATS

www.stat.duke.edu/~mw/books_software_data.html



Course outline

Week 1: Introduction: probability, Bayes

and 1st order models

Week 2: General models and trend and

seasonality

Week 3: Superposition, discount factors,

variance learning, filtering and intervention

Week 4: Monitoring, non-normality, vari-
ance laws, cycles and hyperparameter es-

timation (MC and MCMCQC)



Introduction

time series - collection of observations or-

dered (in time).

Time may be space, depth, --- ;
Adjancent observations are dependent.
Examples :

Economics - daily prices of stocks

monthly unemployment rate

Medicine - levels of EEG



Epidemiology - weekly cases of measles

monthly cases of AIDS

Metereology - daily temperature

height of tides

Environmental sciences - pollution counts



Classification

Time series {Y (t),t € T}

Y - variable of interest

T - set of indices

Types of time series

1. Discrete : T = {t1,tp,---,tn}

Example : Monthly exports from 1970 to
1990

T = {01/1970,02/1970,---,11/1990, 12/1990}
Notation : Y}



2. Continuous : T={t:t1 <t <tr}

Example : Height of tide in New Haven
today
T = [0, 24] if time unit is hour

Notation : Y (¢)

3. Multivariate : Observations are
{Yl(t)a T 7Yk(t)7 t € T}
Example : Monthly sales (Y7;) and adver-

tising expenditure (Yo;).



Y can also be discrete or continuous.
Sometimes, Y is discrete but can be treated
as continuous.

Example : Number of notified AIDS cases

in the U.S.

In this course, series will be univariate, dis-
crete and observed in equidistant times.

One can identify T with {1,2,---,n}



ODbjectives of a time series analysis

(i) understand the generating mechanism

of the series;

(ii) predict future behaviour of the series.

Understanding the generating mechanism

of the series enables:

- describing efficiently series behaviour:;

- finding reasons for series behaviour;

(possibly through auxiliary variables)

- controlling the trajectory of the series.
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Predicting the future behaviour of the se-

ries enables :

- making short, medium and long term

plans;

- taking appropriate decisions.

Objectives (i) and (ii) are related.
It is only possible to forecast well routinely

iIf the model is adequate and vice-versa.

Future usually involves uncertainty —

predictions are not perfect.

Objective is to reduce forecast errors as

much as possible.
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Modelling, learning and forecasting

Central to the analysis: building a model.

Model - Scheme of description (and ex-
planation) that organizes information (and
experiences) inorder to provide learning and

forecasting.

good model allows learning leading to ad-

equate prediction.

Must also be economical (parsimony).

Description must be simple and flexible to
adapt for the (uncertain) future and ease

learning.

Uncertainty — model is probabilistic.
11



Learning is the processing of information

by the model.

Prediciton is an hypothesis, conjecture or

speculation about the future.

Dynamic nature of a time series requires

models to have time adaptation.

Model structure must allow for local changes.

Changes will be modellled stochastically,

I.e., using probability.

12



Basic idea: define models representing struc-

ture of series (cycles, trend, seasonal, etc)

Hence the name structural modaels.

Main feature: model parameters vary prob-

abilistically with time
When Bayesian inference is used —

dynamic models

Example: suppose Y is to be forecast and
IS known to be influenced by X.

Simplest relation: Y = X0 + ¢

6 may change with time

13



Learning rule - Bayes theorem

- Possible models My, M5, ---, M, with
prior probabilities P(M), M = My, Mo, - - Mp;

- Observe Y with description P(Y | M)
(likelihood of model M);

- After observing Y = y we have

P(M|Y =y), M = My,---, M, given by

P(M|Y =y) = PSE;:%;‘)“
P(Y =y | M) x P(M)
B P(Y = y)

x P(Y=y|M)xP(M)

Posterior « likelihood x Prior
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Important aspects of forecasting systems

Basics: forecasting and estimation

1. INTERVENTION

Analyst may modify model according to

information during observation process.

Example:

series: sales of airline tickets

event: 11 Sept. 2001
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2. MONITORING

Model performance drops

\

Monitor signals

!

Changes are made

e Retrospective intervention

3. RETROSPECTION (OR FILTERING)

Forecast: what past says about future.

But what future says about past.

Secondary importance: control.

16



Probability distributions

Let =, y, z be random quantitites

and f(xz,y,z) their joint density.

f(z,y)

f(zly) = )

fla) = /y fa,y)dy

fz,y,2)

flz,y|z) = 700

flay) = [ fo.y.2)dz

faly) = [ faz]y)dz

fyl|z,2)f(z]2)
flylz)

Results valid for vectors z, y and z.

fz|y,z)=

17



Univariate normal distribution

The r.v. x has univariate normal distribu-
tion with mean p and variance 02, denoted

by N(u,o?), if its density is

1 1
fino?) = ——erp| - 5@-w?|, zeR

2mo

Standard normal dist.: 4 =0 and 02 =

Multivariate normal distribution

r = (x1,7,--,xp) has multivariate nor-
mal distribution with mean p and variance

>, denoted by N(u,X), if density fy(x;pu, ) =

1
@my/2 | £ M2 eap{~ (@ — )=z - )}
(i) | A| denotes the determinant of A
(ii) X diagonal — z!s are indpendent.

(iii) Univariate normal: p = 1.
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Important properties

Linear transformations:

y=Azx+b~ N(Apu+0b, AT A)

Marginal distributions:
T H1 211 212
r = s U= and > =
(332) K <M2> (Zzl 222
gives x; ~ N(/,Li, Zii)v 1 =1, 2.

Conditional distributions:

1 |xo~N(p1.2,211.2)

where p1o = p1 + 12355 (22 — p) and

_ —1
2112 =211 — 212255221-
Analogous results for x5 | z1.

2 5> and 217 must be full rank.
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Reconstruction of joint density:

zy | x2 ~ N(u1 + B1(zo — p2), Bo)

and zo ~ N(p2,22) —

1 ) ~ N(u,X) with
D

<
ROETSCES

%) 201 299

where

> 11 = By + B1XB]

Quadratic forms : (z—p)' =~ (z—p) ~ x3.
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Gamma distribution

x has Gamma dist. with parameters a and

B if its density is

p(x|a; B) oc 2% tewp{—pa},x > 0.

Notation: =z ~ G(a, B).

E(a:)Z% and V(w)Z%

Inverse Gamma distribution

x has Gamma dist. with parameters a and
Bif =1 ~ G(a, B).

Its density is

p(z|a; B) (%)(H_l ea:p{—é} ,x > 0.

X

Notation: =z ~ IG(«, B).

2
E(z) = %,a >landV(x) = (@ —1)’;(04 )

21
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Univariate ¢t-Student distribution

x has univariate t-Student distribution with
v degress of freedom, and parameters u

and o if its density is

p(@|p, 0,v) o vo? + (z — )2 WH/2 z e R

E(x)=p,v>1 e V(x)= V202,1/>2.

V JR—
Notation: z ~ tu(u, o?).

Multivariate {-Student distribution

x = (z1,...,xp) has multivariate ¢-Student
distribution with v degress of freedom, and

parameters p and X if its density is

p(xX|s, Z,v) o [v 4 (x — )/ Z 7 (x — )]~ )/
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Notation: x ~ t,(u,X).

Ex) = p if v>1

V(x) = > if v>2.

v—2

Normal-Gamma distribution
zly ~ N(u,y~1V) and
y~G(59%) (v ~I1G(5,9D)
Y
(z,y) ~ NG(u,V,v,d)

Y
x ~ tu(u, SV) where S =d/v

23



Bayesian Inference

Summarized presentation of methodology

Bayes T heorem

Observations y: described by density f(y|0)

Likelihood: 1(0) = f(y|0)

0. index of f (parameter)

Canonical situation: random sample

y = (y1,...,yn) taken from f(y|0).

24



Example (1). measurements of a physical
quantity 6 with errors e; ~ N(0, c2),

o2 known.

yy=0+¢;,i=1,...,n and f(y|d) =

. - 92
l;[lf]\](yi;ﬁ,az): H 1  exp {_l(yz 29) }

i—1 V2mo

6 is more than simple index

Situation repeats in more general cases

Very likely that researcher has prior infor-

mation about 0

This may be modelled through density p(0)

Lots of controversy in the past

25



Inference process based on distribution of
6 after observing y —

posterior distribution (as opposed to prior)

Obtained through Bayes theorem as

_ f(y|9)p(H)
p(Oly) = ) or

m(0) o 1(0)p(h)

fw) = [ £wIoIp(6)d0
Example (1) (cont.) model may be com-
pleted with prior p(8) = N(u,2),
1 and 72 known.

n _9)2
1) > exp {_%(yz 29) }

i—1 V2mo o

x  €exp {—;7@ - 9)2}

where y is the average of the y;’'s.
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1 (7 — 6)2 1(0 — p)?
0 exp { —— eXP =3

m(0) o p{202/n} p{ T2

1(0 — puq)?
< exp {__( 51)}

2 7-1

where

71_2:n0_2+7_2 and

p1 = 12(no =25 + 77 2p)
i.e., 7(6) = N(p1,72).

72 — oo: non-informative prior p(f) « ¢

and

7(0) = N(y,02/n).

27



Example (2) Assume now that the obs.

variance is also unknown. Model becomes
(y|6,0%) ~ N(8,0°)
(0]0%) ~ N(a,0°R)

Parameter now is bidimensional.

Prior must be completed with marginal dis-

tribution for o2.

Convenience: work with ¢ = ¢—2 with

. d d
prior ¢ ~ G (%,§> & 0?2~ IG (g,§>.
So, (0,9) ~ NG(a,R,n,d).

2N 1 1 )2
fO|lo°) = == exp{ QJQR(H ) }
. p1/2 ¢ 2
JO16) = o e~ p@—a’],

f(@) o« ¢M/2)=1 exp {— gd}

28



The likelihood is

FW6,0%) = ———5 e {5y —0)?)

qu/_i exp {—g(y - 9)2}

f(ylo, ¢)

Applying Bayes theorem

f(0,9ly) < f(yl0,9)p(0,d)
~ ¢[(n+2)/2]—16xp{_? [(9 —m)? n (y — a)? n d]}

2 C R+1
Since f(0,¢ly) = f(0]o,y) f(dly),
2
£(616,y) o exp {_g(@ " } -

(i) - (8lg,y) ~ N(m,C/¢) = N(m,o°C)

(i) - (9l ~ G (42,3 |a+ G|
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Note: (0|¢,y) and (¢|y) have same form as
(0|¢) and (¢) (conjugate distribution).

S0, (6, ¢) ~ NG (m, Con41.d+ %jff).

Since y = 6 + ¢ where (e|o2) ~ N(0,c2),

E(ylo®) = E(6l0°)+ E(elo®) = a

V(ylo®) V(6l0®) 4 V(e|lo®) = o*(R+ 1)

So, y|¢ ~ N(a’7 R%—l)

— (y7¢) ~ NG(CL, (R_I_ 1)7n7d)

= y ~ tn(a, 2(R+ 1))

30



Non-informative prior: controversy among

Bayesians

= large variance

Prediction (or forecast) of a future obser-

vation y after observing x

based on the distribution of (y|x)

fyl2) = [ 1(y,012)d0 = [ f(410) w(6) df

if y and x are conditionally independent

given 0

eg. random sample

31



In the multivariate case: 0 = (04, ...,6p)

Marginal posterior density of 6, is given by

7(6,) = /7r(91, o 0p) dO_;

where 9_7; = (91, ...,ei_1,9i+1, ...,ep)
Important posterior summaries:
a) location: mean, mode and median

b) dispersion: variance, standard devia-

tion, precision and curvature at mode

32



Regression models
Normal linear regression model

Observations y = (y1, ...,yn)’ described by

y’iNN(xilﬁl_l_---—l_xipﬁp)O_Q) ) 1=1,..,n
T;1, ..., T;p - Values of the p explanatory vari-
able for the -th observation
B1,...,Bp - regression coefficients
Model can be written in matrix form

y ~ N(XB,0°Ip)

r11 ccc Tip B1

33



Bayesian model completed with conjugate

prior for 8 and ¢ = o~ 2

no n050>

B¢ ~ N(bo, ¢~ 1Bo) and ¢~G(2, 2

i.e. (B8,¢) ~ NG(bg, Bo,ng,n0S0)

Applying Bayes theorem gives posterior

S
Blo® ~ N(b1,0°B1) and a2~za(”1 2! 1)

27 2
i.e. (B,¢) ~ NG(b1,B1,n1,1n151)

34



Details of regression models

Maximum likelihood estimation

ML estimators of 8 and o2 are

(X'X)~ X'y

™
|

52 ly’(I — X(X'X)" X"y
n
1 - 2
= - S lyi — (@181 + o+ 2ipBp)]?
1=1

but S2 = ns2/(n — p) is the unbiased esti-

mator of o2.

Their sampling distributions are

B ~ tnp(B,52(X'X)"1) and
S? 2 2 n—pn—p o
(=15 ~ Xy & 57~ G (M0 E02)
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Bayesian estimation

Parameters of the NG posterior of (B, 0_2)

b; = Bi(Bylbg+ X'y)

—1 —1
B] B! 4+ X'X

n1 ng+n

n1S1 = noSo+ (n — p)52
+ (B —Dbg)'[Bo + (X’X)"1]71(B - by)

If prior is non-informative (ng — 0 and
B;' — 0) then by =B, B; = (X'X) 1,

ni =mn—pand n1S; = (n — p)S?

Posterior distributions are

B ~ tnp(B,S*(X'X)"1) and
S? 2 2 n—pn-—po
(=15 ~ Xy &0~ IG (NP P2
36




Generalized linear models

Extension of normal models to the expo-

nential family

f(yil0;) = a(y;) exp{y;0; + b(0;)}
E(y;|0;)

g(:u?,) — x’il/Bl + ...+ xz’pﬁp ) 1= 17

M

where the link g is differentiable.

Example yi|7ri ~ bin(ni,wi), 1=1,...,n

probabilities m; determined by values of x

WZ:F(O{—I—BZCZ) ) i=1,...,n

F - any distribution function

Natural prior: 8 ~ N(bg, Bg) — not conju-

gate
37



1st. order modaels

Useful notiation and preliminaries

Inference process is sequential, i.e.,

is redone at each time ¢ (because of ;)

Process is intialized with info at timet =20

denoted by Dqg

Assertions about the future (¢ > 0) are

conditional on Dy.

Special interest: predictive distributions of

y¢| Do.

38



At time t: info is concentrated in Dy —

inference must be based on this set.

Interest: predictive distr of yt—|—h|th h > 0.

As time passes the info we have changes.

As we move from ¢t to t + 1, our info set

includes D; and the new obs. y;4 1.

If that is all, Dyy1 = {y441, Dt}

Closed system: Dy = {Dqg,y1,Y2, ", Yt}
Open system - admits other info entries.
More generally, more info can arrive —

Dyy1 = {lyg1, Dt}
39



Basic idea: observations fluctuate around

da mean.

However, mean IS not static but subject

to (small) time variations.

Model for observations: (y:|ut) ~ N(u, V),

where V4 is known for all t¢.

Time variations u; are modelled as random
walk, i.e.,

pt = py—1 + wg where wy ~ N(0, Wy).

Magnitude of variation depend on evolu-

tion errors or disturbances wy.

Simplest model but has most features of

a dynamic model.
40



Defining feature: parametric evolution.

Errors wy; control evolution through their

variances Wk.

The larger (smaller) their values, the more

erratic (smooth) the trajectory of uy.

E(w¢) = 0 ensures "local constancy” of uq.

If u is a continuous function of ¢ then 1st

order Taylor expansion gives

pe+ A = pe+higher order terms.

Hence the name 1st order models

In the model, h.o.t. replaced by errors.

41



Observational trajectory depends on W;/V;:
W/V small - movements due to obs'’s.

W/V large — movements also due to ug:.
(a) W/V=0,02

12

10

0 20 40 60 80 100

time

(b) WIV=0,5

12

10

0 20 40 60 80 100

time
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Predictive behaviour

Can be studied through the prediction func-
tion
ft(h) = E(ys4-n|Dt) = E(usq-p|Dt).

For 1st order models

E(piqnlpt) = E(uigpn—1 + wigplpe) = -

= E(ut+ w1+ -+ wipplpe) = pt-

So, fi(h) = E[E(uignlpt) | Di] = Elue|Dy],

which does not depend on A

Forecast into the future is constant

(as in simple exponential smoothing).
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Model can be formalized through

Obs. equation: Y;

pe + vy vy~ N[O, V4]
System equation: u; = pp—1 +wi wp ~ N[O, W]
po | Do ~ N[mg, Co]

where v, wy and ug|Dg are independent

Inference system works as follows

pe—1 | Dy—1 cvolupron | D1 updaging pt | Dy
posterior prior posterior
J prediction
Y | Dy—q

Evolution done through system equation.

Updating done through Bayes theorem.

Prediction done via marginalization

44



Theorem. For 1st order model, relevant

distributions are:

(a) Posterior at ¢t — 1:

For some mean m;_q1 and variance Cy_1,

pi—1 | De—1 ~ N[my_1,Cy_1]

(b) Prior at ¢ :

pi | De—1 ~ Nlag, R]

where

45



(c) 1-step-ahead forecast:

Y: | Di—1 ~ N|[f, Qi

where

It
Q¢

m¢—1

Ry + V4

(d) Posterior at t:

pt | Di ~ N[my, C]

where

my_1 + Aset Ay = R/ Q¢

Cy = Ry — A?Q:.

myg

46

et =Y — fi



Proof: Based on basic density results.

(b) Prior at t¢:

p(pe|Di—1) = /P(Mtaﬂt—ﬂDt—l)dﬂt—l

= /p(ut—l |Dy—1)p(pe|ppe—1, De—1)dps—

(c) 1-step-ahead forecast:

p(Y|Dy—1) /p(Yt,utlDt—ﬂdut

= [ p(¥ilues D 1)p(uuel De—1)dpy

(d) Posterior at t¢:

p(pe|Dy) o< p(Ye|pt, Di—1)p(ue| Di—1)

47



Remarks:

(i) Since ft = fi_1(1), e is the 1-step-

ahead forecast error

(ii) One can rewrite m; as my_1+
Ay — my—1) = Agyr + (1 — Ap)my_1.
So, A; is the adaptive weight given to

the most recent obs. y;.

h-steps-ahead forecast distributions are

Yi+n|De  ~  N(ft(h),Q¢(h)) where
h

ft(h) = my Qi(h) =Ci+ > Wiy + Vigp
=1
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Model is constant if V=V e Wy = W, VAt.

Model is closed if Dy = {y;, Dy_1}, Vt. (seen)

Properties of closed, constant model

(i) When t —» o0, At -+ A and Cy — AV

A=r(\J1+4/r=1)/2 and r=W/V.

Limiting behaviour determined by r.
(ii) For large t, my ~ Ay + (1 — A)m;_1.

Vague prior (Ca1 ~ 0) — A; monotonically

decreases with t.

Informative prior (Co_1 ~ 0) — A; mono-

tonically increases with ¢

49



m¢ IS an estimator of u; that coincides
for large t with those suggested by simple
exponential smoothing (Holt) and general
exponential smoothing (Brown). The ad-

pative weight has the same interpretation.

(iii) Since my = my_1 + Aer and my_1 =

Yt — €t,

Yyt = my_1 te and yp_1 = my_o+e—1 =

Yt — Yp—1 = My_1 — M2 + € — €1

Yt — Yp—1 = Ap_1e41 + et —epq

—e— (1 —As_1)ep—1

50



For large t and 0 = 1 — A, y+ — y4—1 ~

er — ey 1

for large t.

y; admits the ARIMA(O,1,1) representa-

tion assintotically
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(iv) Since Ry = Cy_1 + W, as t gets large
R=C+W

Also, V-1 + Ryt = ¢! and in the limit
vi4 R l=0c"1

V=C/A= AC 14+ Rl1=Cc"1=PRr1=
cC-l(1-4) =R=cC/(1-A).

- _ A
This leads to W = mC.

So, W implies an inflation of 1001fA% of

the system variance.

As limit is quickly reached, one may estab-

lish a constant rate as a rule.
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Making § = 1— A as the constant discount

factor - Ry =C;_1/5 or Ry 1 =460, 4.

Taking inverse variance as precision, only
1006% of info is kept through time. The

corresponding values of W; would be given

by
Ry = Ci1+W=C1/6=C_1+W =
W, = C_1(51-1)

This concept will be extended for general

models.

53



Dynamic Linear Models (DLM)

1st order model and regression model are

special cases of a more general structure.

Model is again described by two equations

Obs. equation: y; = Fi0; +v; v ~ N[O, V4]
System equation: 0t = Gtot_l + wr wp~ N[O,Wt]

Initial info: (00 | Do) ~ N[mo,CO]

e y; (scalar) observation;

e 0; n x 1 vector of parameters;
e 'y n x 1 vector of constants ;
o G; n x n transition matrix;

e V} observational variance;

e W; n X n covariance matrix;

54



Examples : (i) 1st order model:

Fr=1 Gy=1, 0 = py

(ii) Dynamic regression model:

F:‘, — (1axt,27 T 7xn,t)v G = In» 02 — (Bt,l T 76t,n)

where I,, is the identity matrix of order n.

The inference cycle remains as before

evolution updating
0 1| Di—1n =" 0| D1 T — 7 0| Dy
posterior prior posterior
J prediction

Yi | Dy—q
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Theorem. For general DLM model, rele-

vant distributions are:

(a) Posterior at ¢t — 1:

For some mean m¢_7 and variance matrix

Ci_1,

Oi—1| Di—1 ~ Nmy_1,Cy_1]

(b) Prior at t:

0; | D;_1 ~ Nlas, R¢], where

ag = Gy

R; = G{C;_1Gi+ W,
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(c) 1-step-ahead forecast

Y: | Di—1 ~ N[ft,Q¢], where

Féat

It
Q;

FiR:F; + V;

(d) Posterior at t:

Ot | Dy ~ N[mt, Ct], where

my

C: = R:— AALQ:.

Proof: Textbook

a; + Azeq A = RtFtQt_l

er = Y —

Similar results obtained for r-vector Y;

57
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Predictive distributions

Definition The forecast function fi(k) is

ft(k) = Elpyyy | D] = E[F 4104 | Dil, k>0

where
itk = Fipp0itn

IS the mean response function.

Theorem. For every t and k£ > 1, the k-
steps-ahead distributions of 0,4 and Y,

given D; are
(a) System distr.: (0,4 | D¢) ~ Nlag(k), Re(k)],

(b) Forecast distr.: (Y4 | Di) ~ N[ft(k), Qi(k)],
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Moments are recursively defined as

ft(k) = Fia(k) and

Qi(k) = FRy(k)Fi+ Viyr , where
ar(k) = Gypra(k—1) and

Ri(k) = GuppRe(k—1)Giy, + Wiy

with initial values a;(0) = m, R;(0) = C;.

Corollary. If G; = G is constant, for all ¢

kat

at(k)

ft (k)

If, in addition, F; = F for all ¢,

(k) = F'GFmy.

Importance of the result:

forecasts are governed by powers of G.
59



2nd. order (linear growth) models

Extension over 1st order models:

allow Taylor expansion up to 2nd order

petar = pt + At p+ hoo.t. At

In addition to the level u, the growth g can

also be defined.

The difference equation becomes

pit1 = pt + Br1 T w141
with wy ;41 ~ N(O, Wy 141)

w141 1S the disturbance replacing h.o.t.
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Evolution of the growth is modelled as

Bi+1 = Bt + wo 41
with wo 441 ~ N(O,Wp,41) independently

of w17t+1.

Growth also subject to local fluctuations.
System equation has now 2 components.

Complete model is

ODbs. equation: y =

System equation: (“t> — (
Bt
N

SR . 0]
Initial info:
(%)
where
0 Wi+ Wo W5
o ((0) (" 2 )

Alternatively, we could have V (w;) = diag(W1 ¢, Wo 4)
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Model is useful for series with "locally lin-

ear’ trends.

""growth” 8 may also be negative (despite

name).

Predictive behaviour analysed through

()] 2o (3] o

But

Ui4+h = Hi4h—1 Tt Be4n—1 + sum of errors
= pUgtph—2 + 2B¢4p—o + Sum of errors

= s + hB: + sum of errors

Since all errors are O mean,

E [yt+h| < gz )] = ut + hBt
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Forecast function is given by

ft(h) = Elys4 1| Dt] = Elut + hBt|Dt] = my + hby

which is a linear function of h, as expected.

Inference process is as before.

Using normal theory and Dy = {y, Di_1}

we have that

( gt > |Dt ~ N(mt, Ct) where
t

m; = a; + StQt_let and C; = R; — StQt_lsé

where e; = y+ — fr and Sy = R/F4.

m, = [ ™) =( ™-1 + b1+ Ag1e
b bi—1 + Ag et
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Since yt = ft+e and fr =my_1+b;1, We

can rewrite

Yyt = my_1+bi_1+ €
me = my_1+ bi_1+ Az 1€
by = bi_1+ As et

Taking diferences twice in the first equa-

tion and using next ones

Yt — 2yt—1 t yr—2 = et + By 1€t—1 + Br2et—2

where ;1 = —(2 — Ap1 — Aro) € Bio =
1— Ay,

As in 1st order models, limiting results are
obtained for the constant model (V; =V

eWt:W)
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When ¢t — o0, Ay — A = <ﬁ1>
2

In the limit, model approaches constant

form

Yt — 2Yp—1 + Yr—2 = et + Bres—1 + Boer—o

which is an ARIMA(0,2,2) form with errors

given by forecast errors.

Also, parameter estimates are updated as

Q

my_1+ b1+ Ares
= Ajye+ (1 —A1)(mye—1 +bs—1)

bt ~ b1+ Aogey

mg
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Holt’s biparametric exponential smoothing

updates estimates as

ayt + (1 —a)(mp_1 +be_1)

y(my —my—1) + (1 —)b—_1.

mg

by

So, my = my_1+bi_1+ae and by = b1+
y(mg —my_1 —b_1) = by_1 + avey.
Taking A1 = a and Ay = a7 gives Holt’s

equations as limits for constant model.

General exponential smoothing in a line es-

timates p and B through minimization of
N

S(u,8) = > 6V My — p — B(N —1)]°

t=1
Minimizers for 4 and g updated through

mi_1 4+ bi_1 + (1 — 6%)e;

bi—1 + (1 — 8)2e

my

by
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One can define

11
G=<O 1) and P;=GC;_1G’

So,

%4 [( ';: ) |Dt—1] =R; =P+ V(wy)

Main role of the system disturbances wy
IS to "increase’” system variance since they

are generally O mean.

Idea of discount factors can again be used

here to help specification of V(wy).

67



Polynomial trend models

1st and 2nd order models are special cases.

n-order polynomial trend model defined as

<
~
|

0.1 + vy

j = 0i_1,;+0;;41+60,;, (G=1,---,n—1)
Otn = 9t—1,n + 59t,n

0 ; changes with respect to its predecessor

Or—1, bY 01 j41-
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Examples:

(i) quadratic trend DLM:

Yyt = W+ vt
pr = p—1 + B+ ot
Bt = Bi—1+ v+ 0B

Y = M—1 T 0¥
0; = (ut, Be, 1), e represents level, B growth

and ~; change in growth.

Forecast function is

ft(k) = my + kbt + k(k + 1)g¢/2,

where E(0 D) = my = (my, b, g¢)".
(II) 2nd order DLM: 0t = (Mtaﬁt)/

(iii) 1st order DLM: 0; =

69



Seasonal component

Cyclical behaviour is common to many time

series.

Here we consider only the description.

Possible explanation may be given by co-

variates.

In what follows, let g(¢) be any real func-

tion defined for non-negative integers.

Definitions:

1) g(t) is cyclical or periodic if, dp > 1 such
that g(t + np) = ¢(¢t), V¢ > 0 and n > 0.
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2) The smallest p is the period of g(.).

3) g(.) exhibits a complete cycle in any
interval containing p consecutive points,

such as [t,t+p—1], Vt >0 .

4) The seasonal factors of g(.) are the p

values of any complete cycle

For t > 0, g(t) = g(j) where j is the re-

mainder of the division of t by p. (j =p|t)

5) The vector of seasonal factors at t is

0: = (9]70]—|—17 T 70p—17007 T 70j—1)/
where j =p | t.

For any n and k = np: 0, = (6g,---,0,-1)".
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Characterization of seasonal factors

Two routes: indicators or trigonometric

functions.

If model only has seasonal component
mean response function u; = 1st compo-
nent of 6

us = E 0; where E;, = (1, 0,0,---,0 ).

7

(p—l)vterms

If time t corresponds to j-th period, t+ 1
corresponds (j + 1)-th. Permuting 6; by
one position gives 8, | = (041, --,0p,01,---,6;)

and Hi4+1 = Egot_I_l.
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Passage from 6; to 6,4, is done through

01, 1
Pp:(l ‘o )

So, 0t+1 = Ppot.

matrix

P, satisfies PAt"P = Pk and, in particular,

Formulation leads to the dynamic model

Obs. equation: y; = Ej0; +v; vy ~ N[O, Vj]
System equation: 6; = Pyl 14wy wi~ N[O, W]

Initial info: (00|Do) ~ N(mo,CO)
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Remarks:

(i) If Wy = cl,, errors wy have indepen-
dent components and problem reduces to
the analysis of p 1st order models, if prior

variance Cg = diag(cy, -, ¢cp).
No passage of information through levels.

(ii) The h-steps-ahead forecast function is

ft(h) E(yi4p|Dt)

= E(u¢4nlDt)

= E(E,0;44/D;)

= E,PlE(6,D;)

— E;Pgmt

= Ey(mgpt1, s mep,met, o, myp)

— My p41
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Usually, seasonality is modelled by an over-
all level u; and seasonal variations around
it. In this case, seasonal factors satisfy

P _
The mean response at time t is given by
pe 0 i = py+ E 0

_ / Mt Y

— (17Ep) ( ot > - Ft:Bt'
This strategy imposes restrictions over 6;:
i) Initial prior: Since 6g|Dg ~ N(mg, Cp)
and 1’65 = 0,

0 1'mg

0 = 1'Cpl = Cpl=0
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If initial spec. does not satisfy conditions

above, it can be imposed.

Staring from an incorrect 6p|Dg ~ N(mg, Cj),
gives

(00|Do, 1/00 = O) ~ N(mo, Co), with

mg = mj — A(1'm§)/(1'C§1)
Co = Ch— AA/(IChL),

onde A = CO’U(Go, 1/00) = (Cpl

ii) Restrictions are preserved if 1'w; = 0.

76



Seasonal model can be redefined as

Obs. equation: y; =pus+60;; +v¢ v ~N(0, V%)
= pt + E,0; + v
=FB,+un
System equation: u; = py—1 + wot, wo,t ~IN(0, Wo ¢)
0: =Ppl_1 +wiwi ~N(O, Wy)
Initial info: (ug|Dg) ~ N(mgo,Coo)

(60|Dg) ~ N(myg,Cq)

Additional restriction: 1, = 0, Vt.
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Assume again that

E[:Bt|Dt] — (mt,07 me 1, 7mt,p),

where %1 my ; = 0.

The forecast function is

ft(h)

E(yt4n|Dt)
E(psyp + EL0; 41| Dy)

E(pi4n|Dt) + E,E(0; 4| Dy)
h

pe + Y wo 44Dy
j=1

E

h .
E;)E Pgot —I— Z P]};_Jwt—l—ﬂDt

=1

E(u|Dy) + E, E(P8,|Dy)

me o+ My p41
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Trigonometric representation

Seasonal factors 64, j = 1,---,p for a cycle

of period p can also be represented by

,_{ao + 22;1 [arcos(wrt) + brsin(wrt)], p odd,
I ag + S1_7 [arcos(wrt) + brsin(wrt)] + agcos(rnt),

for p even,
where time t corresponds to the j-th time

in a cycle, q=[p+1/2] and w = 27 /p.

Each component of sum is an harmonic.
It can be rewritten as A, cos (wrt 4+ ¢r),

where
i) A, - amplitude of harmonic of order r;

i) or - phase of harmonic of order r,
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Advantage: parameter economy by exclu-

sion of irrelevant harmonics (A, small)

Example: In many monthly series in eco-
nomics and meteorology, 1st harmonic is

enough.

To fit harmonics into dynamic model con-

sider a single harmonic (r = 1).

0; = ag+a cos (wt) + b sin (wt)

( 1 cos (wt) sin (wt) ) aao
b

Define 81 = a cos (wt) + b sin (wt) and

Y1t = —a Sin (wt) + b cos (wt).
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The relation

ag ag
B1 | = | a is 1-to-1.
71 b

a

0, =aotsre=(110)[ 6 | =(110)a
71 /¢

Likewise,

011 ag+a cos w(t+1)+bsinw(t+1)

= ag+ B1,t41

Define

COS w Sin w
Glz(

Cdin W cos w ) and G= diag(1,Gq)
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So,

1 O O ao
GB; = O cosw sinw B1.t
O —sinw COoSw Y1t

ag

= B1t COS w—+ 14 SIN w
—B1,4¢ SiN w+ v14+ COS w

But 814 COS w+ 714 Sin w

[a cOS wt 4+ b sin wt] cos w

+ [(—a sin wt) + b cos wt] sin w

B1 41

Analogously, —f81 ¢+ SIn w+~v1; COS W = Y1 t41-

ag
Then, G,Bt = Bl,t—l—l = :Bt—l—l and
71,t+4+1

0j1+1= ( 11 O).Bt—l—l
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This reasoning can be extended to all har-

MOonIcs since

q—1
0; = ap + Y la cos (wrt) + by sin (wrt)].

r=1

Set B,+ = ar cos(wrt) + br sin(wrt) , r=1,---,q—1
Yrt = —ar Sin(wrt) + by cos(wrt)

B = (ao B1tr Mt B2t Y2t -+ Bg—1t Vg—1t )

F,F=(1 1 0 1 0 - 1 0 )

Then, 6; = F;8; and B;41 = GB; where

G = dza’g(la G17 " '7Gq—1)v

COS wr sin wr
G'r — . r:17"'7q_1
— SIN wr COS wr
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Dynamic nature may be incorporated through

system errors.

Model can be written as

FiB; + vt
GB; +wt+1

Initial info: (Bg|Dg) ~ N(mg,Cp)

Obs. equation:

System equation: B, 1

where

G —= dia’g(laGla"'an—l) , b odd,;
o d’iag(l,Gl,--~,Gq_1,—l) , P even.

_— (11010 10),podd
(1 1010 --10 1),peven.
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Selection of harmonics

Complete description involves ¢ — 1 com-

plete harmonics.
They may not all be needed.

Sometimes with monthly data, only the
1st (anual) and 4th (quarterly) harmonics

are needed.

If we do not know which ones to include,

look at its amplitude.

To do that for the r-th harmonic, observe

Brt and ;¢ and obtain /82, + 2, = \/m _

Ay, its amplitude. Estimates of 8, + and ~; ¢

provide evidence about significance of A,.
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Model Superposition

The linear structure of the models allow
many components to be combined into a

single model

Consider models 1 and 2 given by

yig = Fi01:+v1y, vie~N(,Viy)

01 = G101 1twiy wig~NOWiy)
and

Yot = F/2,t02,t +wvoy,  wvop~ N(O, Vo)

2 = Goibo; 1 twr;y wop~N(OWo,)

If y; is the sum of the 2 series then

Y1t T Y2t

-— / /
= F1:01++Fo00:+ vis+ voy

Yt
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Defining

0
P = (7,5, 0= (bt ).

vg =wv1tt+vpe and Vo = Vi 4 Vo gives

yt = F10; + vi, v ~ N(0,V;) where vy ; and

v ¢ Were assumed independent.

If Gy = dz'ag(Gljt, GQ,t) gives

g.— (01t ) _ (Gt O O10-1 ) 4 [ wi
' 0> ; 0 Goy 0> 1 wo ¢

= G011+ wy

Wwo ¢
Wi = diag(W1 4, Wo ).

where wy = ( Wit > ~ N(O,Wt) with

Most common example: superposition of

polynomial trend + seasonal component
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Assuming linear growth and trigonometric

modeling with m harmonics gives

F),=(1 0),F,,=(10 10 10),
om
F/=(1010 ---10).
2(m+1)
(11 — i (1) (m)
Gl,t_ 1G2,t_d7’a’g(G 7"'7G )v

01

Gt = diag(G1 ¢, Got)

with GU) = < % )

—5j €

c; = COs 27j/p, s; =sen 2wj/p, j =1,...,m.
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Theorem. Consider h > 2 time series Yy
genearated by DLM's M; : {F;, G;, Wy, Vi,
with state vectors 6, of dimension n;, for
r = 1,2,...,h. Denote observation and
evolution errors in M; by v; and wj, re-
spectively. Assume, Vi %= 7, (1 < 14,7 < h),

v;; and w;; are independent. Then,

h

Yi= ) Yy
i=1

follows a DLM {F, G, V, W}, with state vec-
tor 6, = (0%,,...,07,), of dimension n =

ni1 + ...+ ny and quadruple

F;, = (Fi,...,Fp,)

Gy = dzag[Gltw--tht]
Vi = Z Vit

W, = diag[W1s,. ... W]
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Proof:

Y; = Fiot + v+ where vy = ijl:l Vit -
v¢ 1S normal with zero mean.

Independence assumptions lead to variance

V4, as needed.

For state vector 8, = (6%,,...,6},),

— — /
0, = Gtot_l ~+w¢ where wé = (wll,t’ ces ,wh,t).

Again, by independence,
wt ~ N[0, W] that is independent of v,
thus defining the DLM.
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Discount Factors

Seen for 1st order model: specification of
matrix W; (variance of system errors wy)

was made indirectly with use of discounts.

More specifically, if system equation is
0; = GO;_1 + wt, wr ~ N(0, Wy) then,
for V(0;_1|Dy—1) = Cy_1,

Ry =V (0¢|D;_1) = Py + W; where

P; =V (Gi0;_1|D;_1) = G;Cy_1Gy.

So, Wy = R; — Py.

Defining 6 so that Ry = P¢/d we can in-
terpret 6 as the percentage of information

passing from ¢t — 1 to ¢t. In this case,

W, =R, —P;=P;/§ — P, =P;(67 1 - 1).
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The above reasoning can be extended in
the case of model superposition

(eg.: trend 4 seasonality)

In the general case of kK models, define
P, = V(G0 4—1|Dy—1),1 =1,2,---,k

and use discounts ¢; for each block
such that R;; = P;;/é; and
Wit =Pi(5; 1 - 1), i=1,2,--- k.

The full model obtained by the superposi-

tion of kK components has

Wt — dia’g(wl,ta R 7Wk,t)7

where W, ; is given as above.
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Practical discount strategies

Discount: suitable for 1-step evolution.
Multiplicative tool used for additive factor.

C¢ — R4y 1 via discount § (leading to W4 1).

Observing y;41, Ci41 — Rypo using dis-
count ¢ (and leading to Wy4o 7= Wy11).

If it is used k-steps-ahead —
exponential decay of information —

inconsistent with arithmetic decay

If we want to predict y; 40,

V(wi42|Dy) is needed and is set as W,y .
Similar reasoning is valid for k-steps-ahead.

All variances W; are specified 1-step-ahead.
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Unknown variances

So far, all models assumed known obser-

vational variances V4.

In practice, this is rarely true and variances

must be estimated.

Following same model structure, variances
are estimated sequentially and should have

thir own evolution.

For now, assume V; =V, 1 =V = ¢ 1, vt

Let us start with the simplest case:

1st. order model
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Model is slightly modified to

Obs. equation: vy = us + v, vi ~ N(0,V)
System equation: ps = pi—1 + wt, wg ~ N(O, VIW])

Initial info: ug|V, Do ~ N(mg,VC3) and
ngo do

V ~ IG(=2,
272

The inclusion of V in all variances gives an-

alytic tractability and interpretation ease.

Independence between errors v+ and w; are

still valid but conditional on V.
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Inferential process consists again in

e 1,V | Dyg O v Dy P v Dy
posterior prior posterior
J prediction
Yi | Dy q

In steps above we can work with the joint
distr. of (u, V) or with the conditional of
1|V and the marginal of V.

Note that E[V—1|Dg] = % =10 = 55!
where Sp is an initial estimate of V.
Value of ng informs the precision of this

estimate since CV[V~1|Dg] = \/Enal/Q.
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Theorem. With model above, the follow-

ing distributions are obtained

(a) Conditional on V:

(-1 | D¢—1,V) ~ Nlmy_1,VCi_q],
(e | Di—1,V) ~

(i/t Dt—17 V) ~

:a’ta VR;JK] )

:ft7 VQ;fk]a
:mta Vclzk]a

2 2 =2 =2

(:UJt | Dt,V) ~

with

at — M1, R:fk — ijk—]_ + Wt*
ft = ay, Qi =14 R;
my — Q¢ —|— Atet, Cgk — R: — AtQQ:;

—1
Ay = RiQi et = Y — fi
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(b) For the obs. precision ¢ = V—1:

(¢ | Di—1) ~ G(ng—1/2,di—1/2),

(6| Dg) ~ G(ng/2,di/2),

where
—1
ng = Ny_1 —l— 1 and dt p— dt_]_ + 675262:

(c) Uncondicional on V:

(pe—1 | Di—1) ~ tn, 1Imp—1,Cs_1],
(i | Dg—1) ~ tn,_qlat, Ril,
(}/t Dt—l) ~ tnt_l:ftaQt]a

(ut | D) ~ tpme, C],

where
Cii1 = S41Cf_1, Rt =S 1Ry, Qt = S;1Q%
Cy = SiCy, Si—1 =di_1/ns—1 and Sy = di/ny
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Following relations are also obtained

my = at+ Are

Cy = Si/Si—1[R: — A7Qi] = A4Sy
ng = ng_1+1

d = dp_1+ Si—1e7Q;

Qt = Si-1+ Ry

Ay = RiQ;?

Proof: Given the model definition, re-
sults in (a) follow directly from results with

known variance.

The rest of the demonstration is by induc-
tion, and uses results from the NG distri-

bution.
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Assume by induction that the prior for the
precision ¢(= V~1) in (b) holds,

ie. (¢ | Di—1) ~ Glng—1/2,dr—1/2].

From (a), (Y; | Di—1,¢) ~ N[ft, Qi /d],

and

p(Yi | Di_1,¢) x ¢*/? exp(—0.5¢e7 /Q}).

By Bayes theorem, the posterior for ¢ is

p(¢ | Dt) o< p(¢ | Di—1)p(Yi | Di—1,9).

Using the prior in (b) and the likelihood

above gives

p(¢ | Dy) o< ¢=1F1/2=1 exp[—(dy_14-€2/QF)$/2].
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Clearly, this is the density of a G(n¢/2,d:/2)

distribution, where ny = n;_1 + 1 and

—1
dt =dy_1 + e7QF .

To prove (c), just remember that

pleo ~ N[m,¢ 'C*] and ¢ ~ G[n/2,d/2] =
no~~ tn(m,SC*)

where S = d/n. All results in (c) follow

from the marginalization of the distribu-

tions in (a) with respect to the appropriate

prior/posterior Gamma distribution for ¢.
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Results for the general model are obtained

in the same way.

The model is defined by

Y;f F:fot + Vt 3 Vvt ~ N(07 V)

0, Gi0;_1+w: , wi~ N[0,VW/]
(00 | Do,V) ~ N[mg,VCg] and

(V| Dg) ~ 1G(np/2,dg/2).

(Again, we assume V; =V,_1 =V, Vt.)

Same independence assumptions remain,
but now conditional on V (or ¢ = V—1).
Prior mean of ¢ is E[¢ | D¢] = ng/dg = Sal

where Sp is a prior estimate of V.
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Inferential process consists again in

evolution updating
0;— 1,V | D1 =" 0,V |Di_1 " — 7 0,V | Dy
posterior prior posterior

J prediction

Yi | Di—q
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Theorem. With model above, the follow-

ing distributions are obtained

(a) Conditional on V:

(ot—l Dt—17 V) ~ N:mt—la Vc;fk—l]a
(ot Dt—17 V) ~ N:ata VR:]a
(i/t Dt_]_,V) ~ th7VQ:fk]7
(0t | Dt7 V) ~ N:mta Vc;fk]7
with
ar — Gtmt_l, R;Jk — GtCZ‘_lGQ + W;Jk
ft = Fiay, Qi = 1+ FiR;F;
m; = at —|— Atet, CI = R;I; — AtAgQ:;
-1
A; = R{FQp et = Yi — fi
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(b) For the obs. precision ¢ = V1 :

(¢ | Di—1) ~ G(ng—1/2,di—1/2),

(¢ | Dg) ~ G(ng/2,di/2),

where
—1
ng = N¢_1 —l— 1 and dt p— dt_]_ + 675262:

(c) Unconditional on V:

(0:—1| Di_1) ~ tn,_{[ms_1,Cs_1],
(0: | Di—1) ~ tn,_i[as, Rel,
(Y;f Dt—l) ~ tnt_l:ftaQt]a

(0t | Dt) ~ tn,[my, Gy,

where
Ci—1 = S5-1Ci_ 1, Ri =85 1R}, Q: = S;_1Q;
C; = SCf, Si—1=di_1/n4—1 and Sy = di/my
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The following relations can be obtained

m; = a;+ Aiey Ci; = St/S;_1[Re — AtALQ]
ng = ng_1+1 di = dy_1 + 5t—1€752Qt_1
Q: = Si_1+ FRFy Ay = RyFQ; 1
Proof:

Direct generalization of 1st order model.

For (a), use results for model with known
V.

For (b), use same results obtained for 1st
order model.

For (c), use results for NG distribution in

the multivariate case,i.e.,
0|~ Nm,$ 1C*] and ¢ ~ G[n/2,d/2] =

0 ~ t,[m, SC*] where S = d/n.
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Retrospective Analysis or Smoothing

So far we obtained the distributions of 6¢|D;_1

(prior) and 0| D; (posterior or on-line).

If system is used in real time, on-line dis-

tribution is the best.

Sometimes, data up to time n (beyond t)

IS available.

We would like to use this information to
obtain a more precise distribution for 6,

i.e., the distribution of 0Dy, n > t.

This distribution is useless for prediction
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but knowing the distribution of 8¢ Dy, n >t
can be useful for retrospective analyses,

providing a better control of the system.

Theorem. Consider the DLM {F¢, G¢, Vi, W}

For all t and k (1 <k <1t),

0, Dt ~ N(ay(—k),R¢(=k)) where
ar(—k) = my_p + By _glay(=k+1) —a;_p41]
Ri(—k) = C;_p — By _p[Ry_pt+1 — Ri(—k+1)]B;_,

with Bt = Cthﬁ—FlRt_—I}l’
and initial values

a;(0) =my e R4(0) = Cy.
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Proof: (by induction)

POt 1,0t _p11|Dy) =
P(0_1|0t 141, Dt) p(0r_4-1|D¢)

But p(0;_|0;_r4+1,Dt) = p(0s_1|01_k 41, Di—i)

To obtain p(0;_x|0;—k+1,Ds—), One needs

first to note that
0,_ my C —k S,_

(or e Pees) =0 (s ) (5wt
t—k+1 At Lk+1 t—k t—k+1

S0, 0;_|0;_py1, Dy, ~ N(he(k),He(k)) where

hi(k) = my_+ By (041 —a_+1)

H; (k) Ci_r — Bi_rRi_r+1B)_}
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(i) The dependence of 6;_j in 0;_f41 is
linear on the mean and

(ii) 6;_g+1|Dt ~ Nlay(—k+ 1), Re(—k+1)],
by the induction hypothesis

(i) & (ii) = 6; g[D: ~ N(ai(—k),Ri(—k))
with

ar(—k) = my_; + By gla(—k+ 1) —ap_p41]

Ri(—k) = C;_, — By [Ry 11 — Re(—k+ 1)]B;_,

Corollary. If observational variances are

unknown and V; =V = ¢~ 1, V¢, then

0,1 | ¢, Dt ~ Nlay(—k),¢ 'Ri(—k)] and

0;_ 1| Dy ~ tnfar(—k), SiRi(—k)]

Proof: EXxplores same results about the

NG distribution.
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Linear Bayes Optimality

Assume y is a vector of observations and

@ is a vector of parameters.

We want to estimate 0 by d is such a way
that the loss L(6,d) has minimal expected
value. Obviosly, if y is related to 6, we

would like to use this information in d.

The problem then is to choose d that min-

iImizes
E[L(6,d)]y].

Assume the only available information from

y and @ are the first two moments

sl (S R)
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Without additional information about the
distribution, one cannot calculate E[Q|y].
To bypass this problem, we work with the
expected loss E[L(6,d)] and restrict atten-
tion to estimators from the class of linear

estimators
d =d(y) =h+ Hy.

The linear Bayes estimator (LBE) is de-
fined as the estimator that minimizes the

expected loss among linear estimators.

It can be shown that the LBE is given by

m=a+SQ 1(y —f)

and the associated loss is

C=R-SQ !¢
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m and C are then used as an approxima-
tion to the moments of 0|y, and called pos-
terior linear mean and posterior linear vari-
ance of f|ly. Note that they coincide with
posterior mean and variance if the joint
distribution of (y,#) is normal.

Importance of linear optimality to DLM

The distributions of interest in DLM'’s can
be obtained by this method without the

normality hypotheses. Consider the DLM

Y;f F:tot + V¢, Ut ~ [07 V;f]

0, Gi0;_1 +wi, wir~ [0, W]

00/Dg ~ [mg,Co]

where all distributions are partially speci-

fied through means and variances only.
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Then, the general theorem remains valid

but without the normality assumption, i.e.

0:|Di_1 ~ [a¢, Ry

Yi|Di—1 ~ [ft, Q]

0:|D; ~ [my, Cy]

where the expressions of the moments re-

main the same.

The first two results follow from linearity

of expectation.

Last result follows from linear optimality.
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Intervention

Every time the model behaves in non-standard
form, we should intervene (management

by exception).

Intervention may be

(i) anticipatory (feed forward)

(ii) retrospective or corrective (feed back)

Consider known variances for the moment.

Dt — {yt7 It7 Dt—l}
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Anticipatory Intervention

1. Ignore observation

If y; is deemed not compatible with series
= non-informative

= may be ignhored.

So, I+ = {y; missing}
= Dt = Dt—l

= my = a; and C; = R;.

This can be formalized in DLM’s taking

Vi — 0.
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Anticipatory Intervention (cont.)
2. Additional evolution disturbance

If we know something happened, noise is
added to the system. In general, we take
a larger R; for some or all components of
0;. So, take Iy = {m;} where the additional

noise i, ~ N[hy, Hy] is independent of wy.

Formally,

0 = G401 + w + 1y
wi~N(h;,W;+H;)

and 0t|Dt—17[t ~ N[aj,Rf] with

ay ar + hy
R* = R,+ H,

~
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If some components of hy and diagH; are
zero, we do not expect changes (from stan-

dard) in the corresponding 0 ;.

Just like Wy, the role of H; is to increase

uncertainty.

So, it may also be specified through dis-

counts.

In this case, use a smaller discount than
usual to allow a greater increase in uncer-

tainty.
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Anticipatory Intervention (cont.)

3. Arbitrary subjective intervention

Model provides a;, Ry, Vt.

Assume that I; = {a}, R} }, for some a; and
R;.

So, 0y1;, Dy 1 ~ N(af,Ry).

Eg.: R;Jk =0 = Pr(0t = a%"|Dt_1,It) = 1.

This model is not consistent with MLD

framework and prevents filtering.

Reconciliation with DLM’s is possible with

the result below.
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Lemma: Let F(6;) = a; and V(6;) = Ry,
K; n xn non-singular, upper triangular and
0; = K0; + hy. Then, E(0f) = a; and
V(0;) =R if Ky = UyZ; ! and hy = aF —
K;:a;, where Ut(Zt) is the only non-singular
upper triangular square root matrix of R}

(Rt), l.e., R;k = UtUé (Rt = thg)

Proof: From linear algebra, if Ry and R}
are symmetric p.d. = U; and Z; exist and

are unique.

From the definition of hy,

E(6;

Kia; + hy = Kia; + af — Kpay = aj

V(07) K:RiK) = KiZ, Z1 K} = (KiZy) (K¢ Zy)'

= U,U,

120



We obtain from the lemma a '’ second evo-
lution” of 0; to 6; with the required mo-

ments. So,

0F = K0, +hy
= Ki(G0i_1 +w) + hy
= KiG0;_1 + Kywi + hy
= G{0;_1 +w;
where G} = K;G¢, wj = Kw+hy ~ N(h, W)
and W} = K;W;Kj.

Model is now formally in the structure of

a DLM.
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Anticipatory Intervention (cont.)

4. Inclusion of intervention effects

So far, interventions have maintained the

same model parameters.

Sometimes, intervention requires additional
parameters in order to single them out and

estimate them.

Eg.: Consider the LGM with 0; = (u, Bt)

Let 0 = (ut, Be,vt) where

[ wf ne + vt
0; = | 5t | = Bt
\ 7t o0
(10 1
= |01 (“t>+ 0 |
\ 0 O & 1

0; K0 + &;
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Note that the dimension of the parameter

vector changed.

A " second evolution” for model parameters

IS thus defined.
0t|Dt—1 ~ N(ataRt) =4 0:‘”[157 Dt—l ~ N(&:,R?)
with

a; = Kiar + E(¢;) Ri = KiRiK; + V(&)

The (total) evolution is given by

0; = Ki0:+&, = Ki[Gi0;_1+wi]+& = G101 +wi

where G} = K;G¢, wf = &+ Kuw ~ N[E(&;), W/]
with Wf = KtWtKé -+ V(&t)
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Monitoring

Atention now is turned to monitoring model
performance (poor forecasts, changes in

parameters).

Techniques linked to functions of the fore-

cast error e; = Bayes factors (BF).

Consider models Mg (standard), My, Mo, - -

with forecasts p(y:|Ds—1, M;) = pi(yt|De—1).

The BF for Mgy against My based on y; is

Dy_1)
f, — Po(wt|Di1)
t = p1(w|Di—1)

BF is ratio of predictive likelihoods:
The larger (smaller) Hy, the greater (smaller)

the evidence for Mgy (against Mq).
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The BF for Mgy versus My based on the

last k observations y¢, ys—1,**, Yp—g4+1 IS

Po(Yts s Yt—k41|Dy—k)

Hi(k) = P1(yt, s Y411 Di—k)
_ L po(yr|Dr_1)
B r:tg+1p1(yr|Dr—1)
Remarks:

(i) Hy(1) = Hy;

(i) Ht_l(k) is the BF for Mj versus My

based on y, - -, Yr_p41;
(iii) Hy(t) is BF based on data up to y;

(iv) Hy(k) = HiH;_1(k — 1) or
log Hi(k) = log Hy 4 log H;_1(k — 1)
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Due to the dynamic nature of situation,

we usually work with H:(k) for small k.

H; = H:(1) small = y; is a possible outlier.

H:(k) small = last k points indicate struc-

tural changes not captured by Mj.

In practice, we should concentrate on the
worst value of Hy(k), 1 < k <t. The the-

orem below tell how this is updated.

Define L; = Ht(lt) = mink Ht(k)

Idea is to use L; and [; for detection.
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Theorem. (i) Ly = Hymin{l,L;_1};
(ii) Ly = H(l;) with
| — { 1441 if Lq <1
1 if L, 1>1
If L; is too small, we intervene. In general,
the threshold 7 for intervention is around

0.2. Before that, nothing is done even if

Ly < 1. (If Ly > 1, all is fine.)

fr< Ly 1<1=Li< Ly_q if H <1.

If Ly < 7, the monitor should signal.

If Ly <71 and

(i) iy =1 = Ly = Hy = wy; is outlier or
model starts to deteriorate at ¢;

(ii) I > 1 = model started to deteriorate

at time t —[; 4+ 1.
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Choice of alternative models M4

Assume f; = 0 and @Q; = 1 or alternatively

take
ef =7 ft|Dt_1 ~ N(0,1), under Mg
V Q¢

If variance is unknown, change N by tn, ;.

Possible alternatives for My are:

(i) e¢ ~ N(h,1) - shift in level;

(ii) e; ~ N(O, k?) - shift in scale.

Under (i), H; = exp{(h® — 2he;)/2} and

choice of h in based on BF.

128



H; = 1 (indiference between Mgy and Mi)
& h = 2ey.

This is reasonable for e = 1.5 = h ~ 3.

Assuming threshold 7 = e 2 < h? — 2he; —
2logr = 0.
Threshold should be reached when e; =

2,5 = h=1 or 4.

h between 3 and 4 seem ok: BF indiferent
when e; = 1.5 and rejection of My when

et = 2.5.

Under (i), Hy = kexp{—e?(1 — k=2)/2}.

Note: value of k£ not relevant for large |ey|.

k=3 or 4 and - =0,15 seem ok: lead to

rejection of Mg when |e;| = 2.5.
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Retrospective Intervention

Automated detection and diagnostic scheme:
(A) Calculation of H;.

If H > 7, go to (B).

If H < 1, y; Is outlier and omitted, or y; is
start of change. Go to (C).

(B) Calculation of L; and ;.

If Ly >7 (or Iy > 4), go to (D).

If L; <7, go to (C).

If L; <1 and l; < 4, go to (C).

(C) Monitor signals. Intervene and reset
monitor to [y =0 and L; = 1.

(D) Keep standard analysis.

Simplest form of intervention is through

iINnCrease in prior uncertainty.
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Dynamic regression models

Regression model in time series has

Yyt - response time series

x¢ - time series of regressors that in-

fluence ;.

It is also possible that x5, s <t or even ys,

s < t influence ;.

Simple model: yu; = a4+ Bxy

Assume that exists f such that u; = f(x¢,t).

In general, if it exists it is unknown.
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One approximation is to take f(x¢,t) =
ot + Birxg, 1.€., linear function of x; but co-

efficients change.

Good choices of ay and [ lead to good

approximation.

Model has local form to represent changes
in a and B. Simple form to relate a’'s and

B's is random walk

it _ at_1
(&)‘(@4>+“t
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T he multiple regression DLM

Ideas can be extended to the case of n

regressors i, o, -+, tn Where z1 = 1.

Obs. eq.: yt = a¢ + Bt 1242 + -+ + Btn—1Ttn + vt
Syst. eq.: ay = a;_1q + w1

Bi1 = Bi—11 twio2 wr;~ N(O,W;)

Bt,n—l — Bt—l,n—l + Wt.n

or placing in matrix form

Obs. equation: Fi0; +v; v~ N(O,V;)

System equation: ; = 6;,_1 +w;: w;~ N(O,W;)
where F} = (1,242, -, Ttn),
02 — (Oét, Bt,l7 T 7Bt,n—l),1 w;t — (wt,la "o 7wt,n)/
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IfWy=0=60,=86;,_1=20, Vi

— Static (usual) regression.

If W; # 0, 6; changes with time.
W; large (small), lots of (little) change in

0; with time.
only 1 regressor: F, = (1,x¢), 0, = (ay, Bt)’

For forecast, future values of regressors
are needed.

One possibility: joint modeling of 4,4, and
X4 = Multivariate model.

Another form is to obtain p(x;4x|D¢) and

P(Yr+klDt) = /p(yt—l—k7xt—|—k|Dt)dXt—|—k

/P(yt—l—k|xt—|—k7 Dt)p(Xt—|—k|Dt)dXt—|—k
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If we only have E[x;yr|D:] = hy(k) and
Vx¢4x|D¢] = Hy(k) then using that

yt—|—k|Xt—|—k7 ﬂt—|—k7 Dy ~ N(X;§+k:3t—|—k7 ‘/t) gives

Elysyk|Dt]l = ElE[yitx|Xi4k Bitk> Dill
:X;,_|_k,3t—|—k|Dt]

:E[X2—|-k13t—|—k|xt—|—k7 Dy]]

& & & O

:X2—|-kE[:Bt—|—k|Xt—|—k7 Dy]]
ht(k)at(k) and

Vsl Dt B[V [yt kXt 41> Bitg-k> Dt
+ VIEyirlxt4ks Bitks Dtl]
"8y + hy(k)'Re(k)he (k)
nt — 2

+ tr{R¢(k)H(k)'}] + miH;(k)my

In dynamic regression models, a;(k) = my

and R¢(k) = Ci+ 38 Wiy
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Transfer response functions

Mean response function may depend on

current and lagged values of a regressor

pt =00+ 012t + 0oy 1+ + 0p 12t

Model can be placed in a dynamic struc-
ture making 0’'s time dependent. System

equation would typically be a random walk

0 =0;_1 + wy.

In the above, y; depend on x+ only up to
p time periods. One can also model an
effect that smoothly decays to O through

transformations of =«.
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Example: y; = 0o+ & + v¢ where

§t = Ag—1 + Yzt

A represents memory of effect

Y represents the strength of x.

It can be shown that &4, = A&+ 8 Ne—iz,

oy, =0,77#1L g = NEGFPN "1y

In the usual regression model yy = a+0x++

et, the transfer function of zy in yy4, is

Ox, =20
O, r#0

In autoregressive models of order p, we

have

97“—|—1x7 r = 07 17"'7p
0, C.C.
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Definition: A general transfer function

model is
gy = Fi0; + v
0; = GO;_1 + z4h + Wy
Y = P ‘|‘Wt,2

This model can be placed in DLM form.
Define a state vector 8; = (6},%}) and the

model quadruple as

F:‘J — (F:bol) , Gt — ( 0 In

>,Vand

W, — W1+ 22Wio 2Wyo
Tt Wi 2 Wi o

The forecast function is

fi(k) = Elys4,|Dt] = Fiy 1 E[0;4|D¢]
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But ot—l—k = G0t+k_1 + "/’t—l—kxt-l—k + Wi, 1

k
G*0; + Y GF "4,y _,aiy, + errors

r=1

k
Gkot -+ Z Gk_’"zptxt_l_r + errors

r=1

where hy = E[’l/)t|Dt]

Ifxt—l—r:Ov r#z1=
ft(k) — F:j_l_kamt + F:f—l—ka_lhtxt—Fl'

In the example, G =\, ¢, = ¢, F =1 and

the transfer function is \fyz.
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Significance tests for model parameters

For some models it is important to assess
the significance of a subset 6; 1 of param-

eters in explaining the response series yy.

Example: 6; 1 = (5t 4,7,;), the parameters
of the j-th harmonic of a seasonal compo-

nent

Consider the region R = {0|p(68|D;) > p(0|Dy)},
where 6 can be

(i) 6,

(ii) 6; ; or

(iii) 6;1 a subvector of components of 6;.
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Example: If V is known, :|D; ~ N (my, Cy),
0|D; ~ N(m, C) where if

(i) 8 =0, ; then m = m; ; and C = Cy ;;;
(ii) 8 = 60,1 then m = m; ; and C = C; 1,
where m; 1 and C; 1 are the respective com-

ponents of vector m; and matrix C.

If P(R|Dt) IS

(i) high = the point 0 is in the tail of the
distribution < 0 is very unilkely < 0 is

significant;

(ii) low = 0 is in the tail of the distribution

< 0 is very likely < 0 is not significant;

141



Calculation of P(R|Dy)

(i) V known
0|Dt ~ N(m, C) and

p(0|D;) = kexp(—Q(0)/2) where

Q) = (6—m)C 16— m)

But p(8|D;) > p(0|Dy) ©
QR(6) < Q(0) = m'C~1m.

From page 20 of notes, Q(6)|D; ~ x2.

So, P(R|D¢) = P(Q(0) < Q(0)|Dy) =
P(Xg <m'C 1m),

that can be easily calculated.
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(ii) V unknown

0|D; ~ tp,(m,C) and

p(0|Dy) = k[n + Q)] (nT9)/2

So, p(0|Dy) > p(0|Dy) &
Q(6) < Q(0) = m'Cm.

But Q(0)/q|Ds ~ Fyn,

So P(R|D:) = P(Q(0) < Q(0)|Dy) =
P(Fyn, <m'C tm/q),

that can also be easily calculated.
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Outliers and missing data

An outlier can be identified with an uex-
pected value for an observation
= large forecast error.

We know that ey Dy_1 ~ tn, (0, Q¢).

Look and the value of |et| or |et|/+/ Q¢

e; influences estimates of 6; and V since

Sy e
m; = a;+Aser and Sp = (n i j_ 1 [nt—l + é]
t_

e; large = y; not described by the same

model = (0, V|Dy) ~ (0, V|Dy_1).

Obviously same result if y¢ is missing.
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Irregular time intervals

So far, time intervals equal to 1.

Not always true

Example:

only 1 value available at the end of month

= observe y31, Y60, Y91, - -

All that need to be done is to repeat miss-

ing data procedure.

Use of discounts should follow previous rec-

ommendation of 1-step-ahead rule.

145



Data Transformations

Very common in Statistics but ...

be careful with interpretation.

One idea is to transform y; non-normal

into z; = g(y¢) approximately normal.

If E(yt) = pur and V(y) = V4 then Taylor

series expansions give

E(z) =~ g(ut) + ¢" (u)Vi/2,

Analogously, V(z) ~ {g'(u:)}?V;.

Commonly used family of transformations,

_J @ =1/ X#EO0
g($)_{ log z, A=0

So, V(z) = {E(2)}2(1-MV.
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Important special cases:

(i) A = 0 (log transformation) = V(z) x
E(z)?;

(i) A=0,5 (v/ transformation) = V(z) x

E(z;) (Poisson model).

Obviously, since z¢ ~ tpn,(ft,Q¢), forecast

for y; must be based on its distribution

Note that E(z:) #= g[E(y:)] but

median z; = g(median y;).

If yp = ’Ytilfftvt then z; = logy: = logy +
B¢ log xy + l0og vy and additive linear model
iIs OK. Very used in Econometrics where
one measures the effect on y; of the rate

of growth (rather than the growth) of x;.
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Non-normal data

Generalized DLM —

Extension of DLM to exponential family.

Observation and system equations now de-

fined by
f(ytl0r) = a(yr)exp{y:0: + b(6:)}
g(pt) = FiB; where E(y:|6r) = pu
:Bt - G:Bt—l —|— W Wwe N(O,Wt)

BolDo ~ N(mg,Cp)

g(ut) is the link function.

No conjugacy — no analytically exact in-

ference
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Generalizes the GLM (on page 37) by al-

lowing a dynamic structure for B.

Example: Dynamic logistic regression

LLogistic regression can be extended as

yt|me ~ bin(ng,m), t=1,...,n

probabilities m; determined by the values of

variable x
Tt — F(Oét-|—5t513t) 3 t:]-a y TV
ar = o1+ wiy
By = Bi—1+ woy

F - any distribution function
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Estimation of cycles

Cycles: processes that repeat themselves
according to a regular pattern. The sim-

plest example already seen is the harmonic

y = acos(0t) + bsin(0t) = rcos(0t + @)

where r2 = a2 + b2 and cos(¢) = a/r.

The constant r is the series amplitude.

e 0 is the frequency, since full wave makes
6/2m cycles in a time unit

e y; completes cycle after A time units

e A\ =27/60 - length of harmonic wave

e ¢ is the phase angle and indicates how

distant we moved at the origin.
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Consider the AR(2) model

Yyt —a1yi—1 — apys—» = 0.

If a?+4as < O, the roots of the polynomial

equation 1 —ayB—a>B2 = 0 are imaginary.

The homogeneous solution has form y; =
Birtcos(0t + B>), where 81 and B are arbi-
trary constants, r = (—a»)1/2, and 0 satis-

fies cos(0) = al/[2(—a2)1/2].

We clearly have trigonometric functions as
solutions, and they impose a cyclic pat-

tern.
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Stability: determined by r = (—a5)1/2.

If | ap |= 1, oscillations do not alter ampli-

tude; homogeneous solution is periodic.

Oscillations decay if | as |[< 1 and explode

if |an |> 1.
Cycles can be represented by AR(2) forms.

When Bt = a18;_-1 + a>B;_>, model can be

described in system equations by taking

0 = (Bt,Bt—1)" and so

By =(1,0)0; and 6;=GoO; 1,

. . a1 an
W|thG—< ] O)
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Given initial conditions 81 = (81, 8p)’, the
solution B; = (1,0)G!~10; has form deter-

mined by eigen structure of matrix G.

In the case of a conjugate pair of com-
plex eigenvalues we have the solution of

an AR(2) model.

Placing the AR(2) in the stochastic form

Bt = a1Bt—1 + axBi—2 + wy,
where wy ~ N(0, W) gives

By =(1,0)8; and 6= GO;_1+ (wt,0)".
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A series y; exhibiting a cyclic behaviour of

length A and decay r may be modelled by

Be+ve v~ N(O,V)

a1B¢—1 + asfBi—o+wr wg~ N(O,W).

Yt
Bt

wy = 0,Vt = y; are observations from a
dampened cosine wave

The model in matrix form is

F'o, + v

Yt

0; GO; 1+ wy

where 0, = (B¢, 8;—1) and

(1 (a1 ao (W O
F_<O>,G_< 1 0 )andW_< 0 O>’
where W = V(w;), r = (—a»)1/2 and
A =27 /cos (a1 /2r).
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Variance laws

So far, normal model assumed with un-

known mean and variance.

Basic property of normal: variance does

not depend on mean was maintained.

Data may not behave like normal.

One solution is to normalize through trans-

formation g.

Problem: when forecasting we must come
back to original scale which may be com-
plicated depending on g. Also, after trans-
formation we lose interpretation on data.
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Alternative: model the dependence of vari-

ance on mean.
Deterministic approach
Assume V(y;) = k:V where k; is known.

The only change in the inference cycle is

that Q: = k+S;_1 + FiR/F.
(When V(y;) =V, kt was replaced by 1.)

Previous discussion may lead to V(y;) =

k(ue) V.

Most common examples are:
i) k(ue) = uf, p>0 (p=1 < Poisson)
i) 14+ bul or pu(1 — pg) (binomial data).

156



Exact treatament is difficult and destroys

normal theory.

Simple alternative: replace k(u:) by k(ft)
in the expression of Q; since f; is the best

estimate of u¢|Dy_1.

Other examples of variance modeling are

1. ARCH (p) models given by

2
‘/t — & + ’71,0752—]_ + ’72’0752_2 + T + vat—pa

V; described by lagged obs. errors;

2. GARCH (p,q) models given by

Vi = ady1vf 1+ - FpvipH61Vic 1+ A0gVieg,
V4 also described by AR(q) from
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Stochastic modeling

Assume that ¢ = V1 is now indexed by ¢

and ¢¢|Dy_1 ~ G(ng—1/2,dy—1/2).

Taking ¢ = ¢y_1 + Y where
E(yt) =0 and V(yy) = Uy

= E(¢1) = E(¢4_1) = S;_} and

V(61) = V(1) + V() = 5= + U

t

Thinking multiplicatively (with discounts),

V(¢t|Ds—1) = V(¢4—1|Dy—1) /0y = 2ny_1/d7 16y

2ng_1  2ny_1
2 7.
dt—15V dt—l
= V(¢t—1|Dt—1)(5‘71 —1).
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So, U; can be set with help of variance

discount oy .

For an analyticaly tractable analysis, it is
required that ¢¢|Dy_1 ~ G(c1,c). Solving
for ¢1 and co,

Cc1 C1
— = E(¢¢—1|Dy—1) and = = V(¢4—_1|Dy—1)
6p) €2

= C1 = 5Vnt_1/2 and co, = 5th—1/2-

This result is also obtained if

5V¢?_t1|¢t—1 ~ Beta <5vnt2_1, (1 - 5v)nt—1/2>

Analysis follows as before, after multiply-
ing prior parameters of ¢¢|D;_1 by éy. Typ-

ically, oy will be close to 1.
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Remarks:

1. Filtering is approximately avaialable (based
on moments). Result is
Syt (k) = BE(¢1—x|Dy) = S, +
Svi—k1(Sy H(—k 4+ 1) — S, and

V(¢i—|Dt) = ﬁstzk(l —0yt_k41) T+

2
(k1) (D) Vit k1

initialized with S¢(0) = S; and n(0) =

nt.

2. Another model used in known as stochatic
volatility and is described by an AR(1)

process in the log volatilities

log Vi = a+~log Vi_1 + ¢y, vt ~ N(0,0%)
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Hyperparameter Estimation

Introduction

DLM: defined by quadruple M = {F¢, G¢, Vi, We}.

If all elements of the quadruple are known,

inference is known.

If V is unknown, inference is also known.

However, if there are unknowns in

vector F; (eg.: forecasts in AR models),
matrix G (eg.: transfer response), or even,
if values of W or § are unknown (common

in practice),
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= Model is non-linear and

previous theorems do not apply

Let XA be the vector containing all unknowns

These unknown quantities are called hy-

perparameters

Model is now defined in terms of A, i.e.,

M) = {Fi(X), G¢(A), Vi, Wi ()]

Note that conditional on A, model is linear

and inference is done as before.
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When there is presence of hyperparame-
ters in the model, they must be integrated
out for performing inference about quan-

tities of interest: 0, yiyp, - --

p0D) = [ p(8i, DA

= [ p(8:/A, DYP(AID)dA where
P(A|Dy) o p(A[Di—1)p(yt|A, Di—1)

Even tough p(0:|\, D) and p(y¢| A, Dy_1) are
analytically available, the above integra-

tions are generally not solved analytically.

Some form of approximation is needed.
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Possible solutions:

(1) discretize X:
all calculations are available since inte-
grals become sums. Every value of A
defines a model = multiprocess mod-

els (ch. 12 of textbook);

(2) apply linearization;

(3) perform numerical integration;

(4) solve by simulation.

These techniques are outlined below.
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Linearization
Solves non-linearities in F and/or G.

Consider the model with 8; = \0;_1 + wy,

non-linear.
Parameters can be redefined as 0 = (0, \)
evolving via

0; = g(0;_1)+ wi where

" 0, " w
g(ot—l) A( t]_l) and Wy — ( Ot>

Idea is to approximate g by a linear func-

tion using Taylor series approximation around
m;_1, the best available estimate of 6;_4

at time ¢t — 1.
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But g(6;—1) = g(my_1) +G¢(0;—1 —my_1)+

higher order terms

09(0,_1)
where G; = .
: 00,1 0, 1=m;_;
So,
0 = gimi_1) — Gy 1+ G0 1 + wy

= h;+ G071 + wy

In the example, Gy = < )‘01 0t1—1 >

0;,_1=m;_;

Therefore 0;|D;_1 ~ N(at, R;) where

ag h; + Gtmt_l and

R G;C;_1G; + W,
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Numerical integration

Based on deterministic rules.

Difficult to use in large parametric spaces

(p > 10).

1) Normal approximation of posterior =«
Obtained after a Taylor expansion of logw
around the posterior mode.

GLM: mode is obtained after an IRLS (it-
erative reweighted least squares) algorithm
At each iteration: normal regression model

IS built.
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2) Laplace approximation

E[t(6)]

/ £(0)7(6)do

/£(0)1(6)p(0)db
J 1(6)p(6)do

Approx integrands by quadratic forms on

log
Errors of order O(n—1) cancel out

— error becomes O(n—2).

3) Approximation by Gaussian quadrature

2
Approximate integrands in the form exp(—%)h(z)
If h is a polynomial function

— approximation is exact.

All approximations based on the normal

distribution: reparametrizations are useful.
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Methods based on stochastic simulation

Inference based on samples of the poste-

rior (@) where @ = (61,---,0p).

Sample is always a partial substitute of the

information in the density.

Deterministic methods: errors become smaller
with increase of number of observations,

that does not depend on the analyst.

Simulation methods: errors depend on the
number of generated values, controlled by

the analyst.
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Consider sample 64,---,0, from .

Sample from marginal of 6, : 6;1,---,0;,

A lot simpler than analytical integration

Sample of t(0): t1 = t(01),---,tn = t(Oyn)
A lot simpler than obtaining the posterior

of ¢t(0)

Once a sample is available, one can obtain:

(i) point estimates,
(ii) credibility (or confidence) intervals,

(iii) marginal densities.

Example: Ex(0;) =~ (1/n)3;0;;
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Simulation via resampling

(Smith & Gelfand, 1992; Lopes, Schmidt & Moreira, 1998)

It is usually difficult to sample from pos-

terior 7.

Idea: use resampling techniques taking an
auxiliary density g (that can be the prior of

9).

This density is known as importance den-

Sity.

Using the rejection method (RM), there

must exist ¢, such that «(0) < cq(0), V6.
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Resampling scheme:

(i) draw a value 0 from density ¢(8);

(ii) accept this value with probability w(8) =

m(0)
cq(0)

Weighted resampling (SIR) scheme:

(i) draw sample 04, - - -, 0,, from density ¢(8);

(ii) resample values from sample with prob-

abilities
hi: nw(OZ) ) 7:21727"'777“
—oriori. hs — (0
If gq=priori, h; Zgﬂle)
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Problems:

a)

b)

d)

RM: resample smaller than original sam-

ple;

both: handling conflict between prior

and likelihood;

RM: likelihood maximization is required;

SIR: sample from « is approximated.
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SIR in 2 steps

(Schmidt, Gamerman & Moreira, 1999)

1. use SIR as before as a 1st approxi-
mation, i.e., from ¢ (eg, prior) obtain an

approximate sample from

2. from sample, define the parameters of a
new (refined) importance density ¢*. Pa-
rameters may be calculated according to

extremes in sample;

3. obtain a new resample from ¢*. Re-

sample with probabilities,

_ fy(6)
Zfl]:\;l fy(ez)

7 3

where

1(6;)p(6;)
q*(6;)

fy(ez') —
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Approximations via MCMC
(Markov Chain Monte Carlo)

Consider DLM with
state vectors 6 = (64, ...,0,,) and

hyperparameters A

Construct Markov chain with

transition according to posterior condicionals
w(0|A) and ©w(\|@)
= equilibrium distribution is 7 (6, ).

Draw a trajectory from this chain

@ AU j=0,1,2...

This algorithm is known as Gibbs sam-

pling.
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After equilibrium, trajectory values are a

sample from 7(6,)).

Example: consider the DLM where
e F;, GG; are known and

o0 —=(0,---,0,), Vand W are unknown

We need posterior conditional distributions

(0, VIW) and (W], V).

It can be shown that:

(i) (0,V|W) is NG — easy sampling (Fruhwirth-

Schnatter, 1994; Carter & Kohn, 1994)

(i) (W|0) is IW if prior for W is IW — easy
sampling
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When w(A|@) is not easy to sample

o draw A(™ from a proposed transition
g(AIAL), )
Example: AA() ~ N(A) o)

e accept A(™ with probability a(A(O), A(”))

where

(A Ay = min {1 m(A)]6) q<A<0>|A<">,0>}

" 7(A]9) g(AM|A), 9)

This is the Metropolis-Hastings algorithm

(Metropolis et al., 1953; Hastings, 1970).

Again, Markov chain has equilibrium dis-

tribution given by w(0,)\).
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Example: Dynamic GLM with
o F;, G; known and

e 0 = (64, --,0,) and W unknown

It can be shown that

(i) (W]0) is IW if prior for W is IW — easy

sampling

(ii) (0|W) not known — difficult sampling

Build proposal based on

(i) the IRLS algorithm (Gamerman, 1998)
(ii) the prior (Knorr-Held, 2000)

(iii) likelihood approximations (Shephard and
Pitt, 1997)

(iv) random walk forms
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