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Vladas made seminal contributions to the area of random
media. The topic of this lecture would have been very dear
to his heart.

Vladas was an inspiring force in the mathematical physics
community and is sorely missed by his colleagues. A tribute
to his legacy is laid down in a beautiful memorial volume:
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I BACKGROUND

The Parabolic Anderson Model is the system of PDEs

∂tu(x, t) = (∆Xu)(x, t) + ξ(x)u(x, t), x ∈ X , t > 0,

with X an ambient space, ∆X a Laplace operator acting

on functions on X , and ξ a random potential on X .

Most of the literature considers the setting where X = Zd

or X = Rd, and ξ is drawn from different probability laws.

Foundational papers: Gärtner, Molchanov 1990, 1998.

Many follow-up papers.

Monograph: König 2016.



More recently, other choices for X have been considered

as well:

• deterministic graphs:

complete graph, hypercube.

• random graphs:

Galton-Watson tree, configuration model.

Much remains open for the latter category.

Literature:

Fleischmann, Molchanov 1990 + Avena, Gün, Hesse 2016.

dH, König, dos Santos 2020 + dH, Wang 2021 + work in progress.



For large t the solution of the PAM concentrates on well-

separated regions in X , called intermittent islands. Much

of the literature focusses on a detailed description of the

size, shape and location of these islands, and on the profiles

of the potential and the solution on them.

A special role is played by the case where ξ is i.i.d. with

a double-exponential marginal distribution

P(ξ(0) > u) = e−eu/%, u ∈ R,

where % ∈ (0,∞) is a parameter. This distribution turns

out to be critical, in the sense that the intermittent

islands neither grow nor shrink with time, and therefore

represents a class of its own.



In the present lecture we focus on the case where X is a

Galton-Watson tree, and consider two settings:

• Quenched:

almost surely with respect to the random tree and the

random potential.

• Half-annealed:

almost surely with respect to the random tree, but

averaged over the random potential.

It will turn out that the behaviour of the PAM is different

in these two settings.



I THE PAM ON A GRAPH

Let G = (V,E) be a simple connected undirected graph,

either finite or countably infinite, with a designated vertex

O called the root. Let ∆G be the Laplacian on G, i.e.,

(∆Gf)(x) =
∑
y∈V :
{x,y}∈E

[f(y)− f(x)], x ∈ V, f : V → R,

which acts along the edges of G. Let ξ = (ξ(x))x∈V be

a random potential attached to the vertices of G, taking

values in R.



Our object of interest is the PAM with a localised initial

condition:

∂tu(x, t) = (∆Gu)(x, t) + ξ(x)u(x, t), x ∈ V, t > 0,

u(x,0) = δO(x), x ∈ V.

u(x, t) can be interpreted as the amount of heat

at time t at vertex x, when initially there is unit

heat at O and ξ(x) acts as a source or sink.

The total heat at time t is

U(t) =
∑
x∈V

u(x, t).



I FEYNMAN-KAC REPRESENTATION

The quenched total heat at time t can be represented by

the Feynman-Kac formula

U(t) = EO
(

e
∫ t

0 ξ(Xs)ds
)
,

where X = (Xt)t≥0 is the continuous-time random walk on

the vertices V with jump rate 1 along the edges E, and PO
denotes the law of X given X0 = O.

Note that three types of randomness are in play:

random tree, random potential, random walk.



Let 〈·〉 denote expectation with respect to ξ. The annealed
total heat at time t is

〈U(t)〉 =
〈
EO

(
e
∫ t

0 ξ(Xs)ds
)〉

.

If we assume that the random potential ξ = (ξ(x))x∈V is
i.i.d. with marginal cumulant generating function

H(u) = log
〈
euξ(O)

〉
, u ≥ 0,

then

〈U(t)〉 = EO

exp

[ ∑
x∈V

H(`Xt (x))

] ,
where

`Xt (x) :=
∫ t

0
1{Xs=x} ds, x ∈ V, t ≥ 0,

is the local time of X at vertex x up to time t.



I KEY VARIATIONAL FORMULA

Denote by P(V ) the set of probability measures on V . For

p ∈ P(V ), define

IE(p) =
∑

{x,y}∈E

(√
p(x)−

√
p(y)

)2
,

JV (p) = −
∑
x∈V

p(x) log p(x),

and set

χG(%) = inf
p∈P(V )

[IE(p) + %JV (p)], % ∈ (0,∞).



The first term is the quadratic form associated with the

Laplacian, which is the large deviation rate function for the

empirical distribution

LXt =
1

t

∫ t
0
δXs ds =

1

t

∑
x∈V

`Xt (x)δx.

Donsker,Varadhan 1975

The second term captures the asymptotics of the cumulant

generating function H.



I THE PAM ON A GALTON-WATSON TREE

Denote by GW = (V,E) the Galton-Watson tree with root
O and offspring distribution D. Write P to denote its law.
Suppose that

dmin = min supp(D) ≥ 2, mean(D) ∈ (2,∞).

Under this assumption, GW is P-a.s. an infinite tree, and

lim
R→∞

log |BR(O)|
R

= log mean(D) = ϑ ∈ (0,∞) P− a.s.,

where BR(O) ⊂ V is the ball of radius R around O in the
graph distance.



Suppose that

lim
u→∞uH

′′(u) = % ∈ (0,∞),

which is in fact a neighbourhood of the double-exponential
distribution. Write χ(%) to denote the variational formula
with G = GW.

THEOREM quenched growth rate

Suppose that mean(eeeaD
) <∞ for some a > 0. Then

1

t
logU(t) = % log

(
%tϑ

log log t

)
− %− χ(%) + o(1) P×P-a.s.

THEOREM half-annealed growth rate

Suppose that mean(eaD) <∞ for some a > ϑ. Then

1

t
log〈U(t)〉 = % log(%t)− %− χ(%) + o(1) P-a.s.



I DISCUSSION

1. It can be shown that

χ(%) = inf
T
χT (%),

where the infimum runs over all infinite trees with degrees

in supp(D). In other words, the variational formula on GW
fully concentrates on an optimal tree contained in GW.

It can be shown that if % ≥ 1/ log(dmin+1), then the unique

optimal tree is Tdmin
, the regular tree with degree dmin + 1.

Possibly this is the optimal tree for all % > 0.



2. The quenched asymptotics requires more stringent
conditions on the tail of the offspring distribution D than
the half-annealed asymptotics.

The extra term in the quenched asymptotics comes from
the cost for X to

• travel in a time of order o(t) to an optimal tree with an
optimal profile of the potential, located at a distance
of order %t/ log log t from O,

• subsequently spend most of its time on that tree.

In this cost, the parameter ϑ appears, which is absent in
the half-annealed asymptotics.



3. The proof of the two theorems is obtained by deriving
asymptotically matching upper and lower bounds. These
are obtained by truncating GW after generation R, deriving
the asymptotics on GWR for finite R, and letting R → ∞
afterwards.

• For the lower bound we can use the standard truncation
technique, which is based on killing X when it exits GWR
and applying the large deviation principle for the empirical
distribution of Markov processes.

• For the upper bound the standard truncation technique
is based on periodisation of X on GWR, which fails because
GW is a random expander graph. Instead, we use projection
of X on GWR and apply the large deviation principle for
the empirical distribution of Markov renewal processes.

Mariani, Zambotti 2016.



I wish Vladas was here to smile and to ask questions!


