On Computational Thinking, Inferential Thinking and Data Science

Michael I. Jordan University of California, Berkeley

August 7, 2018

Some Perspective

• What's new?

 not just large data sets, but data sets containing abundant data on each individual

- where "individual" can be a person, a gene, a region of the sky, a habitat, etc
- and where there are long tails

Some Perspective

• What's new?

 not just large data sets, but data sets containing abundant data on each individual

- where "individual" can be a person, a gene, a region of the sky, a habitat, etc

- and where there are long tails
- What's challenging?

- timely, trustable, and transparent inference and decisionmaking at the level of individuals

Some Perspective

• What's new?

 not just large data sets, but data sets containing abundant data on each individual

- where "individual" can be a person, a gene, a region of the sky, a habitat, etc

- and where there are long tails
- What's challenging?

 timely, trustable, and transparent inference and decisionmaking at the level of individuals

• What's required?

 not just a library of algorithms, but a blend of computational thinking and inferential thinking

• Your Boss: "I need a Big Data system that will replace our classic service with a personalized service"

- Your Boss: "I need a Big Data system that will replace our classic service with a personalized service"
- "It should work reasonably well for anyone and everyone; I can tolerate a few errors but not too many dumb ones that will embarrass us"

- Your Boss: "I need a Big Data system that will replace our classic service with a personalized service"
- "It should work reasonably well for anyone and everyone; I can tolerate a few errors but not too many dumb ones that will embarrass us"
- "It should run just as fast as our classic service"

- Your Boss: "I need a Big Data system that will replace our classic service with a personalized service"
- "It should work reasonably well for anyone and everyone; I can tolerate a few errors but not too many dumb ones that will embarrass us"
- "It should run just as fast as our classic service"
- "It should only improve as we collect more data; in particular it shouldn't slow down"

- Your Boss: "I need a Big Data system that will replace our classic service with a personalized service"
- "It should work reasonably well for anyone and everyone; I can tolerate a few errors but not too many dumb ones that will embarrass us"
- "It should run just as fast as our classic service"
- "It should only improve as we collect more data; in particular it shouldn't slow down"
- "There are serious privacy concerns of course, and they vary across the clients"

What's Required

• Data Science requires a thorough blending of computational thinking and inferential thinking

What's Required

- Data Science requires a thorough blending of computational thinking and inferential thinking
- Computational thinking means (inter alia)
 - abstraction, modularity, scalability, robustness, etc.

What's Required

- Data Science requires a thorough blending of computational thinking and inferential thinking
- Computational thinking means (inter alia)
 - abstraction, modularity, scalability, robustness, etc.
- Inferential thinking means (inter alia)
 - considering the real-world phenomenon behind the data
 - considering the sampling pattern that gave rise to the data
 - developing procedures that will go "backwards" from the data to the underlying phenomenon

The Challenges are Daunting

- The core theories in computer science and statistics developed separately and there is an oil and water problem
- Core statistical theory doesn't have a place for runtime and other computational resources
- Core computational theory doesn't have a place for statistical risk

Outline

- Inference under privacy constraints
- Inference under communication constraints
- Lower bounds, the variational perspective and symplectic integration

Part I: Inference and Privacy

with John Duchi and Martin Wainwright

Privacy and Data Analysis

- Individuals are not generally willing to allow their personal data to be used without control on how it will be used and now much privacy loss they will incur
- "Privacy loss" can be quantified (say) via differential privacy
- We want to trade privacy loss against the value we obtain from "data analysis"
- The question becomes that of quantifying such value and juxtaposing it with privacy loss

query database

query database $\tilde{\theta}$

Classical problem in differential privacy: show that $\hat{\theta}$ and $\tilde{\theta}$ are close under constraints on Q

Classical problem in statistical theory: show that $\tilde{\theta}$ and θ are close under constraints on S

Privacy and Inference

The privacy-meets-inference problem: show that θ and $\hat{\theta}$ are close under constraints on Q and on S

Local Privacy

Local Privacy

Individuals $i \in \{1, \dots, n\}$ with private data $X_i \stackrel{\text{iid}}{\sim} P$ Estimator $Z_1^n \mapsto \widehat{\theta}(Z_1^n)$

Private Minimax Risk

- Parameter heta(P) of distribution
- Family of distributions $\, {\cal P} \,$
- Loss ℓ measuring error
- Family \mathcal{Q}_{α} of private channels

lpha -private Minimax risk

$$\mathfrak{M}_{n}(\theta(\mathcal{P}), \ell, \alpha) := \inf_{\substack{Q \in \mathcal{Q}_{\alpha} \ \widehat{\theta} \ P \in \mathcal{P}}} \inf_{\substack{P \in \mathcal{P} \ \widehat{\theta} \ P \in \mathcal{P}}} \mathbb{E}_{P,Q} \left[\ell(\widehat{\theta}(Z_{1}^{n}), \theta(P)) \right]$$

Best α -private channel

Minimax risk under privacy constraint

Vignette: Private Mean Estimation

Example: estimate reasons for hospital visits Patients admitted to hospital for substance abuse Estimate prevalence of different substances

Vignette: Mean Estimation

Consider estimation of mean $\theta(P) := \mathbb{E}_P[X] \in \mathbb{R}^d$, with errors measured in ℓ_{∞} norm, for

 $\mathcal{P}_d := \{ \text{distributions } P \text{ supported on } [-1,1]^d \}$

Proposition:

Minimax rate

$$\mathfrak{M}_n(\mathcal{P}_d, \|\cdot\|_{\infty}) \asymp \min\left\{1, \frac{\sqrt{\log d}}{\sqrt{n}}\right\}$$

(achieved by sample mean)

Vignette: Mean Estimation

Consider estimation of mean $\theta(P) := \mathbb{E}_P[X] \in \mathbb{R}^d$, with errors measured in ℓ_{∞} norm, for

 $\mathcal{P}_d := \{ \text{distributions } P \text{ supported on } [-1,1]^d \}$

Proposition:

Private minimax rate for $\alpha = O(1)$ $\mathfrak{M}_n(\mathcal{P}_d, \|\cdot\|_{\infty}, \alpha) \asymp \min\left\{1, \frac{\sqrt{d\log d}}{\sqrt{n\alpha^2}}\right\}$

Note: Effective sample size $n \mapsto n\alpha^2/d$

Additional Examples

- Fixed-design regression
- Convex risk minimization
- Multinomial estimation
- Nonparametric density estimation
- Almost always, the effective sample size reduction is:

$$n\mapsto rac{nlpha^2}{d}$$

Optimal mechanism?

$$Z = X + W =$$

Non-private observation Idea 1: add independent noise (e.g. Laplace mechanism)

[Dwork et al. 06]

Problem: magnitude much too large (this is unavoidable: *provably sub-optimal*)

Optimal mechanism

Non-private observation

Optimal mechanism

• Draw v uniformly in $\{0,1\}^d$

Optimal mechanism

- Draw v uniformly in $\{0,1\}^d$
- With probability $rac{e^{lpha}}{1+e^{lpha}}$ choose closer of v and 1-v to X
- otherwise, choose farther

Empirical evidence

Data source: Drug Abuse Warning Network

Estimate proportion of emergency room visits involving different substances

Computation and Inference

 How does inferential quality trade off against classical computational resources such as time and space?

Computation and Inference

- How does inferential quality trade off against classical computational resources such as time and space?
- Hard!

Computation and Inference: Mechanisms and Bounds

- Tradeoffs via convex relaxations
 - linking runtime to convex geometry and risk to convex geometry
- Tradeoffs via concurrency control
 - optimistic concurrency control
- Bounds via optimization oracles
 - number of accesses to a gradient as a surrogate for computation
- Bounds via communication complexity
- Tradeoffs via subsampling
 - bag of little bootstraps, variational consensus Monte Carlo

Part II: Variational, Hamiltonian and Symplectic Perspectives on Acceleration

with Andre Wibisono, Ashia Wilson and Michael Betancourt

Optimization has been playing an increasingly important role in Data Science

- Optimization has been playing an increasingly important role in Data Science
- It not only supplies algorithms

- Optimization has been playing an increasingly important role in Data Science
- It not only supplies algorithms
- But it also supplies lower bounds, and thereby fundamental understanding

- Optimization has been playing an increasingly important role in Data Science
- It not only supplies algorithms
- But it also supplies lower bounds, and thereby fundamental understanding
- But, perhaps surprisingly, optimization is still an immature field, and open problems abound

Interplay between Differentiation and Integration

- The 300-yr-old fields: Physics, Statistics
 - cf. Lagrange/Hamilton, Laplace expansions, saddlepoint expansions
- The numerical disciplines
 - e.g.,. finite elements, Monte Carlo

Interplay between Differentiation and Integration

- The 300-yr-old fields: Physics, Statistics
 - cf. Lagrange/Hamilton, Laplace expansions, saddlepoint expansions
- The numerical disciplines
 - e.g.,. finite elements, Monte Carlo
- Optimization?

Interplay between Differentiation and Integration

- The 300-yr-old fields: Physics, Statistics
 - cf. Lagrange/Hamilton, Laplace expansions, saddlepoint expansions
- The numerical disciplines
 - e.g.,. finite elements, Monte Carlo
- Optimization?
 - to date, almost entirely focused on differentiation

Accelerated gradient descent

Setting: Unconstrained convex optimization

 $\min_{x\in\mathbb{R}^d} f(x)$

Classical gradient descent:

$$x_{k+1} = x_k - \beta \nabla f(x_k)$$

obtains a convergence rate of O(1/k)

Accelerated gradient descent:

$$y_{k+1} = x_k - \beta \nabla f(x_k)$$

$$x_{k+1} = (1 - \lambda_k) y_{k+1} + \lambda_k y_k$$

obtains the (optimal) convergence rate of $O(1/k^2)$

Accelerated methods: Continuous time perspective

Gradient descent is discretization of gradient flow

$$\dot{X}_t = -\nabla f(X_t)$$

(and mirror descent is discretization of natural gradient flow)

 Su, Boyd, Candes '14: Continuous time limit of accelerated gradient descent is a second-order ODE

$$\ddot{X}_t + \frac{3}{t}\dot{X}_t + \nabla f(X_t) = 0$$

These ODEs are obtained by taking continuous time limits. Is there a deeper generative mechanism?

Our work: A general variational approach to acceleration A systematic discretization methodology

Bregman Lagrangian

Define the Bregman Lagrangian:

$$\mathcal{L}(x,\dot{x},t) = e^{\gamma_t + \alpha_t} \left(D_h(x + e^{-\alpha_t}\dot{x},x) - e^{\beta_t} f(x) \right)$$

Function of position x, velocity \dot{x} , and time t

- h is the convex distance-generating function
- f is the convex objective function

Bregman Lagrangian

$$\mathcal{L}(x, \dot{x}, t) = e^{\gamma_t + \alpha_t} \left(D_h(x + e^{-\alpha_t} \dot{x}, x) - e^{\beta_t} f(x) \right)$$

Optimal curve is characterized by Euler-Lagrange equation:

$$\frac{d}{dt}\left\{\frac{\partial \mathcal{L}}{\partial \dot{x}}(X_t, \dot{X}_t, t)\right\} = \frac{\partial \mathcal{L}}{\partial x}(X_t, \dot{X}_t, t)$$

Bregman Lagrangian

$$\mathcal{L}(x, \dot{x}, t) = e^{\gamma_t + \alpha_t} \left(D_h(x + e^{-\alpha_t} \dot{x}, x) - e^{\beta_t} f(x) \right)$$

Optimal curve is characterized by Euler-Lagrange equation:

$$\frac{d}{dt}\left\{\frac{\partial \mathcal{L}}{\partial \dot{x}}(X_t, \dot{X}_t, t)\right\} = \frac{\partial \mathcal{L}}{\partial x}(X_t, \dot{X}_t, t)$$

E-L equation for Bregman Lagrangian under ideal scaling:

$$\ddot{X}_t + (e^{\alpha_t} - \dot{\alpha}_t)\dot{X}_t + e^{2\alpha_t + \beta_t} \Big[\nabla^2 h(X_t + e^{-\alpha_t}\dot{X}_t)\Big]^{-1} \nabla f(X_t) = 0$$

General convergence rate

Theorem

Theorem Under ideal scaling, the E-L equation has convergence rate

$$f(X_t) - f(x^*) \le O(e^{-\beta_t})$$

Proof. Exhibit a Lyapunov function for the dynamics:

$$\begin{aligned} \mathcal{E}_t &= D_h\left(x^*, X_t + e^{-\alpha_t} \dot{X}_t\right) + e^{\beta_t}(f(X_t) - f(x^*)) \\ \dot{\mathcal{E}}_t &= -e^{\alpha_t + \beta_t} D_f(x^*, X_t) + (\dot{\beta}_t - e^{\alpha_t}) e^{\beta_t}(f(X_t) - f(x^*)) \leq 0 \end{aligned}$$

Note: Only requires convexity and differentiability of f, h

Naive discretization doesn't work

$$\begin{aligned} x_{k+1} &= \frac{p}{k+p} z_k + \frac{k}{k+p} x_k \\ z_k &= \arg\min_z \left\{ Cpk^{(p-1)} \langle \nabla f(x_k), z \rangle + \frac{1}{\epsilon} D_h(z, z_{k-1}) \right\} \end{aligned}$$

Cannot obtain a convergence guarantee, and empirically unstable

Mysteries

- Why can't we discretize the dynamics when we are using exponentially fast clocks?
- What happens when we arrive at a clock speed that we can discretize?
- How do we discretize once it's possible?

Mysteries

- Why can't we discretize the dynamics when we are using exponentially fast clocks?
- What happens when we arrive at a clock speed that we can discretize?
- How do we discretize once it's possible?
- The answers are to be found in symplectic integration

Symplectic Integration

- Consider discretizing a system of differential equations obtained from physical principles
- Solutions of the differential equations generally conserve various quantities (energy, momentum, volumes in phase space)
- Is it possible to find discretizations whose solutions exactly conserve these same quantities?
- Yes!
 - from a long line of research initiated by Jacobi, Hamilton, Poincare' and others

Towards A Symplectic Perspective

- We've discussed discretization of Lagrangian-based dynamics
- Discretization of Lagrangian dynamics is often fragile and requires small step sizes
- We can build more robust solutions by taking a Legendre transform and considering a *Hamiltonian* formalism:

$$\begin{split} L(q,v,t) &\to H(q,p,t,\mathcal{E}) \\ \left(\frac{\mathrm{d}q}{\mathrm{d}t},\frac{\mathrm{d}v}{\mathrm{d}t}\right) &\to \left(\frac{\mathrm{d}q}{\mathrm{d}\tau},\frac{\mathrm{d}p}{\mathrm{d}\tau},\frac{\mathrm{d}t}{\mathrm{d}\tau},\frac{\mathrm{d}\mathcal{E}}{\mathrm{d}\tau}\right) \end{split}$$

Symplectic Integration of Bregman Hamiltonian

Symplectic vs Nesterov

Symplectic vs Nesterov

Discussion

- Data and inferential problems will be everywhere in computer science, and will fundamentally change the field
- Many conceptual and mathematical challenges arising in taking this effort seriously, in addition to systems challenges and "outreach" challenges
- Facing these challenges will require a rapprochement between computational thinking and inferential thinking
- This effort is just beginning!

Reference

• Wibisono, A., Wilson, A. and Jordan, M. I. (2016). A variational perspective on accelerated methods in optimization. *Proceedings of the National Academy* of Sciences, 133, E7351-E7358.