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What is metastability?

Metastability is a phenomenon where a system, under the influence of a
stochastic dynamics, moves between different regions of its state space on
different time scales.

Fast time scale:
quasi-equilibrium within single
subregion

Slow time scale:
transitions between different
subregions

Monographs:

Olivieri and Vares 2005

Bovier and den Hollander 2015
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Metastability in Statistical Physics

Metastable behaviour is the dynamical manifestation of a first-order phase
transition. We focus on condensation.
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When vapour is cooled rapidly below the crit-
ical temperature, we see that the system will
persist for long time in a metastable vapour
state (supersaturated gas) before transiting
(rapidly) to the new stable liquid state under
some random fluctuations.

Why?
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Metastability in Statistical Physics

Metastable behaviour is the dynamical manifestation of a first-order phase
transition. We focus on condensation.
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The system has to form a critical droplet of
liquid to trigger the crossover, which then
will grow and invade the whole space.
But many unsuccessful attempts because
forming small droplets results in an in-
creasing of free energy...
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Models in the continuum

Several results for metastable behaviour of stochastic models on the lattice

Continuum systems modelling fluids are very difficult to study. Rigorous
proof of the presence of phase transitions has been achieved only for few
models:

Widom-Rowlinson model (Ruelle, ’71)
Kac models with 2-body attraction and 4-body repulsion (Lebowitz,
Mazel and Presutti, ’99)

Metastability for continuum systems:

Crystalisation of 2-dimensional particles interacting via a soft-disk
potential (Jansen and den Hollander, in preparation)
We will focus on the Widom-Rowlinson model, adapting what has been
done in the discrete.
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The static Widom-Rowlinson model: Hamiltonian

Let T ⊂ R2 be a finite torus. The set of finite particle configurations in T is
Γ = {γ ⊂ T : N(γ) ∈ N0}, N(γ) : cardinality of γ

Halo of a configuration

h(γ) =
⋃
x∈γ

B1(x)

V (γ) := |h(γ)|

Hamiltonian

H(γ) = V (γ)−N(γ)π

⇒ −(N(γ)− 1)π ≤ H(γ) ≤ 0
(attractive)
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The static Widom-Rowlinson model: Gibbs measure

The grand-canonical Gibbs measure is

µβ(dγ) =
zN(γ)

Ξ
e−βH(γ)Q(dγ),

Q: Poisson point process with intensity 1

z ∈ (0,∞): activity

β ∈ (0,∞): inverse temperature

Ξ: normalising partition function
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Phase transition

β

z

βc

gas
liquid

zc(β)

Coexistence line:
zc(β) = βe−πβ

β < βc single phase

β > βc two phases: gas/liquid

Phase transition at the thermodynamic limit, i.e. T→ Rd.
(D. Ruelle, ’71; J.T. Chayes, L. Chayes and R. Kotecký, ’95)
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The dynamic WR model

Heat bath dynamics

Particle configuration is a continuous-time Markov process (γt)t≥0 with state
space Γ and with generator

(Lf)(γ) =

∫
T

dx b(x, γ) [f(γ ∪ x)− f(γ)] +
∑
x∈γ

d(x, γ) [f(γ\x)− f(γ)]

where particles are added at rate b and removed at rate d

b(x, γ) = z e−β[H(γ∪x)−H(γ)], x /∈ γ, d(x, γ) = 1, x ∈ γ.

The grand-canonical Gibbs measure is reversible, i.e.

b(x, γ) e−βH(γ) = d(x, γ ∪ x) e−βH(γ∪x), x /∈ γ, γ ∈ Γ.
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Key question of metastability

Start with empty box � = ∅ (preparation in vapour state),

Choose z = κ zc(β) = κβ e−βπ, κ ∈ (1,∞), (reservoir is supersaturated
vapour),

Wait for the first time the system reaches the full box
� = {γ ∈ Γ : h(γ) = T} (condensation to liquid state).

Question: In the regime
β →∞

T fixed

find precise asymptotics of the mean hitting time

E�(τ�), where τ� = inf{t > 0: γt = �}

and describe the shape of the critical droplet.
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Main objective: find the mean hitting time

R1 Rc(κ)

Φκ(R)

Φκ(R) = πR2 − κπ(R− 1)2

κ1

Rc(κ)

1

Rc(κ) = κ
κ−1

Target Theorem 1 [Arrhenius formula]
For every κ ∈ (1,∞),

E�(τ�) = exp
[
β Φ(κ)− β1/3Ψ(κ) + o(β1/3)

]
, β →∞

where
Φ(κ) := Φκ(Rc(κ)) =

πκ

κ− 1

Ψ(κ) = s
κ2/3

κ− 1

where s ∈ R is a constant that comes from an effective microscopic model with
hard-core constraints.
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The gate for the crossover: the critical droplet

Target Theorem 2 [Critical droplet] For every κ ∈ (1,∞) and δ > 0,

lim
β→∞

P�
(
τCδ(κ) < τ� | τ� > τ�

)
= 1, where

Cδ(κ) =
{
γ ∈ Γ: ∃x ∈ T, BRc(κ)−δ(x) ⊂ h(γ) ⊂ BRc(κ)+δ(x)

}

The critical droplet in the
metastable regime is close to a
disc of radius Rc(κ) and has a
random boundary.
� β disks in the interior,
� β1/3 disks on the boundary.

Φ(κ) scales with β and is the volume free energy of the critical droplet

Ψ(κ) scales with β1/3 and is the surface free energy of the critical droplet
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Heuristics for volume free energy

In the metastable regime z = κzc(β), zc(β) = βe−πβ , the birth rate is

b(x, γ) = κβ e−β[V (γ∪x)−V (γ)]

Particles inside a cluster are created at a rate κβ. ⇒ Inside a droplet
Poisson point process with intensity κβ � 1

Particles sticking out are created at a rate exp small in “sticking out” area
(yellow area), which is function of the local curvature. Particles that are
sticking out are ∼ β1/3 and stick out of ∼ β−2/3
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Our method: potential theoretic approach

Link between mean metastable time and capacity:

E�(τ�) = [1+o(1)]
µβ(�)

cap(�,�)
(Bovier, Eckhoff, Gayrard and Klein, 2001; Bovier and den Hollander, 2015)

where the capacity of �,� ⊂ Γ is defined as

cap(�,�) = µβ(�)P�(τ� < τ�).

For the choice z = κ zc(β) = κβ e−βπ the grand-canonical Gibbs measure reads

µβ(dγ) =
1

Ξβ
(κβ)N(γ) e−βV (γ) Q(dγ)
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Our method: potential theoretic approach

The capacity is given by two dual variational principles: the Dirichlet principle and
the Thomson principle.

cap(�,�) = inf
f : Γ→[0,1]

f|�=1, f|�=0

E(f, f) = sup
f : Γ→[0,1]

Lf≤0 on Γ\(�,�)

E(1�, f)2

E(f, f)
,

where the Dirichlet form associated with the dynamics reads

E(f, f) =
1

Ξβ

∫
Γ

Q(dγ)

∫
Λ

dx (κβ)N(γ∪x) e−βV (γ∪x)
[
f(γ ∪ x)− f(γ)

]2
.

It turns out

cap(�,�) = O(β)µβ

(
|V (γ)− πR2

c | ≤ Cβ−2/3
)

+ s.o.t.

The main contribution to the capacity comes from the configurations where the
volume of the halo is close to the volume of the critical disk.
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Admissible halo shapes

Let S be a halo shape
Let S− = {x ∈ S : B1(x) ⊂ S} be the 1-interior of S

Let SΛ be the set of “admissible” halo shapes
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Results I: LDP

Let S− = {x ∈ S : B1(x) ⊂ S} be the 1-interior of S and SΛ be the set of
“admissible” halo shapes.

Theorem (Large deviation principle for the halo volume)

The family of probability measures (µβ(V (γ) ∈ · ))β≥1 satisfies the LDP on
[0,∞) with speed β and with good rate function I∗ given by

I∗(A) = inf{I(S) : |S| = A}, A ∈ [0,∞),

where
I(S) = |S| − κ|S−| − (1− κ)|T|

Informally,
µβ
(
V (γ) ≈ A

)
≈ exp

(
−βI∗(A)

)
.

[ideas from T. Schreiber, 2003; contraction principle]
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Results II: isoperimetric inequality

Theorem (Minimisers of rate function for halo volume)

(1) For every R ∈ (1, Lπ + 1
2 ),

min
{
|S| − κ|S−| : S ∈ S, |S| = πR2

}
= πR2 − κπ(R− 1)2

and the minimisers are the discs of radius R.

(2) The minimisers are stable in the following sense: There exists an ε0 > 0
such that if 0 < ε < ε0 and S ∈ S satisfies(

|S| − κ|S−|
)
−
(
πR2 − π(R− 1)2

)
≤ πκε with |S| = πR2,

then S− is connected and simply connected, and

dH(∂S, ∂BR) ≤
√

5Rε,

where dH denotes the Hausdorff distance.

[Bonnesen’s strong isoperimetric inequality]
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Recap of what we found so far

For every R, we have

I∗(πR2) = I(BR) = Φκ(R)− (1− κ)|T|.

To reach our target, we need to zoom in on a neighborhood of the critical
droplet, i.e. R = Rc. The large deviation principle implies

µβ

(
|V (γ)− πR2

c | ≤ ε
)

= exp
(
−β min

A∈[0,∞):

|A−πR2
c|≤ε

I∗(A) + o(β)
)
, β →∞,

for ε > 0 fixed. We would like to take ε = ε(β) ↓ 0, for which we need a refined
analysis. We would like to capture the term of order β1/3.

Remember: Φκ(R) = πR2 − κπ(R− 1)2
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Moderate deviation and surface term

In particular, we want to compute the asymptotics of

1

β1/3
log
{

eβI(BRc )µβ

(
|V (γ)− πR2

c | ≤ Cβ−2/3
)}
, β →∞.

This is done by controlling the mesoscopic fluctuations of the surface of the
critical droplet.
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Results III: mesoscopic fluctuations of the critical droplet

Theorem (Moderate deviation: rough asymptotics)

For C large enough,

lim sup
β→∞

1

β1/3
log
{

eβI(BRc )µβ

(
|V (γ)− πR2

c | ≤ Cβ−2/3
)}
≤ 2πGκτ∗,

lim inf
β→∞

1

β1/3
log
{

eβI(BRc )µβ

(
|V (γ)− πR2

c | ≤ Cβ−2/3
)}
≥ 2πGκ(τ∗ − c),

with c ∈ (0,∞) some constant, τ∗ ∈ R solution of the equation∫ ∞
0

√
2πu exp

(
−τ∗u−

u3

24

)
du = 1,

and

Gκ =
(2κ)2/3

κ− 1
.

In order to have sharp asymptotics, we need to do better!
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Results III: mesoscopic fluctuations of the critical droplet

Theorem (Moderate deviation: sharp asymptotics)

Under “certain assumptions”, for C large enough and β →∞,

µβ

(
|V (γ)− πR2

c | ≤ Cβ−2/3
)

= e−βI(BRc )+β1/3Ψ(κ)+o(β1/3),

where, for some τ∗∗ > 0 that does not depend on κ,

I(BRc) = Φ(κ)− (1− κ)|T|, Ψ(κ) = 2πGκ(τ∗ − τ∗∗).

The LD and MD theorems (sharp and rough asymptotics) are given in [1];

The “certain assumptions” are related to the microscopic fluctuations of the
surface of the critical droplet and come from an effective microscopic
interface model. Their proof is given in [2].

[1] F. den Hollander, S. Jansen, R. Kotecký, E. Pulvirenti, ”The Widom-Rowlinson model: Mesoscopic fluctuations for the
critical droplet”, preprint arXiv: 1907.00453 [math-ph]
[2] – –, “The Widom-Rowlinson model: Microscopic fluctuations for the critical droplet and effective interface model”, in
preparation
[3] – –, “The Widom-Rowlinson model: Metastability”, in preparation
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Proof: main ingredients

Few words on the proofs:
1 For the MD bounds:

parametrize the halo by its boundary points and reduce everything in
terms of a surface integral.
find an expansion for the surface term in terms of polar coordinates.
reformulate in terms of auxiliary random variables: angular and radial
coordinates described in terms of stochastic processes. This will
capture the mesoscopic fluctuations of the boundary.

2 For the sharp MD result: rescale the random variables to zoom in and
study an effective microscopic interface model. Prove that the
conditions related to this new model hold true.
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Mesoscopic fluctuations and surface term

Some details on the proof:
(1) Parametrize the halo by its boundary points:

Given S, z1, . . . , zN are the boundary points of S,
where N is random.∫

Γ

Q(dγ) −→
∫
TN

dz1 · · · dzN1{z are boundary points}

Key step: Reduction to a surface integral

µβ

(
h(γ) ∈ A

)
=
[
1−O(e−cβ)

]
e−βI

∗(πR2
c)
∑
n∈N0

(κβ)n

n!

∫ ∗
Tn

dz e−β∆(z) 1{S(z)∈A},

with ∆(z) = |S(z)| − κ|S−(z)| − I∗(πR2
c), where

∫ ∗
runs over all the admissible

collections of boundary points.
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Mesoscopic fluctuations and surface term

(2) Find an expansion for the surface term:∑
n∈N0

(κβ)n

n!

∫ ∗
Tn

dz e−β∆(z) 1A(z),

∆(z) = |S(z)| − κ|S−(z)| − I∗(πR2
c) and A the collection of all the constraints.

The way to go: Use polar coordinates: zi =
(
ri cos ti, ri sin ti

)
, ri = ρi +Rc − 1,

Expand ∆(z) and A in terms of ρi and ti and write (∗) in terms of an
expectation of functionals of random variables.

Auxiliary Point Processes:

{ti}ni=1 → T Poisson point process on [0, 2π) w. intensity λ(β) ∼ β1/3

n→ N = |T | Poisson random variable with parameter 2πλ(β)

{ρi}ni=1 →
{
BTi√
β

}
, where (Bt)t∈[0,2π] mean centered Brownian Bridge

Analysis via Large Deviations, ...
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Microscopic fluctuations

The microscopic interface model

ZL =
∑
n∈N0

∫
[0,L]n

dt1 · · · dtn 1{0<t1<···<tn<L}
∫
Rn+1

dϕ1 · · · dϕn+1

× 1E
(
{tj , ϕj}n+1

j=0

)
exp
(
−
n+1∑
i=1

(ti − ti−1)3 −
n+1∑
i=1

(ϕi − ϕi−1)2

2(ti − ti−1)

)
,

with t0 = 0, tn+1 = L and ϕ0 = 0, and where E is the set of configurations such
that every (t, ϕ) ∈ X is extremal in X .

The model is a modification of the one-dimensional Gaussian free field, where the
lattice Z is replaced by a random point configuration on the interval [0, L], and
the set E constitutes a hard-core multi-body constraint.

Key result: The location of each boundary point is constrained by the location of
the two neighbouring boundary points only.
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Thank you for your attention!
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