Local scaling limits of Lévy driven fractional random fields

Donatas Surgailis (Vilnius University)

Joint with Vytautė Pilipauskaitė (University of Luxembourg)

To the memory of Vladas

Cornell, 2003

Outline:

- ${\bf 0}$ $\gamma\text{-tangent}$ and $\gamma\text{-rectangent}$ local scaling limits and scaling transition
- 2 Lévy driven fractional RFs on \mathbb{R}^2 . Examples
- Main results
- Extensions and comments

V. Pilipauskaitė, D. Surgailis (2021) Local scaling limits of Lévy driven fractional random fields, Preprint http://arxiv.org/abs/2102.00732

1. γ -tangent and γ -rectangent RFs and scaling transition

 $X = \{X(t), t \in \mathbb{R}^2\}$: a random field (RF), $t_0 = (t_{01}, t_{02}) \in \mathbb{R}^2$: given point Two types of increment of X at t_0 :

(ordinary) increment: $X(\boldsymbol{t}_0+\boldsymbol{t})-X(\boldsymbol{t}_0)$, and

rectangular increment:

$$X]\boldsymbol{t}_{0},\boldsymbol{t}_{0}+\boldsymbol{t}]:=X(t_{01}+t_{1},t_{02}+t_{2})-X(t_{01},t_{02}+t_{2})-X(t_{01}+t_{1},t_{02})+X(t_{01},t_{02})$$

rectangular increment

- both types of increments give rise to increment RF of X at t_0 (indexed by $t \in \mathbb{R}^2$)
- RF X with stationary (ordinary) increments or with stationary rectangular increments (different notions)
- this talk: local (small scale) scaling limits of both types of increment RFs as $t \to 0$ for a class of 'fractional' RF X on \mathbb{R}^2
- important to infill statistics of RFs
- the scaling limits (tangent RFs) depend on how $\mathbf{t} = (t_1, t_2)$ tends to $\mathbf{0} = (0, 0)$:

$$t_1 = \lambda x_1, \qquad t_2 = \lambda^{\gamma} x_2$$

where $\lambda \to 0$ and $\gamma > 0$ is fixed

• $\gamma >$ 0 characterizes scaling anisotropy ($\gamma = 1$: isotropic scaling)

 $\Gamma := \mathsf{diag}(1,\gamma), \ \lambda^{\Gamma} = \mathsf{diag}(1,\lambda^{\gamma}), \ \lambda^{\Gamma} \boldsymbol{t} = (\lambda t_1,\lambda^{\gamma} t_2) \in \mathbb{R}^2$

Definition

Suppose there exist normalization $d_{\lambda,\gamma} \downarrow 0 \ (\lambda \downarrow 0)$ s.t.

$$d_{\lambda,\gamma}^{-1}(X(\mathbf{t}_0 + \lambda^{\mathsf{\Gamma}}\mathbf{t}) - X(\mathbf{t}_0)) \stackrel{\text{fdd}}{\to} \mathcal{T}_{\gamma}(\mathbf{t}), \tag{1}$$

$$d_{\lambda,\gamma}^{-1}X]\mathbf{t}_0, \mathbf{t}_0 + \lambda^{\Gamma}\mathbf{t}] \stackrel{\text{fdd}}{\to} V_{\gamma}(\mathbf{t}),$$
 (2)

 T_{γ} and V_{γ} in (1), (2) are called γ -tangent and γ -rectangent RFs of RF X at \mathbf{t}_0 respectively.

- 1-tangent or tangent (isotropic scaling) RF T_1 in (1) was introduced in Falconer (2002) ($\stackrel{\mathrm{fdd}}{\rightarrow}$ replaced by a functional convergence)
- generalizes the concept of tangent process for $X = \{X(t)\}$ with $t \in \mathbb{R}$
- normalization $d_{\lambda,\gamma} \downarrow 0$ generally different for (1) and (2)
- dependence on t_0 on r.h.s. of (1) and (2) is suppressed (do not depend on t_0 by stationarity of increments in this talk)
- 'rectangent' = abridge for 'rectangular tangent'

- Since T_1 is self-similar (SS) the existence of T_1 in (1) also termed 'local asymptotic self-similarity' (Benassi, Cohen, Istas (2004), Cohen (2012), Cohen, Istas (2013))
- ullet The above papers proved the existence of \mathcal{T}_1 for a class of isotropic fractional Lévy RFs on \mathbb{R}^d
- Under mild conditions all scaling limits in (1)–(2) satisfy the (H, γ) -SS property:

$$U(\lambda^{\mathsf{\Gamma}} t) \stackrel{\text{fdd}}{=} \lambda^{\mathsf{H}} U(t), \qquad \forall \lambda > 0, \tag{3}$$

with some $H=H(\gamma)>0$, normalization $d_{\lambda,\gamma}$ is H-regularly varying as $\lambda\downarrow 0$

Definition

Suppose γ -rectangent limits in (2) exist for any $\gamma > 0$. We say that these limits exhibit scaling transition at some $\gamma_0 > 0$ if

$$V_{\gamma} = \begin{cases} V_{+}, & \gamma > \gamma_{0}, \\ V_{-}, & \gamma < \gamma_{0}, \\ V_{0}, & \gamma = \gamma_{0} \end{cases} \quad \text{and} \quad V_{+} \stackrel{\text{fdd}}{\neq} aV_{-} (\forall a > 0)$$
 (4)

- \bullet Analogous definition in $\gamma\text{-tangent}$ case
- Closely related to *large-scale* scaling transition for RFs on \mathbb{Z}^2 or \mathbb{R}^2 :

```
Puplinskaitė, Surgailis (2015). Stoch. Proc. Appl. 125, 2256–2271;
Puplinskaitė, Surgailis (2016). Bernoulli 22, 2401–2441;
Pilipauskaitė, Surgailis (2016). J. Appl. Prob. 53, 857–879;
Pilipauskaitė, Surgailis (2017). Stoch. Proc. Appl. 127, 2751–2779;
Surgailis (2020). Stoch. Proc. Appl. 130, 7518–7546;
Pilipauskaitė, Surgailis (2021). An Out of Equilibrium 3: Celebrating Vladas Sidoravicius, pp. 683–710;
Damarackas, Paulauskas (2021). J. Math. Anal. Appl. 497
```

• In the large-scale case, rectangular increments are replaced by integrals or sums of a stationary RF X over large rectangle $[0, \lambda x_1] \times [0, \lambda^{\gamma} x_2]$ and one is interested in the limit

$$d_{\lambda,\gamma}^{-1} \int_{[0,\lambda x_1] \times [0,\lambda^{\gamma} x_2]} X(t) \, \mathrm{d}t \stackrel{\mathrm{fdd}}{\to} V_{\gamma}(x), \qquad \lambda \to \infty$$
 (5)

for any given $\gamma > 0$

- In the above works a similar trichotomy to (2) was observed in large-scale anisotropic scaling for several classes of linear and nonlinear long-range dependent (LRD) RF models The trichotomy was called the *scaling transition*, with V_{\pm} the *unbalanced* and V_0 the *well-balanced* scaling limits.
- Intrinsically related to LRD

 Large-scale trichitomy or scaling transition of different nature occurs in applied sciences (telecommunications and econometrics) in joint temporal-spatial aggregation of independent LRD processes:

$$d_{\lambda,\gamma}^{-1} \sum_{i=1}^{[\lambda^{\gamma} x_2]} \int_0^{\lambda x_1} (X_i(t) - EX_i(t)) dt \stackrel{\text{fdd}}{\to} V_{\gamma}(x), \qquad \lambda \to \infty$$
 (6)

where $X_i = \{X_i(t), t \in \mathbb{R}\}$ are independent copies of a stationary process $X = \{X(t), t \in \mathbb{R}\}$. Typical examples of X:

- ON/OFF process with heavy tailed ON or OFF intervals (telecommunications)
- random-coefficient AR(1) process with random coefficient having a power-law distribution near the unit root (econometrics)
- Gaussian or stable limits in (6) depending on whether $\gamma>\gamma_0$ or $\gamma<\gamma_0$

```
Mikosch, Resnick, Rootzén, Stegeman (2002). Ann. Appl. Probab. 12, 23–68; Gaigalas, Kaj (2003). Bernoulli 9, 671–703;
```

Pipiras, Taggu, Levy (2004). Bernoulli 10, 121-163;

Kaj, Taqqu (2008). An Out of Equilibrium 2, pp. 383-427;

Pipiras, Taqqu (2017) Long-Range Dependence and Self-Similarity. Cambridge Univ. Press, Cambridge;

Pilipauskaitė, Surgailis (2014). Stoch. Proc. Appl. 124, 1011–1035:

Pilipauskaitė, Skorniakov, Surgailis (2020) Adv. Appl. Probab. 52, 237-265

We consider RF $X = \{X(t), t = (t_1, t_2) \in \mathbb{R}^2_+\}$ on $\mathbb{R}^2_+ = (0, \infty)^2$ written as stochastic integral:

$$X(t) := \int_{\mathbb{R}^2} \left\{ g(t - u) - g_1^0((t_1, 0) - u) - g_2^0((0, t_2) - u) + g_{12}^0(-u) \right\} M(du), \quad (7)$$

w.r.t. Lévy random measure $M(A), A \subset \mathbb{R}^2_+$, with independent values on disjoint sets and characteristic function

$$\operatorname{Ee}^{\mathrm{i}\theta M(A)} = \exp\Big\{\operatorname{Leb}(A)\Big(-\frac{1}{2}\sigma^2\theta^2 + \int_{\mathbb{R}} (\mathrm{e}^{\mathrm{i}\theta y} - 1 - \mathrm{i}\theta\ell_{\alpha}(y))\nu(\mathrm{d}y)\Big)\Big\}, \qquad \theta \in \mathbb{R}, \quad (8)$$

where:

- $\sigma^2 \geq 0$, $0 < \alpha \leq 2$ and ν is a Lévy measure on $\mathbb R$ satisfying Assumption (M) $_{\alpha}$ below (meaning roughly that $\lambda^{-2/\alpha}M(\lambda A)$ tends to α -stable random measure $W_{\alpha}(A)$ as $\lambda \to 0$)
- g, g_1^0 , g_2^0 , g_{12}^0 are deterministic functions satisfying a power-law behavior at the origin $\mathbf{0} \in \mathbb{R}^2$ (specified in Assumption $(\mathsf{G})_{\alpha}$)
- centering $\ell_{\alpha}(y) := y \ (1 < \alpha \le 2), := 0 \ (0 < \alpha < 1)$

ullet g_1^0 , g_2^0 , g_{12}^0 'initial functions' do not enter rectangular increment:

$$X]\mathbf{0}, t] = \int_{\mathbb{R}^2} g[-u, t-u] M(du),$$
 where $g[-u, t-u] = g(t_1-u_1, t_2-u_2) - g(-u_1, t_2-u_2) - g(t_1-u_1, -u_2) + g(-u_1, -u_2)$

- X in (7): stationary rectangular increments: $X]t_0, t_0 + t] \stackrel{\text{fdd}}{=} X]0, t]$
- X in (7): direct 2-dim analog of Lévy driven moving average with 1-dim time:

$$X(t) = \int_{-\infty}^t (g(t-u) - g^0(-u)) M(\mathrm{d}u), \qquad t \ge 0$$

with kernel $g(t)\sim ct^q$, $t\downarrow 0$ [Basse-O'Connor, Lachièze-Rey, Podolskij (2017) *Ann. Probab.* 45, 4477–4528]

• [Cohen, Istas (2013) Fractional Fields and Applications. Mathématiques et Applications 73, Springer]: 1-tangent limits of isotropic fractional Lévy RFs on \mathbb{R}^d :

$$X(t) = \int_{\mathbb{R}^d} \{ \| t - u \|^{H - \frac{2}{\alpha}} - \| u \|^{H - \frac{2}{\alpha}} \} M(\mathrm{d}u)$$

(particular parametric case of (7))

• we consider *anisotropic* power behavior of g(t) at $t = 0 \in \mathbb{R}^2$ characterized by two exponents $q_1, q_2 > 0$

$$g(t) \sim g_0(t) := \rho(t)^{\chi} L(t), \quad t \to 0,$$
 (9)

where:

- ullet $ho(oldsymbol{t}):=|t_1|^{q_1}+|t_2|^{q_2}$ (anisotropic radial generalized invariant function)
- ullet $q_1>0$, $q_2>0$, $\chi
 eq 0$: parameters, $Q:=rac{1}{q_1}+rac{1}{q_2}$
- ullet $L(t),\ t\in\mathbb{R}_0^2$ (angular generalized invariant function); some regularity conditions
- $\chi > 0$ ($\chi < 0$): (9) vanishes (explodes) at t = 0
- rectangent limits of RF X depend on two parameters only:

$$p_i := q_i(Q - \chi) > 0, \qquad i = 1, 2,$$
 (10)

Example (Fractional Lévy RF)

$$X(t) = \int_{\mathbb{R}^2} \{ \| t - u \|^{H - \frac{2}{\alpha}} - \| u \|^{H - \frac{2}{\alpha}} \} M(\mathrm{d}u)$$

• If $EM(d\mathbf{u})^2 = \sigma^2 d\mathbf{u}$, $\alpha = 2$, 0 < H < 1 then

$$\mathrm{E}X(t)X(s) = \mathrm{E}|X(e_1)|^2 \frac{1}{2}(\|t\|^{2H} + \|s\|^{2H} - \|t - s\|^{2H}), \qquad t, s \in \mathbb{R}^2,$$
 (11)

- If M Gaussian then X Gaussian (called fractional Brownian RF) (review paper [Lodhia, Scheffield, Sun, Watson, (2016), Probab. Surv. 13, 1–56]) 1-tangent limits [Benassi, A., Cohen, S. and Istas, J. (2004). Bernoulli 10, 357–373], [Cohen, Istas (2013)]
- Satisfies fractional PDE with Laplace operator (particular case of Ex 2)
- Satisfies (9) with $g_0 = g$, $q_1 = q_2 = 2$, Q = 1, $\chi = \frac{H}{2} \frac{1}{\alpha} \in (-\frac{1}{\alpha}, \frac{1}{2} \frac{1}{\alpha})$.

Example (isotropic Matérn RF)

$$X(t) = \begin{cases} Y(t) - Y(0), & \chi > 0, \\ Y(t), & \chi < 0, \end{cases}$$
 where (12)

$$(c^2 - \Delta)^{1+\chi} Y(t) = \dot{M}(t)$$
 (fractional PDE, $\Delta = \text{Laplace}$) (13)

• If $\mathrm{E} M(\mathrm{d} \pmb{u})^2 = \sigma^2 \mathrm{d} \pmb{u}$ and $\chi > -\frac{1}{2}$, then $\mathrm{E} |Y(\pmb{0})|^2 < \infty$ and $\mathrm{E} Y(\pmb{0}) Y(\pmb{t}) = \mathrm{E} |Y(\pmb{0})|^2 \frac{(c\|\pmb{t}\|)^{1+2\chi} K_{1+2\chi}(c\|\pmb{t}\|)}{\Gamma(1+2\chi)2^{2\chi}} \qquad (K_{\nu} : \mathsf{modif. Bessel function})$

- Matérn RFs and covariance functions widely used in spatial applications [Guttorp, Gneiting (2006). Biometrika 93, 989–995]
- Satisfies (9) with $g_0(t) = \|t\|^{2\chi}$, $q_1 = q_2 = 2$, Q = 1, $\chi \in (-\frac{1}{\alpha}, \frac{1}{2} \frac{1}{\alpha})$

Example (anisotropic heat operator RF)

$$(c_1 + \Delta_{12})^{\chi + \frac{3}{2}} X(\mathbf{t}) = \dot{M}(\mathbf{t}), \qquad \mathbf{t} \in \mathbb{R}^2,$$

$$\Delta_{12} := \frac{\partial}{\partial t_1} - c_2^2 \frac{\partial^2}{\partial t_2^2} \qquad \text{(heat operator)}$$
(14)

• Fundamental solution of (14) (seems new?):

$$g(t) = \frac{t_1^{\chi}}{2^{\frac{1}{2}}(2\pi)^{\frac{3}{2}}c_2\Gamma(\chi + \frac{3}{2})} \exp\left\{-c_1t_1 - \frac{t_2^2}{4c_2^2t_1}\right\}, \qquad t_1 > 0$$
 (15)

- Solution of (14) via Fourier transform: [Kelbert, Leonenko, Ruiz-Medina (2005), Adv. Appl. Probab.
 37, 108–133]
- Satisfies (9) with $g_0(t) := \rho(t)^{\chi} \ell(t)$, $\rho(t) := |t_1| + |t_2|^2$, $q_1 := 1$, $q_2 := 2$, $Q = \frac{3}{2}$, and continuous angular function

$$\ell(\boldsymbol{t}) := \frac{z^{\chi}}{2^{\frac{1}{2}}(2\pi)^{\frac{3}{2}}c_2\Gamma(\chi + \frac{3}{2})} \exp\Big\{ -\frac{1}{4c_2^2}\Big(\frac{1}{z} - 1\Big) \Big\}, \ t_1 > 0, \ z := \frac{t_1}{\rho(\boldsymbol{t})} \in (0, 1].$$

3. Main results [γ -rectangent limits of Lévy driven RFs]

Definition ([Genton, Perrin, Taqqu (2007). Stoch. Models 23, 397–411]

A RF $V = \{V(t), t \in \mathbb{R}^2_+\}$ is said (H_1, H_2) -multi-self-similar (MSS) with parameters $H_i \geq 0$, i = 1, 2 if

$$V(\lambda_1 t_1, \lambda_2 t_2) \stackrel{\text{fdd}}{=} \lambda_1^{H_1} \lambda_2^{H_2} V(\boldsymbol{t}), \quad \forall \lambda_1 > 0, \ \forall \lambda_2 > 0.$$
 (16)

Classical example of MSS RF: Fractional Brownian Sheet (FBS) B_{H_1,H_2} : Gaussian process on \mathbb{R}^2_+ with zero mean and covariance

$$EB_{H_1,H_2}(\mathbf{t})B_{H_1,H_2}(\mathbf{s}) = (1/4)\prod_{i=1}^{2}(t_i^{2H_i} + s_i^{2H_i} - |t_i - s_i|^{2H_i}),$$
(17)

$$m{t} = (t_1, t_2) \in \mathbb{R}^2_+$$
, $m{s} = (s_1, s_2) \in \mathbb{R}^2_+$

- Usually B_{H_1,H_2} is defined for $H_i \in (0,1]$ or $H_i \in (0,1)$
- We extend B_{H_1,H_2} to $H_i \in [0,1]$ by continuity in (17)
- Extension to $H_1 \wedge H_2 = 0$ leads to very unusual and extremely singular RF (non-measurable paths!)
- Similarly by continuity define FBM B_0 with H=0 as Gaussian process on \mathbb{R}_+ with zero mean and covariance $\mathrm{E} B_0(t) B_0(s) = 1 \frac{1}{2} I(t \neq s)$
- B_0 is self-similar with H=0 and can be represented as $B_0 \stackrel{\mathrm{fdd}}{=} \{ \frac{1}{\sqrt{2}} (W(t) W(0)), \ t \in \mathbb{R}_+ \}$, where $W(t), \ t \in [0, \infty)$, is (uncountable) family of independent N(0, 1) r.v.s.

Summary of main results: For Lévy driven RFs in (7) with kernel g satisfying (9) $(g(t) \sim \rho(t)^{\chi} L(t), t \to 0, \rho(t) = |t_1|^{q_1} + |t_2|^{q_2})$ and random measure $M \sim W_{\alpha}, 0 < \alpha \leq 2$

- (i) γ -rectangent limits V_{γ} exist for any $\gamma > 0$ and are α -stable RFs,
- (ii) limit family $\{V_\gamma,\,\gamma>0\}$ exhibits scaling transition at $\gamma_0:=rac{q_1}{q_2}$,
- (iii) unbalanced limits V_{\pm} are (H_1, H_2) -MSS with one of H_i , i = 1, 2 equal 1 or 0.

 γ -tangent limits (ordinary increments): more straightforward

Conclusions:

- Gaussian unbalanced limits V_{\pm} agree with B_{H_1,H_2} with $H_1 \wedge H_2 = 0$ or $H_1 \vee H_2 = 1$
- Unbalanced scaling ($\gamma \neq \gamma_0$) degenerates dependence in one direction (either vertical or horizontal)
- \bullet Critical γ_0 agrees with 'intrinsic local dependence ratio' $\frac{q_1}{q_2}$ of RF X

Q. How
$$H_i$$
, $i=1,2$ depend on q_1, q_2, χ, α ? Parameters $p_1, p_2, \alpha, \ p_i = q_i(Q - \chi) > 0, i = 1, 2, Q = \frac{1}{q_1} + \frac{1}{q_2}$

Parameter region	V_+	Hurst parameters	V_{-}	Hurst parameters
R ₁₁	$ ilde{\Upsilon}_{lpha,1}$	$0 < H_1 < 1, H_2 = 1$	$ ilde{\Upsilon}_{lpha,2}$	$H_1 = 1, 0 < H_2 < 1$
R_{12}	$ ilde{\Upsilon}_{lpha,1}$	$0 < H_1 < 1, H_2 = 1$	$\Upsilon_{lpha,1}$	$0 < H_1 < 1, H_2 = 0$
R_{21}	$\Upsilon_{lpha,2}$	$H_1 = 0, 0 < H_2 < 1$	$ ilde{\Upsilon}_{lpha,2}$	$H_1 = 1, 0 < H_2 < 1$
R_{22}	$\Upsilon_{lpha,2}$	$H_1 = 0, 0 < H_2 < 1$	$\Upsilon_{lpha,1}$	$0 < H_1 < 1, H_2 = 0$

1 lentelė: Unbalanced rectangent scaling limits V_{\pm} and their Hurst parameters in regions R_{ij} , i,j=1,2.

• Four lines in Fig correspond to $P_{1,1}=\alpha,\ P_{1,1}=\frac{\alpha}{1+\alpha},\ P_{1/\alpha,(1+\alpha)/\alpha}=1,\ P_{(1+\alpha)/\alpha,1/\alpha}=1$ where

$$P_{c_1,c_2}:=rac{c_1}{p_1}+rac{c_2}{p_2}$$

• α -stable RFs $\Upsilon_{\alpha,i}, i=1,2$ with $H_1 \wedge H_2=0$ and $\tilde{\Upsilon}_{\alpha,i}, i=1,2$ with $H_1 \vee H_2=1$ defined through self-similar α -stable processes $Y_{\alpha,i}, \tilde{Y}_{\alpha,i}, i=1,2$ with 1-dim time, particularly,

$$\tilde{\Upsilon}_{\alpha,1}(\boldsymbol{t}) := t_2 \tilde{Y}_{\alpha,1}(t_1), \qquad \tilde{\Upsilon}_{\alpha,2}(\boldsymbol{t}) := t_1 \tilde{Y}_{\alpha,2}(t_2).$$

- Definition of $\Upsilon_{\alpha,i}$ through $Y_{\alpha,i}$ more involved (only FDD as probability measure on $\mathbb{R}^{\mathbb{R}^2_+}$ using Kolmorogov's consistency theorem)
- Hurst indices:

$$\begin{split} & \mathcal{H}_{\alpha,1} := \frac{1+\alpha}{\alpha} \left(1+\frac{p_1}{p_2}\right) - p_1, \quad \tilde{\mathcal{H}}_{\alpha,1} := \frac{1+\alpha}{\alpha} + \frac{p_1}{\alpha p_2} - p_1, \\ & \mathcal{H}_{\alpha,2} := \frac{1+\alpha}{\alpha} \left(1+\frac{p_2}{p_1}\right) - p_2, \quad \tilde{\mathcal{H}}_{\alpha,2} := \frac{1+\alpha}{\alpha} + \frac{p_2}{\alpha p_1} - p_2. \end{split}$$

3. Main results (rigorous formulations)

$$\partial_i f(\mathbf{t}) := \partial f(\mathbf{t})/\partial t_i, \ i = 1, 2, \ \partial_{12} f(\mathbf{t}) := \partial^2 f(\mathbf{t})/\partial t_1 \partial t_2$$

 $f:\mathbb{R}^2_0 o \mathbb{R}$ is generalized homogeneous (resp., generalized invariant) if $\exists \ q_i > 0, i = 1, 2$ s.t. $\lambda f(\lambda^{1/q_1}t_1, \lambda^{1/q_2}t_2) = f(t) \ \forall \ \lambda > 0, \ \forall \ t \in \mathbb{R}^2_0$ (resp., $f(\lambda^{1/q_1}t_1, \lambda^{1/q_2}t_2)$ does not depend on $\lambda > 0 \ \forall \ t \in \mathbb{R}^2_0$).

Gen. homog. function f(t) can be represented as $f(t) = \rho(t)^{-1}\ell(t)$ with $\rho(t) = |t_1|^{q_1} + |t_2|^{q_2}$ and a gen. inv. $\ell(t) = \tilde{\ell}(t_1/\rho(t)^{1/q_1}, t_2/\rho(t)^{1/q_2})$ where $\tilde{\ell}$ is restriction of f to $\{t \in \mathbb{R}_0^2 : \rho(t) = 1\}$

Assumptions on kernels g, g_i^0, g_{12}^0 of Lévy driven RF X.

Assumption $(G)_{\alpha}$.

• $g_0(t) = \rho(t)^{\chi} L(t)$, where L(t) is a gen. inv. and $\chi \in \mathbb{R}_0$, $q_i > 0$, i = 1, 2, with $Q = \frac{1}{q_1} + \frac{1}{q_2}$ s.t.

$$-\frac{1}{\alpha}Q<\chi<\left(1-\frac{1}{\alpha}\right)Q$$

• As $|\mathbf{t}| \to 0$, $g(\mathbf{t}) = g_0(\mathbf{t}) + o(\rho(\mathbf{t})^{\chi})$, $\partial_i g(\mathbf{t}) = \partial_i g_0(\mathbf{t}) + o(\rho(\mathbf{t})^{\chi - \frac{1}{q_i}})$, $i = 1, 2, \ \partial_{12}g(\mathbf{t}) = \partial_{12}g_0(\mathbf{t}) + o(\rho(\mathbf{t})^{\chi - Q})$ and $\forall \ \mathbf{t} \in \mathbb{R}^0_0$,

$$|g_0(t)| \leq C\rho(t)^{\chi}, \quad |\partial_i g_0(t)| \leq C\rho(t)^{\chi-\frac{1}{q_i}}, \ i=1,2, \quad |\partial_{12}g_0(t)| \leq C\rho(t)^{\chi-Q}.$$

3. Main results (rigorous formulations)

Assumption (G) $_{\alpha}^{0}$. For any $\boldsymbol{t}=(t_{1},t_{2})\in\mathbb{R}^{2},\ \delta>0$,

$$\int_{\mathbb{R}^{2}} |g(\mathbf{t} - \mathbf{u}) - g_{1}^{0}((t_{1}, 0) - \mathbf{u}) - g_{2}^{0}((0, t_{2}) - \mathbf{u}) + g_{12}^{0}(-\mathbf{u})|^{\alpha} d\mathbf{u} < \infty \quad (0 < \alpha \le 2),$$

$$\int_{|\mathbf{u}| > \delta} \left(\sum_{i=1}^{2} |\partial_{i} g(\mathbf{u})|^{\alpha} + |\partial_{12} g(\mathbf{u})|^{\alpha} \right) d\mathbf{u} < \infty \quad (1 \le \alpha \le 2).$$
(18)

Moreover, if $0 < \alpha < 1$, there exist dominating functions $\bar{g}_i(\boldsymbol{u})$, $\bar{g}_{12}(\boldsymbol{u}), \boldsymbol{u} = (u_1, u_2) \in \mathbb{R}^2_+$ monotone decreasing in each $u_i > 0, i = 1, 2,$ $|\partial_i g(\boldsymbol{u})| \leq \bar{g}_i(|u_1|, |u_2|), |\partial_{12} g(\boldsymbol{u})| \leq \bar{g}_{12}(|u_1|, |u_2|), |\boldsymbol{u}| > \delta$, satisfying (18) with $\partial_i g, \partial_{12} g$ replaced by \bar{g}_i, \bar{g}_{12} .

Assumptions on Lévy random measure M (characteristics (σ, ν))

Assumption $(M)_{\alpha}$.

- $\alpha=2,\sigma>0$ and $\int_{\mathbb{R}}y^2\nu(\mathrm{d}y)<\infty$, or
- $0<\alpha<2, \sigma=0$ and $\lim_{y\downarrow 0}y^{\alpha}\nu([y,\infty))=c_+$, $\lim_{y\downarrow 0}y^{\alpha}\nu((-\infty,-y])=c_-$ for some $c_{\pm}\geq 0$, $c_++c_->0$, $\sup_{y>0}y^{\alpha}\nu(\{u\in\mathbb{R}:|u|>y\})<\infty$. Moreover, if $\alpha=1$ then $\nu(\mathrm{d}y)=\nu(-\mathrm{d}y), y>0$ is symmetric.

3. Main results (rigorous formulations)

Assumption $(M)_{\alpha}$ implies that rescaled Lévy Sheet $M(t) = \int_{]0,t]} M(\mathrm{d}\boldsymbol{u})$ tends to α -stable Sheet $W_{\alpha}(t) = \int_{]0,t]} W_{\alpha}(\mathrm{d}\boldsymbol{u})$:

$$(\lambda_1\lambda_2)^{-\frac{1}{\alpha}}M(\lambda_1t_1,\lambda_2t_2) \stackrel{\text{fdd}}{\to} W_{\alpha}(\boldsymbol{t}), \quad \lambda_i\downarrow 0, \quad i=1,2,$$

Theorem

Let Lévy driven fractional RF X in (7) satisfy Assumptions $(G)^0_{\alpha}$, $(G)_{\alpha}$ and $(M)_{\alpha}$; $0<\alpha\leq 2$, $\frac{\alpha}{1+\alpha}< P<\alpha$, $P\neq 1$, $P_{\frac{1}{\alpha},\frac{1+\alpha}{\alpha}}\neq 1$, $P_{\frac{1+\alpha}{\alpha},\frac{1}{\alpha}}\neq 1$. Then the γ -rectangent RF in (2) exists for any $\gamma>0$, $\mathbf{t}_0\in\mathbb{R}^2_+$ and satisfies the trichotomy

$$V_{\gamma} = \begin{cases} V_{+}, & \gamma > \gamma_{0}, \\ V_{-}, & \gamma < \gamma_{0}, \\ V_{0}, & \gamma = \gamma_{0}, \end{cases}$$
 (19)

with $\gamma_0=rac{q_1}{q_2}=rac{p_1}{p_2}$, $V_0(m{t}):=\int_{\mathbb{R}^2}g_0]-m{u},m{t}-m{u}]W_{lpha}(\mathrm{d}m{u}),$, and

$$V_{-} := \begin{cases} \tilde{\Upsilon}_{\alpha,2}, & P_{\frac{1}{\alpha}, \frac{1+\alpha}{\alpha}} > 1, \\ \Upsilon_{\alpha,1}, & P_{\frac{1}{\alpha}, \frac{1+\alpha}{\alpha}} < 1, \end{cases} \qquad V_{+} := \begin{cases} \tilde{\Upsilon}_{\alpha,1}, & P_{\frac{1+\alpha}{\alpha}, \frac{1}{\alpha}} > 1, \\ \Upsilon_{\alpha,2}, & P_{\frac{1+\alpha}{\alpha}, \frac{1}{\alpha}} < 1. \end{cases}$$
(20)

4. Extensions and comments

1. What are γ -rectangent limits of X when $P = \frac{1}{p_1} + \frac{1}{p_2} > \alpha$ ('smooth' kernel g(t))?

Under 'some' conditions for any $\gamma>0$

$$\lambda^{-1-\gamma}X]\mathbf{0}, \lambda^{\Gamma}\mathbf{t}] \stackrel{\mathrm{fdd}}{ o} t_1t_2V, \quad \text{where} \quad V := \int_{\mathbb{R}^2} \partial_{12}\mathbf{g}(\mathbf{u})M(\mathrm{d}\mathbf{u})$$

(no scaling transition)

2. When γ -rectangent limits of X agree with α -stable sheet W_{α} ? Assumption (G) $_{\alpha}$ should be replaced by assuming that g(t) is discontinuous at t=0 and exist 'limites quadrantales' $g_{ij}:=\lim_{|t|\to 0,\ t\in \mathbb{R}^2_{ij}}g(t),\ i,j\in\{1,-1\}$ on each quadrant $\mathbb{R}^2_{ij}:=\{t\in \mathbb{R}^2: \operatorname{sgn}(t_1)=i,\operatorname{sgn}(t_2)=j\},\ i,j=\pm 1$ with

$$g[0] := \sum_{i,j \in \{1,-1\}} ij \, g_{ij} \neq 0.$$

(no scaling transition)

3. What are γ -tangent limits (ordinary increments) of X?

For RF $X(t)=\int_{\mathbb{R}^2}\left\{g(t-u)-g_{12}^0(-u)\right\}M(\mathrm{d}u)$ with stationary increments and some related conditions on g(t) and M we prove that γ -tangent limits T_γ in (1) of X exist for any $\gamma>0$ and

4. Extensions and comments

$$T_{\gamma} = \left\{ egin{aligned} T_{+}, & \gamma > \gamma_{0}, \ T_{-}, & \gamma < \gamma_{0}, \ T_{0}, & \gamma = \gamma_{0}, \end{aligned}
ight.$$

where $\gamma_0 = \frac{q_1}{q_2}$, $T_0(\boldsymbol{t}) := \int_{\mathbb{R}^2} \left\{ g_0(\boldsymbol{t} - \boldsymbol{u}) - g_0(-\boldsymbol{u}) \right\} W_{\alpha}(\mathrm{d}\boldsymbol{u})$ and $T_+(\boldsymbol{t}) := T_0(t_1,0), \ T_-(\boldsymbol{t}) := T_0(0,t_2)$ depend on only one coordinate on the plane.

- 4. Extension to Lévy driven RFs on $\mathbb{R}^d_+, d \geq 3$: seems possible but open. Description of rectangent limits more complicated. [Surgailis, D. (2019). Anisotropic scaling limits of long-range dependent linear random fields on \mathbb{Z}^3 . J. Math. Anal. Appl. 472, 328–351], [Damarackas, J., Paulauskas, V. (2021). J. Math. Anal. Appl. 497].
- 5. Functional convergence instead of FDD: open. However, if $H_1 \wedge H_2 = 0$ does not seem feasible.
- 6. Applications to statistical estimation of H_1 , H_2 from dense rectangular grid: open and challenging problem.