Local scaling limits of Lévy driven fractional random fields

Donatas Surgailis (Vilnius University)

Joint with Vytauté Pilipauskaité
(University of Luxembourg)



To the memory of Vladas

Cornell, 2003

p. 2 of 24



Outline:
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1. v-tangent and ~-rectangent RFs and scaling transition

X = {X(t), t € R?}: a random field (RF), to = (to1,to2) € R?: given point
Two types of increment of X at tg:
(ordinary) increment: X(to + t) — X(to), and

rectangular increment:

X]to, to+t] := X(to1 + t1, too + t2) — X(to1, toz + t2) — X(to1 + t1, to2) + X (to1, toz)

to+t to+t
W N

ordinary increment rectangular increment
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1. v-tangent and ~-rectangent RFs

@ both types of increments give rise to increment RF of X at tg
(indexed by t € R?)

e RF X with stationary (ordinary) increments or with stationary
rectangular increments (different notions)

e this talk: local (small scale) scaling limits of both types of increment
RFs as t — 0 for a class of ‘fractional’ RF X on R?

@ important to infill statistics of RFs

@ the scaling limits (tangent RFs) depend on how t = (t1, t2) tends to
0=(0,0):
t1 = Axy, th = AN'xo

where A — 0 and v > 0 is fixed

@ 7 > 0 characterizes scaling anisotropy (v = 1: isotropic scaling)

p. 5 of 24



[ = diag(1,7), AT = diag(1,\7), ATt = (\ty, \7tp) € R?

Definition
Suppose there exist normalization dy ., | 0 (X | 0) s.t.

dy 2(X(to + A8) = X(£0)) 5 T,(8), (1)
dit X]to, to + ATt] 5 V. (1), (2)

T, and V., in (1), (2) are called ~-tangent and ~y-rectangent RFs of RF X
at to respectively.

@ 1-tangent or tangent (isotropic scaling) RF Ti in (1) was introduced in Falconer
(2002) ( 9 replaced by a functional convergence)

@ generalizes the concept of tangent process for X = {X(t)} with t € R

@ normalization d» , J O generally different for (1) and (2)

@ dependence on to on r.h.s. of (1) and (2) is suppressed (do not depend on to by
stationarity of increments in this talk)

@ ‘rectangent’ = abridge for ‘rectangular tangent’
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1. v-tangent and ~-rectangent RFs

@ Since T is self-similar (SS) the existence of T; in (1) also termed ‘local asymptotic
self-similarity’ (Benassi, Cohen, Istas (2004), Cohen (2012), Cohen, Istas (2013))

@ The above papers proved the existence of T; for a class of isotropic fractional Lévy
RFs on R?

@ Under mild conditions all scaling limits in (1)—(2) satisfy the (H,~)-SS property:
U MU, vaso, (3)

with some H = H(+) > 0, normalization d» -, is H-regularly varying as A | 0

Suppose ~y-rectangent limits in (2) exist for any v > 0. We say that these
limits exhibit scaling transition at some g > 0 if

V—i—? Y > Y0, fdd
Vy=4q V., 7<n, and Vi # aV_ (Va>0) (4)
V07 Y ="

v
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1. v-tangent and ~-rectangent RFs

Analogous definition in «-tangent case

Closely related to large-scale scaling transition for RFs on Z? or R%:
Puplinskaité, Surgailis (2015). Stoch. Proc. Appl. 125, 2256-2271;
Puplinskaité, Surgailis (2016). Bernoulli 22, 2401-2441;
Pilipauskaité, Surgailis (2016). J. Appl. Prob. 53, 857-879;
Pilipauskaité, Surgailis (2017). Stoch. Proc. Appl. 127, 2751-2779;
Surgailis (2020). Stoch. Proc. Appl. 130, 7518-7546;
Pilipauskaité, Surgailis (2021). An Out of Equilibrium 3: Celebrating Vladas Sidoravicius, pp. 683-710;
Damarackas, Paulauskas (2021). J. Math. Anal. Appl. 497
@ In the large-scale case, rectangular increments are replaced by integrals or sums of
a stationary RF X over large rectangle [0, Axi] X [0, A”x2] and one is interested in
the limit
fdd

d;;/ X(t)dt = V,(x), A— oo (5)
[0,Ax1] X [0,A\ 7 xp]

for any given v > 0

@ In the above works a similar trichotomy to (2) was observed in large-scale
anisotropic scaling for several classes of linear and nonlinear long-range dependent
(LRD) RF models The trichotomy was called the scaling transition, with V4 the
unbalanced and Vj the well-balanced scaling limits.

@ |Intrinsically related to LRD




1. v-tangent and ~-rectangent RFs

@ Large-scale trichitomy or scaling transition of different nature occurs in applied
sciences (telecommunications and econometrics) in joint temporal-spatial
aggregation of independent LRD processes:

[)\szl

/ —EX(t)dt & V,(x), Ao oo (6)

where X; = {X,-(t), t € R} are independent copies of a stationary process
X = {X(t),t € R}. Typical examples of X:

o ON/OFF process with heavy tailed ON or OFF intervals
(telecommunications)

e random-coefficient AR(1) process with random coefficient having a
power-law distribution near the unit root (econometrics)

@ Gaussian or stable limits in (6) depending on whether v > ~o or v < 7o

Mikosch, Resnick, Rootzén, Stegeman (2002). Ann. Appl. Probab. 12, 23-68;

Gaigalas, Kaj (2003). Bernoulli 9, 671-703;

Pipiras, Taqqu, Levy (2004). Bernoulli 10, 121-163;

Kaj, Tagqu (2008). An Out of Equilibrium 2, pp. 383-427;

Pipiras, Taqqu (2017) Long-Range Dependence and Self-Similarity. Cambridge Univ. Press, Cambridge;
Pilipauskaité, Surgailis (2014). Stoch. Proc. Appl. 124, 1011-1035:

Pilipauskaité, Skorniakov, Surgailis (2020) Adv. Appl. Probab. 52, 237-265
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2. Lévy driven fractional RFs on R2. Examples

We consider RF X = {X(t),t = (t1, &) € RZ} on R% = (0, 00)? written as stochastic
integral:

X(t) = /2 {g(t —u) — g((t2,0) — u) — g5((0, 2) — u) + gio(—u) fM(du),  (7)

w.r.t. Lévy random measure M(A), A C R%, with independent values on disjoint sets
and characteristic function

BEe!?MA) — exp { Leb(A)( — 20292 + /(eiey -1- i‘%a()/))’/(d)’)) }’ 0 cR, (8)

R

where:

@ 0°>0,0<a<?2andvis a Lévy measure on R satisfying Assumption (M),
below (meaning roughly that A~%“M(\A) tends to a-stable random measure
Wo(A) as A — 0)

o g g0 g g% are deterministic functions satisfying a power-law behavior at the
origin 0 € R? (specified in Assumption (G)a)

@ centering lo(y) =y (1<a<2),=00<a<]l)
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2. Lévy driven fractional RFs on R2. Examples

o g gd, g% ‘initial functions’ do not enter rectangular increment:
X0, t] = fR2 gl — u, t — u]M(du), where
gl-—ut—ul=g(ti—u,to—w)—g(—u, 2 — ) —g(t1 — 1, —w2) + g(—u1, —u2)

fdd X]0, ¢]
@ X in (7): direct 2-dim analog of Lévy driven moving average with 1-dim time:

X(t) = / (g(t— u) — (- u)M(du),  t20

@ X in (7): stationary rectangular increments: X]to, to + t] =

with kernel g(t) ~ th, t \l/ 0 [Basse-O’Connor, Lachiéze-Rey, Podolskij (2017) Ann. Probab. 45,
4477-4528)

@ [Cohen, Istas (2013) Fractional Fields and Applications. Mathématiques et Applications 73, Springer]: 1—tangent
limits of isotropic fractional Lévy RFs on R:

X(t) = /{Ilt—UIIH" Jul™™ % }M(du)

(particular parametric case of (7))
@ we consider anisotropic power behavior of g(t) at t = 0 € R? characterized by two
expononents qi,q> > 0
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2. Lévy driven fractional RFs on R2. Examples

g(t) ~ go(t) := p(t)*L(£), t—0, (9)
where:
@ p(t) ;= |t1]™ + |t2|* (anisotropic radial generalized invariant function)

@ g1 >0, g2 >0, x#0: parameters, @ .= + + 1

a a

L(t), t € R3 (angular generalized invariant function); some regularity conditions

x >0 (x < 0): (9) vanishes (explodes) at t =0

rectangent limits of RF X depend on two parameters only:

pi:=qi(Q—x) >0, i=12, (10)

Example (Fractional Lévy RF)

x(©) = [ Qe - " #)maw)
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2. Lévy driven fractional RFs on R2. Examples

@ If EM(du)® = ¢%du, o =2, 0 < H < 1 then
1
EX(t)X(s) = EIX(el)Izg(Htllz” + s = e = s*), t,s € R’ (11)

@ If M Gaussian then X Gaussian (called fractional Brownian RF) (review paper
[Lodhia, Scheffield, Sun, Watson, (2016), Probab. Surv. 13, 1-56]) 1-tangent limits [Benassi, A., Cohen, S. and
Istas, J. (2004). Bernoulli 10, 357-373], [Cohen, Istas (2013)]

@ Satisfies fractional PDE with Laplace operator (particular case of Ex 2)

@ Satisfies () withgo =g, 1 = =2, Q=1 x=4-Le(-1,1-1)

@

Example (isotropic Matérn RF)

_[Y@0-Yo), x>0
X(t) = {Y(t), <0, where (12)
(c® — A)XY(t) = M(t) (fractional PDE, A = Laplace) (13)
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2. Lévy driven fractional RFs on R2. Examples

@ If EM(du)® = o*du and x > —1, then E|Y(0)|> < co and

clt])"*** Kiay (c|t])

EY(0)Y(t) = E| Y(O)\2( M1+ 2x)2%x

(K : modif. Bessel function)

@ Matérn RFs and covariance functions widely used in spatial applications [Guttorp,
Gneiting (2006). Biometrika 93, 989-995]

o Satisfies (9) with go(t) = [t @1 = 2 =2, @ =1, x € (~2,1 — 1)

Example (anisotropic heat operator RF)

(a+A)EIX(t) = M(t),  teR? (14)
A = a% — cgg—:% (heat operator)

@ Fundamental solution of (14) (seems new?):

t

t;
g(t) = eXp{ —at — —} >0  (15)
2%(27r)%ch(X+ ?) 4cit
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3. Main results

@ Solution of (14) via Fourier transform: [Kelbert, Leonenko, Ruiz-Medina (2005), Adv. Appl. Probab.

37, 108-133]
3

@ Satisfies (9) with go(t) := p(£)X4(t), p(t) := |t1| + |2|*,q1 =1, q2:=2, Q= 3,
and continuous angular function

ot) = 2§(27r)£:r(x+g) exp{ - %(1 —1)}, t >0, z:= W € (0,1].

3. Main results [y-rectangent limits of Lévy driven RFs]

Definition ([Genton, Perrin, Tagqu (2007). Stoch. Models 23, 397-411] )
A RFV = {V(t), t € R2} is said (Hy, Ho)-multi-self-similar (MSS) with
parameters H; >0, i = 1,2 if

V(At, dota) S AR V() WAL >0, VA, > 0. (16)
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3. Main results

Classical example of MSS RF: Fractional Brownian Sheet (FBS) By, 1,: Gaussian
process on R? with zero mean and covariance

2
EBu i ()Br. i (5) = (1/4) [ J(£7" + 57 — |t — ™), (17)
i=1

t=(t1,) €ER%, s = (s1,%) € R
@ Usually By, is defined for H; € (0,1] or H; € (0,1)
@ We extend By, n, to H; € [0,1] by continuity in (17)

@ Extension to Hy A H» = 0 leads to very unusual and extremely singular RF
(non-measurable paths!)

@ Similarly by continuity define FBM By with H = 0 as Gaussian process on Ry with
zero mean and covariance EBy(t)Bo(s) =1 — 3/(t # s)

@ By is self-similar with H = 0 and can be represented as
Bo = {L(W(t) - W(0)), t € R, }, where W(t), t € [0,00), is (uncountable)
family of independent N(0,1) r.v.s.

p. 16 of 24



3. Main results

Summary of main results: For Lévy driven RFs in (7) with kernel g satisfying (9)
(g(t) ~ p(t)XL(t), t — 0,p(t) = |t1]™ + |t2|) and random measure
M~ Wy 0<a<?2

(i) ~-rectangent limits V, exist for any v > 0 and are a-stable RFs,

(i) limit family {V, v > 0} exhibits scaling transition at o := &,

(iii) unbalanced limits V4 are (Hi, H>)-MSS with one of H;, i = 1,2 equal 1 or 0.

~-tangent limits (ordinary increments): more straightforward

Conclusions:

@ Gaussian unbalanced limits Vi agree with By, 1, with HHAH, =0or HV H, =1

@ Unbalanced scaling (v # 7o) degenerates dependence in one direction (either
vertical or horizontal)

@ Critical o agrees with ‘intrinsic local dependence ratio’ % of RF X

Q. How H;,i = 1,2 depend on qi, g2, X, a? Parameters
pr,p2,a, pi=qi(Q—x)>0,i=12Q=++ L
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3. Main results

1/p2

THa N Ry
.
Rao \\\\
Rw\\\
0 fer 1/p1
Parameter region Vi Hurst parameters V_ Hurst parameters
Ri1 Ta,l 0<H1<17H2:1 Ta,z H1:1,0<H2<1
Ri2 Tar1 O<HI<1l,Hi=1 To1 O0<Hi <1, H=0
R Taz HI=00<H,<1 Too Hi=1,0<Hy <1
R Taz Hi=00<H<1 Ta1 O<Hi<1,H=0

1 lentelé: Unbalanced rectangent scaling limits V. and their Hurst parameters in

regions Ry, i,j =1,2.

p. 18 of 24



3. Main results

@ Four lines in Fig correspond to
P171 =, P171 = HLON Pl/a,(1+a)/a = 17 P(l+o¢)/o¢,l/o¢ = 1 where
C1 E

Pclsc2 =

pr P2

@ a-stable RFs To.;,i=1,2 with Hi A Ha =0 and To,,i=1,2 with H1V Hy =1
defined through self-similar a-stable processes Yy ,i, Ya,i, i = 1,2 with 1-dim time,
particularly,

;f‘oc,l(t) = t2§/o¢,l(tl), ”f‘a,2(t) =1 {/,172({‘2).

@ Definition of T4,; through Y, ; more involved (only FDD as probability measure on
RR: using Kolmorogov's consistency theorem)

@ Hurst indices:

1 ~ 1
Ho1:= +a(1+%>_P17 Hal::ﬁ'i'&_ply

a a ap2
l+a ~ l+a
Ha,25:7(1+g)_l327 Hop=""2 4 P2

o pP1 (6% apy
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3. Main results (rigorous formulations)

aif(t) = 8f(t)/8t,—, i=1,2, 812f(t) = 82f(t)/8t18t2

f :R3 — R is generalized homogeneous (resp., generalized invariant) if 3 q; > 0,i = 1,2
st MOY9t, AY20) = F(£) VA >0,V t € R2 (resp., F(A\Y %41, A\V/%1,) does not
depend on A >0V t € R3).

Gen. homog. function f(t) can be represented as f(t) = p(t)~1e(t) with B
p(t) = |t1|" + |t2]% and a gen. inv. £(t) = I(t1/p(t)Y ", t2/p(t)Y %) where 7 is
restriction of f to {t € Rj : p(t) = 1}

Assumptions on kernels g, g°, g0, of Lévy driven RF X.

Assumption (G)..

@ go(t) = p(t)XL(t), where L(t) is a gen. inv. and x € Ry, g; > 0, i = 1,2, with
Q= q—ll + é s.t.

acue(i-b)e

@ As |t| — 0, g(t) = go(t) + o(p(t)X), Oig(t) = Digo(t) + 0(p(t)X_"%’), i=
1,2, O12g(t) = D2go(t) + o(p(t)X_Q) and V t € ]RS,

_1 —
lgo(t)] < Cp()*, |Oigo(t) < Co(t) "%, i=1,2, |Orgo(t)| < Cp(t)*" 7.
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3. Main results (rigorous formulations)

Assumption (G)%. For any t = (t1,t2) € R?, § >0,
Jre lg(t — u) — g((11,0) — u) — g2((0, 2) — u) + gir(~u)|"du < 0 (0<a<2),
Jiuios (Zf:l 10 ()| + |812g(u)|a)du < oo (1<a<2). (18

Moreover, if 0 < o < 1, there exist dominating functions g;(u),

Zi2(u), u = (1, u12) € R% monotone decreasing in each u; > 0,i = 1,2,

|0ig(u)| < Bi|w], |u2]), [Or28(u)| < Zr2(|wn], |u2]), lu] > 6, satisfying (18) with Jig, D128
replaced by gi, Zi2.

Assumptions on Lévy random measure M (characteristics (o, 1))
Assumption (M),,.
@ a=2,0>0and fRyzu(dy) < o0, or

@ 0<a<2,0=0andlimyoy*v([y,o0)) = ct, limy 0 y*v((—o0, —y]) = c_ for
some cx >0, ¢y +c- >0, sup,.o y*v({u € R: [u| > y}) < co. Moreover, if
a =1 then v(dy) = v(—dy),y > 0 is symmetric.
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3. Main results (rigorous formulations)

Assumption (M), implies that rescaled Lévy Sheet M(t fo q M(du) tends to
a-stable Sheet W, (t) = jiﬂ,t] Wo (du):

(Mde) s M\t oty) S Wa(t), M L1O, i=1,2

Theorem

Let Lévy driven fractional RF X in (7) satisfy Assumptions (G)%, (G)a and (M).;
0<a<2 - <P<a P#1, P1 e #1, le 1 # 1. Then the vy-rectangent RF
in (2) exists for any v > 0, to € R and satisfies the trlchotomy

V+7 Y > Y0,
V’Y = v_, ¥ < 70, (19)
VO: Y = "o,

with v = ql = %, Vo(t) == f]R2 go] — u, t — ulW,(du), , and

'?\a,% Pi 1a >1, TQJ, Piio 1
V_ = a’la V= a o
Ta, PL)Hﬁa <1, Ta2, Pite 1

1
0 (20)
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4. Extensions and comments

1. What are ~-rectangent limits of X when P = % + é > « (‘smooth’

kernel g(t))?
Under ‘some’ conditions for any v > 0
ATX0,ATE] S iV, where V= [, dog(u)M(du)
(no scaling transition)
2. When ~-rectangent limits of X agree with «a-stable sheet W, ?

Assumption (G)a should be replaced by assuming that g(t) is discontinuous at
t =0 and exist ‘limites quadrantales’ g := lim;_, te®? g(t), i,je{1,-1} on

each quadrant R? := {t € R? : sgn(t1) = i,sgn(t2) = j}, i,j = £1 with
g[o] = Ei,je{l,fl} UgU 7é 0.
(no scaling transition)
3. What are v-tangent limits (ordinary increments) of X?
For RF X(t) = fRZ {g(t —u) — ng(—u)}M(du) with stationary increments and
some related conditions on g(t) and M we prove that y-tangent limits T in (1) of

X exist for any v > 0 and
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4. Extensions and comments

T+a v > 0,
T"/ = T_, v <0,
To, v =10,
where yo = &L, To(t fRz {go (t—u) — gof u)} W, (du) and

T.(t) = To(h,O)7 T,( ) := To(0, t2) depend on only one coordinate on the plane.

4. Extension to Lévy driven RFs on Ri, d > 3: seems possible but open.
Description of rectangent limits more complicated. [Surgailis, D. (2019). Anisotropic scaling
limits of long-range dependent linear random fields on 73. J. Math. Anal. Appl. 472, 328-351], [Damarackas,J.,
Paulauskas, V. (2021). J. Math. Anal. Appl. 497].

5. Functional convergence instead of FDD: open. However, if Hi A Ho =0
does not seem feasible.

6. Applications to statistical estimation of Hy, H> from dense rectangular
grid: open and challenging problem.
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