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 What's required?

— not just a library of algorithms, but a blend of computational
thinking and inferential thinking
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A Job Description, circa 2015

Your Boss: “I need a Big Data system that will
replace our classic service with a personalized
service’

“It should work reasonably well for anyone and
everyone; | can tolerate a few errors but not too
many dumb ones that will embarrass us”

“It should run just as fast as our classic service’

“It should only improve as we collect more data; in
particular it shouldn’t slow down”

“There are serious privacy concerns of course, and
they vary across the clients”
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What's Required

« Data Science requires a thorough blending of
computational thinking and inferential thinking

« Computational thinking means (inter alia)
— abstraction, modularity, scalability, robustness, etc.

* Inferential thinking means (inter alia)
— considering the real-world phenomenon behind the data
— considering the sampling pattern that gave rise to the data

— developing procedures that will go “backwards” from the
data to the underlying phenomenon



The Challenges are Daunting

* The core theories in computer science and statistics

developed separately and there is an oil and water
problem

« Core statistical theory doesn’t have a place for
runtime and other computational resources

« Core computational theory doesn’t have a place for
statistical risk



Outline

nference under privacy constraints
hference under communication constraints

_ower bounds, the variational perspective and
symplectic integration




Part |: Inference and Privacy

with John Duchi and Martin Wainwright



Privacy and Data Analysis

Individuals are not generally willing to allow their
personal data to be used without control on how it will be
used and now much privacy loss they will incur

“Privacy loss” can be quantified (say) via differential
privacy

We want to trade privacy loss against the value we
obtain from “data analysis”

The question becomes that of quantifying such value
and juxtaposing it with privacy loss
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Privacy and Inference
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Local Privacy




Local Privacy
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Private Minimax Risk

* Parameter @(P) of distribution
 Family of distributions P
* Loss ¢ measuring error

* FamilyQ , of private channels

s

. -private Minimax risk

M, (0(P),4,«) := inf infsupE
OP) ) = o ifeupErg

Best (x-private channel
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Minimax risk under privacy constraint
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Vignette: Private Mean Estimation

Example: estimate reasons for hospital visits
Patients admitted to hospital for substance abuse
Estimate prevalence of different substances

1_Alcohol O =45
| Cocaine Oy = 32
. Heroin Proportions @ = U3 =16
0 Cannabis 0, = .20
015D B = 00
0 Amphetamines 0 = 02



Vignette: Mean Estimation

Consider estimation of mean 0(P) :=Ep|X] € R< with
errors measured in £ snorm, for

Py = {distributions P supported on |—1, 1id}

[ Proposition:

Minimax rate

, lo
M (Pa, ||| ) = min {1, & }

(achieved by sample mean)
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Vignette: Mean Estimation

Consider estimation of mean 8(P) :=Ep|X] € R< with
errors measured in £ snorm, for

Py = {distributions P supported on |—1, 1id}

[ Proposition: )
Private minimax rate for ac = O(1)
(. i
9Jt'n,(fpd7||'||ooaoz) xmm{l, 5
no

Note: Effective sample size n+— na’/d



Additional Examples

Fixed-design regression

Convex risk minimization
Multinomial estimation
Nonparametric density estimation

Almost always, the effective sample size reduction is:

na2

H—
Ty



Optimal mechanism!?

1] + o 1+ W] e
O < 0+ Wy | Fo—o—
X=1|1| + o Z=X+W= |1+ Ws H—-o—
0 ¢ 0+ Wy ]
_O_ ¢ _O + W5_ d—
Non-private ldea 1: add independent noise
observation (e.g. Laplace mechanism)

[Dwork et al. 06]

Problem: magnitude much too large
(this is unavoidable: provably sub-optimal)
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Optimal mechanism
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Optimal mechanism

17 + o 0] @ 1]+ ©
0| @ 1| + © 0| &
Xx=[1 + o w=|[1|1 ® 1-v=|0|®
0| ¢ 0| ¢ 1| T O
0| @ 0| & 1]+ O
Non-private View | View 2
observation (closer: 3 overlap) (farther: 2 overlap)
» Draw v uniformlyin {0, 1}¢
(874
* With probability 1+ oo

choose closerof gy and 1 — pto X

» otherwise, choose farther



Empirical evidence
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Estimate proportion of emergency room visits
involving different substances
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« How does inferential quality trade off against
classical computational resources such as time and

space”?
 Hard!



Computation and Inference:
Mechanisms and Bounds

Tradeoffs via convex relaxations

— linking runtime to convex geometry and risk to convex
geometry

Tradeoffs via concurrency control
— optimistic concurrency control

Bounds via optimization oracles

— number of accesses to a gradient as a surrogate for
computation

Bounds via communication complexity

Tradeoffs via subsampling
— bag of little bootstraps, variational consensus Monte Carlo



Part |l: Variational, Hamiltonian and
Symplectic Perspectives on Acceleration

with Andre Wibisono, Ashia Wilson and Michael Betancourt
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Optimization has been playing an increasingly
important role in Data Science
It not only supplies algorithms

But it also supplies lower bounds, and thereby
fundamental understanding

But, perhaps surprisingly, optimization is still an
Immature field, and open problems abound
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Interplay between Differentiation and
Integration

* The 300-yr-old fields: Physics, Statistics

— cf. Lagrange/Hamilton, Laplace expansions, saddlepoint
expansions

* The numerical disciplines
— e.g.,. finite elements, Monte Carlo
* Optimization?
— to date, almost entirely focused on differentiation



Accelerated gradient descent
Setting: Unconstrained convex optimization

min f
XE]IRd (X)

» Classical gradient descent:
Xk+1 = Xk — BV F(xk)
obtains a convergence rate of O(1/k)

> Accelerated gradient descent:

Ye+1 = Xk — BVF(xk)
41 = (= X)Yit1 + Ay

obtains the (optimal) convergence rate of O(1/k?)



Accelerated methods: Continuous time perspective

» Gradient descent is discretization of gradient flow
Xt - _Vf(Xt)

(and mirror descent is discretization of natural gradient flow)

» Su, Boyd, Candes '14: Continuous time limit of accelerated
gradient descent is a second-order ODE

. 3.

» These ODEs are obtained by taking continuous time limits. Is
there a deeper generative mechanism?

Our work: A general variational approach to acceleration

A systematic discretization methodology



Bregman Lagrangian
Define the Bregman Lagrangian:

L(x,x,t) = eVt (Dh(x + e Yx,x) — eﬁff(x))

v

Function of position x, velocity x, and time t

Dw(y,x) = h(y) = h(x) = (Vh(x),y = x)
is the Bregman divergence

v

Dy (y, )

v

h is the convex distance-generating function

v

f is the convex objective function




Bregman Lagrangian

L(x,x,t) = erto <Dh(x + e %%, x) — e f(x))

Variational problem over curves:

n /E(Xt,Xt, t) dt

Optimal curve is characterized by Euler-Lagrange equation:
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Bregman Lagrangian

L(x,x,t) = erto <Dh(x + e %%, x) — e f(x))

Variational problem over curves:

n /E(Xt,Xt, t) dt

Optimal curve is characterized by Euler-Lagrange equation:

! t

oL oL -
dt {8 (Xt7Xt7 )} = a(XhXt) t)

E-L equation for Bregman Lagrangian under ideal scaling:

. . . —1
X + (€% — )X, + e2o+h [v%(xt tex,)| VF(X)=0



General convergence rate

Theorem
Theorem Under ideal scaling, the E-L equation has convergence
rate

F(X:) — F(x*) < O(e™™)

Proof. Exhibit a Lyapunov function for the dynamics:
Ec = Dy (X", Xe+ €720X,) + e™(F(Xe) — F(x")
Ee = —e“ TP De(x*, X)) + (B — ™)™ (F(X;) — f(x*)) < 0

O

Note: Only requires convexity and differentiability of f, h



Naive discretization doesn't work

p k
Xk+1 = k+p2k+ k_'_pXk

1
z) = arg min {Cpk(”_l)(Vf(xk), z) + —Dp(z, Zk—l)}
z €

Cannot obtain a convergence guarantee, and empirically unstable

0 20 40 60 80 100 120 140 160
k
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Mysteries

Why can’t we discretize the dynamics when we are
using exponentially fast clocks?

What happens when we arrive at a clock speed that
we can discretize?

How do we discretize once it's possible?

The answers are to be found in symplectic
Integration



Symplectic Integration

Consider discretizing a system of differential
equations obtained from physical principles

Solutions of the differential equations generally
conserve various quantities (energy, momentum,
volumes in phase space)

Is it possible to find discretizations whose solutions
exactly conserve these same quantities?

Yes!

— from a long line of research initiated by Jacobi, Hamilton,
Poincare’ and others



Towards A Symplectic Perspective

« We've discussed discretization of Lagrangian-based
dynamics

« Discretization of Lagrangian dynamics is often fragile
and requires small step sizes

« We can build more robust solutions by taking a Legendre
transform and considering a Hamiltonian formalism:

L(q,v,t) = H(q,p,t,&)

dg dv IR dg dp dt d€
dt’ dt dr’' d7’ dr’ dr




Symplectic Integration of Bregman

Hamiltonian
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f(x)

Symplectic vs Nesterov
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Symplectic vs Nesterov

p=2,N=2,C=0.0625,¢=0.25
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Discussion

Data and inferential problems will be everywhere in
computer science, and will fundamentally change

the field

Many conceptual and mathematical challenges
arising in taking this effort seriously, in addition to
systems challenges and “outreach” challenges

Facing these challenges will require a
rapprochement between computational thinking and
inferential thinking

This effort is just beginning!
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