
•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Dynamic generalized structural equation modeling,

with application to the effect of pollution on health

Dani Gamerman

Departamento de Métodos Estat́ısticos - IM

Universidade Federal do Rio de Janeiro

IMPS 2019 - Santiago, 16 July 2019



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Based on work with...

Luigi Ippoliti Pasquale Valentini



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Content

• Introduction
(Data)

• Model
(Hierarchical levels)
(Computation)

• Results

• Conclusions



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

1. Introduction

This talk is mainly concentrated on regression (effect of X on Y )

Hope: discuss a variety of issues associated with an environment of plenty

of data (information)

Illustrated with examples:

1) effect of pollution on health

2) effect of anxiety on performance

There are similarities and dissimilarites between examples
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Issue #1: Lots of data

Plenty of observational units on both Examples 1 and 2

Plenty of responses for each observational unit

One can regress directly tons of data on tons of data

This is possible but unwise

It is best to stop and think before pushing buttons
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Some of the possible problems:

Observational responses not best to represent intended response

Typically required response is some latent, underlying trait

Anxiety is unrecovered through observed responses to different stimuli

Health is uncovered through a variety of observed outcomes

Will overparametrize model thus removing significance

Many covariates are correlated

More parameters than observations

Removes focus and obliterates understanding

Too much information from the model will obscure the answer

Ideal is to have a few pointers to address the core of the effect
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Some simplification/reduction must be performed... but with care

Aggregation over observational units is one such possibility

Example 2: aggregate over pollutant levels for each pollutant or

aggregate over different pollutants

It may overlook relevant data features

It may oversmooth

It seems best to use reduction driven by the data
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Issue #2: Confounders

Ideal world:

Real world:

Sometimes confounder Z is at least as important as X to explain Y
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Example 1: Z = ability affects performance as much as anxiety

Example 2: Z = climate affects health as much as pollutions

These confounders MUST be included in the model

Many options available:

Confounders could be measured or unmeasured
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Issue #3: Other sources of information

Importance of other sources is related to data pattern

1) Time

Are effects concomitant or delayed?

What is the temporal pattern of the effects?

Very important in Example 2 (pollution → health)

2) Space

Are variables geographically oriented?

If yes, they are likely to be spatially correlated

Relevant for Example 2 (pollution → health)
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3) Hierarchy

Are there further data structures affecting outcomes?

Are there sub-groups (schools, ... ) affecting effect of anxiety?

Relevant for Example 1 (anxiety → performance)

Knowledge of the relevant sub-group characteristics → confounders

Otherwise, it is best to acknowledge the presence of the charateristics

Hierarchy can be elaborate (schools within cities within states ...)
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Outlook of the talk

Data reduction is vital

Main tool for reduction: factor analysis
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Outlook of the talk

Data reduction is vital

Main tool for reduction: factor analysis

Crucial advantange: dimension (fX , fY ) � dimension (X, Y )
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Outlook of the talk (continued)

Set-up for factor analysis: Structural equation modeling (SEM)

Non-normal data: generalized SEM

Temporal pattern: dynamic SEM

Spatial component also incorporated (through factor loadings)

Next, data on pollution & health is presented

Important to understand observed patterns

After that, model is presented
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1.1. Data

Study of the association between urban pollution and hospital ad-

missions in Lombardia and Piemonte (Italy) in 2011

Response (collected daily):

Y hospital admissions counts for respiratory and cardiovascular dise-

ases (ny = 2) at Ny = 28 districts for elderly population ( age > 65)

Nature of variables: count data (→ highly non-normal)

Spatial resolution: areal data
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Other relevant variables (also collected daily):

X average pollutant concentration levels

Pollutants CO NO2 PM10 O3

Nxj 94 168 96 94

Nature of variables: asymmetric data (→ also non-normal)

Spatial resolution: point data

O3 removed from the analyses due to lack of significance

Z temperature and humidity measurements

collected on 271 sites and summarized through the first PC
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Data feature # 1: map of the region of study

• spatial element is highly relevant

• measurements for Y and X are spatially misaligned!
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Data feature # 2: time/weather confounding

Measured and unmeasured confounders exist

Air Pollution 

Hospitalization/Mortality 

Measured Confounders Unmeasured Confounders 

Seasonal trend: influenza and 
respiratory infections 
 
Long-term trend experienced 
by the population: 
improvement in medical care, 
trends in the occurrence of 
major diseases, changes in 
population size 

These are time-varying 
covariates that are 
associated with pollution 
and mortality, as for 
example weather 
variables 

Temporally associated 
with variations  in  
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Data feature # 3: data overdispersion

Counts of cardiovascular diseases per district
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Counts of respiratory diseases per district
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2. Model

Model is built hierarchically:

• observational equations for X and Y given fX and fY

• latent level specification for fX and fY given Ψ

• hyperparameter specification Ψ
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Observational level

Yk(s, t) | ηyk(s, t), σ
2
yk

ind∼ Fy(ηyk(s, t), σ
2
yk

)

Xj(u, t) | ηxj(u, t), σ
2
xj

ind∼ Fx(ηxj(u, t), σ
2
xj

),

Link functions complete the specification

gy
[
ηyk(s, t)

]
= µyk(s, t) +

m∑
i=1

hyk,i(s) fy,i(t)

gx
[
ηxj(u, t)

]
= µxj(u, t) +

r∑
i=1

hxj ,i(u) fx,i(t)

• µyk(s, t) and µxj(u, t) are mean terms, including (lagged) effects of Z

• hyk,i(s) and hxj ,i(u) are factor loadings of variables Yk and Xj

• fy,i(t) and fx,i(t) are corresponding common factors.
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Observational level (continued)

Equivalently, in matrix form

gy

[
ηy(t)

]
= µy(t) + Hy fy(t) (+ εy(t) )

gx

[
ηx(t)

]
= µx(t) + Hx fx(t) (+ εx(t) )

• the mean level terms, µy(t) and µx(t), are fixed effect components,

• fy(t) = (fy,1(t), . . . , fy,m(t))′ and fx(t) = (fx,1(t), . . . , fx,r(t))
′ are

factor vectors for which, potentially, ny ·Ny � m and nx ·Nx � r

• Hy and Hx are matrices of factor loadings of dimensions (ny ·Ny)×m

and (nx ·Nx)× r,
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Latent level

Factors must be temporally dependent to address dynamics of the study

VARX: a model for the temporal dynamics of the common factors

fx(t) =

s∑
i=1

Difx(t− i) + vx(t)

fy(t) =

p∑
i=1

Bify(t− i) +

q∑
i=0

Cifx(t− i) + vy(t)

• Bi (m × m), Ci (m × r) and Di (r × r) are AR coefficient matrices

modeling the temporal evolution of fy(t) and fx(t).

• vx(t)
ind∼ N(0,Σvx) and vy(t)

ind∼ N(0,Σvy).

• { Hx, Hx, {Bi}, {Ci}, {Di} } ⊂ Ψ
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Latent level (continued)

Factors with order (p, q, s) Markov evolution → augmented factors

f (t) =
(
fy(t)

′ . . . fy(t− p + 1)′ fx(t)
′ . . . fx(t− q + 1)′

)′
Their evolution given by the order 1 Markov equation

f (t) = Γ f (t− 1) + ζ(t), ζ(t) ∼ N(0,Λ)

Γ is coefficient matrix with elements γij (functions of {Bi}, {Ci}, {Di})

Λ is covariance matrix with elements λij (functions of Σvx,Σvy).

The prior for the latent process f (t) is completed by f (0) ∼ N(a0,Σf0).

Ample literature on inference for SSM (order 1 Markov evolution)
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Model summary
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Model summary with hyperparameter details
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Model summary with confounders
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Hyperparameters

Two blocks of hyperparameters deserve special attention:

1) AR coefficients γij

2) factor loading matrices Hx and Hy

We will treat them separately
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Hyperparameters (continued)

1) AR coefficients γij

Factor analysis reduce dramatically dimension

But model still remains richly parametrized

Further reduction based on data would be welcomed

One possibility: spike and slab priors

usual prior is mixed with its version strongly concentrated on 0

Example: γ ∼ wN(0, τ ) + (1− w)N(0, cτ ) with c very small

Encourages 0’s for the AR coefficients

→ only the really relevant coefficients survive
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Hyperparameters (continued)

2) factor loading matrices Hx and Hy

A number of restrictions can be imposed on loading matrices

a) Deterministic constraints (identifiability)

Hy =






ny ·Ny

m

m factors represent Ny measurements of ny responses
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2) factor loading matrices Hx and Hy (continued)

b) Deterministic constraints (by model choice)

Example: each factor associated with a single pollutant

Hx =



0 0

0 0

0 0



CO

NO2

PM10

r1 r2 r3

r1 factors associated with CO, r2 with NO2 and r3 with PM10
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c) Stochastic constraints (on factor loadings Hx and Hy)

Measurements in nearby locations must be summarized similarly

→ loading vectors hx,i, hy,j (of fx,i, fy,j) should be spatially structured

Areal data: hy,j ∼ GMRF ⇒E[hy,j(uk) | hy,j(−uk)] =
∑

l∼k wklhy,j(ul)

← depends on neighbourhood

Point data: hx,i ∼ GRF ⇒ E[hy,j(sk) | hy,j(−sk)}] =
∑

l wklhy,j(sl)

wk,l = g(| sk − sl |) ← depends on distances

Allow for interpolation → useful for factor identification

Factor loadings help ”remove”space and drive the spatial aggregation

Side effect: solves spatial misalignment
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2.1. Computation

Full model specification

Observation equation: (X(t), Y (t)) ∼ Fw(η(t), σ(t))

Link function: g(η(t)) = µ(t) + Hf (t)

Evolution equation: f (t) = Γf (t− 1) + ζ(t)

Hyperparameter prior: Ψ ∼ FΨ

Bayesian inference is performed

Intractability of posterior → MCMC (Gamerman & Lopes, 2006)

Sampling f (t) jointly (or one at a time) is inefficient

Some options available for efficent MCMC sampling of state vectors:

DG (1998), Knorr-Held & Rue (2002), Lopes, DG & Salazar (2011)
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2.2. Outputs from statistical analysis

1. Impulse response functions (IRF)

One of the main interests: effect of an increase in pollutants on health

IRF’s perform this task by integrating effects over time

Our factor models mix the pollutants

Making it difficult to obtain IRF for an increase in a single pollutant

Connection of pollutants to health indicators come through factors

Having factors associated with a single pollutant enables it
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Outputs from statistical analysis (continued)

2. Prediction

Predictions are readily obtained through predictive distributions

p(Y T + k | Y (1 : T ), X(1 : T + k))

or

p(Y T + k | Y (1 : T ), X(1 : T ))

These distributions are easily sampled from with our SSM formulation
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3. Results

Model equations: observational non-normality and overdispersion

Response

 Yk(s, t) | ηyk(s, t), σ2
yk

ind∼ Poisson(ηyk(s, t))

Xj(u, t) | ηxj(u, t), σ2
xj

ind∼ log −N(ηxj(u, t), σ
2
xj

)

Link

 log
{
ηyk(s,t)

Ek(s,t)

}
= µyk(s, t) +

∑m
i=1 hyk,i(s) fy,i(t) + εk(s, t)

ηxj(u, t) = µxj(u, t) +
∑r

i=1 hxj ,i(u) fx,i(t)

VARX evolution

 fx(t) =
∑s

i=1 Difx(t− i) + vx(t)

fy(t) =
∑p

i=1 Bify(t− i) +
∑q

i=0 Cifx(t− i) + vy(t)

Model completed with hyperparameter specifications
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VARX coefficients

Model: joint for both diseases, 1 health factor, 4 pollutant factors

Posterior mean estimate and inclusion probabilities

Bi’s

Ci’s

diag (Di)’s
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Factor loadings

Model: a single factor for respiratory disease, a single factor for PM10

1) Respiratory outcomes
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Factor loadings (continued)

2) PM10 (interpolated from monitoring sites)

Metropolitan region of Milan drives this factor (traffic pollution?)
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Factor loadings (continued)

2) PM10 (reproduced at outcome level)

mean % increase at outcome from increase of 1 unit at factor level
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Impulse response functions (latent level)

1) Respiratory disease

3 simple models were considered:

a single factor for the disease and a single factor for one pollutant

CO NO2 PM10

NO2 seems not to have a relevant effect on health
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Impulse response functions (latent level)

1) Respiratory disease (continued)

1 model considered:

a single factor for the disease, 1 factor for CO and 1 factor for PM10

CO PM10

only PM10 seems to have a relevant effect on health
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Impulse response functions (latent level)

2) Cardiovascular disease

3 simple models were considered:

a single factor for the disease and a single factor for one pollutant

CO NO2 PM10

PM10 seems not to have a relevant effect on health
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Impulse response functions (latent level)

2) Cardiovascular disease (continued)

1 model considered:

a single factor for the disease, 1 factor for CO and 1 factor for NO2

CO NO2

only CO seems to some effect on health
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Impulse response functions (latent level)

3) Both diseases jointly

Model: 1 factor for each disease, 1 factor for all pollutants

Cardiovascular Respiratory

Pollutant factor much more relevant for respiratory disease

2nd factor for pollutants not relevant for both diseases
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Impulse response functions (outcome level)

Model: a single factor for respiratory disease, a single factor for PM10

Milan Torino

Pollution factor is relevant in Milan but not in Torino



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Predictions

Model: a single factor for respiratory disease, a single factor for PM10

Out-of-sample prediction for 2 weeks ahead
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4. Conclusion

Generalized Dynamic SEM was proposed

• Latent approach avoids the curse of dimensionality

• Specifies the problem in terms of temporal effects

• Separates spatial from temporal effects

• Facilitates identification of spatial clusters

• Solves spatial misalignment

• Not limited to Gaussianity

• Easy to obtain predictions and IRFs
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Thank you

dani@im.ufrj.br

www.statpop.com.br
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