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– not just large data sets, but data sets containing abundant 
data on each individual
– where “individual” can be a person, a gene, a region of the 
sky, a habitat, etc
– and where there are long tails

• What’s challenging?
– timely, trustable, and transparent inference and decision-
making at the level of individuals

• What’s required?
– not just a library of algorithms, but a blend of computational 
thinking and inferential thinking
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• Your Boss:  “I need a Big Data system that will 
replace our classic service with a personalized 
service”

• “It should work reasonably well for anyone and 
everyone; I can tolerate a few errors but not too 
many dumb ones that will embarrass us”

• “It should run just as fast as our classic service”
• “It should only improve as we collect more data; in 

particular it shouldn’t slow down”
• “There are serious privacy concerns of course, and 

they vary across the clients”
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What’s Required

• Data Science requires a thorough blending of 
computational thinking and inferential thinking

• Computational thinking means (inter alia)
– abstraction, modularity, scalability, robustness, etc.

• Inferential thinking means (inter alia)
– considering the real-world phenomenon behind the data
– considering the sampling pattern that gave rise to the data
– developing procedures that will go “backwards” from the 

data to the underlying phenomenon



The Challenges are Daunting

• The core theories in computer science and statistics 
developed separately and there is an oil and water 
problem

• Core statistical theory doesn’t have a place for 
runtime and other computational resources

• Core computational theory doesn’t have a place for 
statistical risk



• Inference under privacy constraints
• Inference under communication constraints
• Lower bounds, the variational perspective and 

symplectic integration

Outline



Part I: Inference and Privacy

with John Duchi and Martin Wainwright



• Individuals are not generally willing to allow their 
personal data to be used without control on how it will be 
used and now much privacy loss they will incur

• “Privacy loss” can be quantified (say) via differential 
privacy

• We want to trade privacy loss against the value we 
obtain from “data analysis”

• The question becomes that of quantifying such value 
and juxtaposing it with privacy loss

Privacy and Data Analysis



Privacy

query

database



Privacy

query

database

✓̃



Privacy

query

database privatized
database

Q

✓̃



Privacy

query

database

query

privatized
database

Q

✓̃



Privacy

query

database

✓̂

query

privatized
database

Q

✓̃



Privacy

query

database

✓̂

query

privatized
database

Q

✓̂ ✓̃Classical problem in differential privacy:  show that     and 
are close under constraints on  Q

✓̃



Inference

query

database

✓̃



Inference

query

databaseP
S

✓̃



Inference

query

databaseP

query

S

✓ ✓̃



Inference

query

database

Classical problem in statistical theory:  show that     and 
are close under constraints on  

P

query

S

S

✓

✓

✓̃

✓̃



Privacy and Inference

query

database

✓̂

query

privatized
database

✓̃

Q

The privacy-meets-inference problem:  show that     and 
are close under constraints on     and on  Q

✓

query

S

✓

P

S
✓̂



Local Privacy

Private



Local Privacy

Private
Channel

Individuals                           with private data
Estimator



-private Minimax risk

Private Minimax Risk

Best   -private channel

Minimax risk under privacy constraint

• Parameter         of distribution
• Family of distributions
• Loss   measuring error
• Family      of private channels



Proportions           =

Vignette: Private Mean Estimation

Example: estimate reasons for hospital visits
Patients admitted to hospital for substance abuse
Estimate prevalence of different substances

1 Alcohol
1 Cocaine
0 Heroin
0 Cannabis
0 LSD
0 Amphetamines

= .45
= .32
= .16
= .20
= .00
= .02
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Minimax rate
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Proposition:

Private minimax rate for

Vignette: Mean Estimation

Consider estimation of mean                                    , with
errors measured in     -norm, for

Effective sample sizeNote:



• Fixed-design regression
• Convex risk minimization
• Multinomial estimation
• Nonparametric density estimation

• Almost always, the effective sample size reduction is:

Additional Examples



Optimal mechanism?

Non-private
observation

Idea 1: add independent noise
(e.g. Laplace mechanism)

Problem: magnitude much too large
(this is unavoidable: provably sub-optimal)

[Dwork et al. 06]
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Optimal mechanism

Non-private
observation

View 1 View 2

• Draw    uniformly in

• With probability               

choose closer of     and            to

(closer: 3 overlap) (farther: 2 overlap)

• otherwise, choose farther



Empirical evidence

Estimate proportion of emergency room visits 
involving different substances

Data source: 
Drug Abuse 

Warning 
NetworkSample size n
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Computation and Inference

• How does inferential quality trade off against 
classical computational resources such as time and 
space?

• Hard!



Computation and Inference: 
Mechanisms and Bounds

• Tradeoffs via convex relaxations
– linking runtime to convex geometry and risk to convex 

geometry
• Tradeoffs via concurrency control

– optimistic concurrency control 
• Bounds via optimization oracles

– number of accesses to a gradient as a surrogate for 
computation

• Bounds via communication complexity
• Tradeoffs via subsampling

– bag of little bootstraps, variational consensus Monte Carlo



Part II: Variational, Hamiltonian and 
Symplectic Perspectives on Acceleration

with Andre Wibisono, Ashia Wilson and Michael Betancourt
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The Important Role of Optimization

• Optimization has been playing an increasingly 
important role in Data Science

• It not only supplies algorithms
• But it also supplies lower bounds, and thereby 

fundamental understanding

• But, perhaps surprisingly, optimization is still an 
immature field, and open problems abound
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Interplay between Differentiation and 
Integration

• The 300-yr-old fields: Physics, Statistics
– cf. Lagrange/Hamilton, Laplace expansions, saddlepoint 

expansions
• The numerical disciplines

– e.g.,. finite elements, Monte Carlo
• Optimization?

– to date, almost entirely focused on differentiation



Accelerated gradient descent

Setting: Unconstrained convex optimization

min
x∈Rd

f (x)

I Classical gradient descent:

xk+1 = xk − β∇f (xk)

obtains a convergence rate of O(1/k)

I Accelerated gradient descent:

yk+1 = xk − β∇f (xk)

xk+1 = (1− λk)yk+1 + λkyk

obtains the (optimal) convergence rate of O(1/k2)



Accelerated methods: Continuous time perspective

I Gradient descent is discretization of gradient flow

Ẋt = −∇f (Xt)

(and mirror descent is discretization of natural gradient flow)

I Su, Boyd, Candes ’14: Continuous time limit of accelerated
gradient descent is a second-order ODE

Ẍt +
3

t
Ẋt +∇f (Xt) = 0

I These ODEs are obtained by taking continuous time limits. Is
there a deeper generative mechanism?

Our work: A general variational approach to acceleration

A systematic discretization methodology



Bregman Lagrangian
Define the Bregman Lagrangian:

L(x , ẋ , t) = eγt+αt

(
Dh(x + e−αt ẋ , x)− eβt f (x)

)
I Function of position x , velocity ẋ , and time t

I Dh(y , x) = h(y)− h(x)− 〈∇h(x), y − x〉
is the Bregman divergence

I h is the convex distance-generating function

I f is the convex objective function

I αt , βt , γt ∈ R are arbitrary smooth functions

I In Euclidean setting, simplifies to damped

Lagrangian

x y

h(x)

h(y)

Dh(y, x)

Ideal scaling conditions:

β̇t ≤ eαt

γ̇t = eαt



Bregman Lagrangian

L(x , ẋ , t) = eγt+αt

(
Dh(x + e−αt ẋ , x)− eβt f (x)

)

Variational problem over curves:

min
X

∫
L(Xt , Ẋt , t) dt

t

x

Optimal curve is characterized by Euler-Lagrange equation:

d

dt

{
∂L
∂ẋ

(Xt , Ẋt , t)

}
=
∂L
∂x

(Xt , Ẋt , t)

E-L equation for Bregman Lagrangian under ideal scaling:

Ẍt + (eαt − α̇t)Ẋt + e2αt+βt
[
∇2h(Xt + e−αt Ẋt)

]−1
∇f (Xt) = 0
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General convergence rate

Theorem
Theorem Under ideal scaling, the E-L equation has convergence
rate

f (Xt)− f (x∗) ≤ O(e−βt )

Proof. Exhibit a Lyapunov function for the dynamics:

Et = Dh

(
x∗, Xt + e−αt Ẋt

)
+ eβt (f (Xt)− f (x∗))

Ėt = −eαt+βtDf (x∗,Xt) + (β̇t − eαt )eβt (f (Xt)− f (x∗)) ≤ 0

Note: Only requires convexity and differentiability of f , h



Naive discretization doesn’t work

xk+1 =
p

k + p
zk +

k

k + p
xk

zk = arg min
z

{
Cpk(p−1)〈∇f (xk), z〉+

1

ε
Dh(z , zk−1)

}

Cannot obtain a convergence guarantee, and empirically unstable
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Mysteries

• Why can’t we discretize the dynamics when we are
using exponentially fast clocks?

• What happens when we arrive at a clock speed that
we can discretize?

• How do we discretize once it’s possible?

• The answers are to be found in symplectic
integration



Symplectic Integration 

•  Consider discretizing a system of differential 
equations obtained from physical principles 

•  Solutions of the differential equations generally 
conserve various quantities (energy, momentum, 
volumes in phase space) 

•  Is it possible to find discretizations whose solutions 
exactly conserve these same quantities? 

•  Yes! 
–  from a long line of research initiated by Jacobi, Hamilton, 

Poincare’ and others 

 



 Towards A Symplectic Perspective 
• We’ve discussed discretization of Lagrangian-based

dynamics
• Discretization of Lagrangian dynamics is often fragile

and requires small step sizes
• We can build more robust solutions by taking a Legendre 

transform and considering a Hamiltonian formalism:



Symplectic Integration of Bregman 
Hamiltonian 
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Discussion
• Data and inferential problems will be everywhere in 

computer science, and will fundamentally change 
the field

• Many conceptual and mathematical challenges 
arising in taking this effort seriously, in addition to 
systems challenges and “outreach” challenges

• Facing these challenges will require a 
rapprochement between computational thinking and 
inferential thinking

• This effort is just beginning!
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