
Approximations of the covariance operators of
solutions of fractional elliptic SPDEs driven by
Gaussian white noise

Alexandre Simas
KAUST, Saudi Arabia

Joint work with David Bolin
and Zhen Xiong

Probability Webinar - IM-UFRJ



Lantent Gaussian models and random fields

I In modern applied statistics, gaussian processes are ubiquitous.

I Gaussian processes indexed by multidimensional parameters are
widely used in geostatistics.

I A common geostatistical model:

Yi = x(si) + εi, i = 1, . . . , N, εi ∼ N(0, σ2),

x(s) ∼ GP (m(s), c(s, s′)) ,

where N is the number of observations and GP (m, c) stands for a
Gaussian process with mean function m and covariance function c.

I Common objectives: estimate and understand the latent process
given Y:
I estimate model parameters θ, e.g., by θ∗ = arg maxθ π(θ|Y),
I use π(x(s)|Y,θ∗) to answer the questions that are of interest.
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The Matérn covariance function

I Popular covariance function for random fields on Rd:

c(s, s′) =
σ2

Γ(ν)2ν−1
(κ‖s− s′‖)νKν(κ‖s− s′‖).

I Γ(·) is the Gamma function,
I Kν(·) is a modified Bessel function of the second kind,
I κ > 0 controls the correlation range and σ2 is the variance,
I ν > 0 determines the smoothness of the field.

I Unlike other popular covariance functions, the Matérn class has a
parameter that controls the smoothness of the process.

I Main drawback of this approach: The computational time needed
in order to perform statistical inference usually scales as O(N3).
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The SPDE approach

I Whittle (1963): A Gaussian Matérn field u(s) solves the SPDE

(κ2 −∆)βu =W in D, (SP)

for Gaussian white noise W on D = Rd, and 4β = 2ν + d.

I Inspired by this relation, Lindgren el. al. (2011) constructed:
I computationally efficient GMRF approximations of u(s),
I for bounded domains D ( Rd and 2β ∈ N,

based on finite element discretizations of (SP).
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Idea of the SPDE approach

I We will now provide a brief description of the finite element method
they used.

I To make the description simpler we will consider the nonfractional
SPDE given by

(κ2 −∆)u(s) =W(s),

on some bounded domain D in Rd. The Laplacian operator is
augmented with boundary conditions. Usually one considers Dirichle
or Neumann.
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Idea of the SPDE approach

The equation is interpreted in the following weak sense:
for every function ψ(s) from some suitable space of test functions, the
following identity holds

〈ψ, (κ2 −∆)u〉D
d
= 〈ψ,W〉D,

where d
= means equality in distribution and 〈·, ·〉D is the standard inner

product in L2(D), 〈f, g〉D =
∫
D f(s)g(s)ds.



Idea of the SPDE approach

To do a finite element (FE) discretization, we will consider a finite
dimensional space of test functions Vn. We will use a Galerkin method
with Vn = span{ϕ1, . . . , ϕn}, where ϕi(s), i = 1, . . . , n are piecewise
linear basis functions obtained from a triangulation of D.

Then, we write approximate the solution u by un, where un is written in
terms of the basis functions as

un(s) =

n∑
i=1

wiϕi(s).
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Idea of the SPDE approach

We thus obtain the system of linear equations〈
ϕj , (κ

2 −∆)

(
n∑
i=1

wiϕi

)〉
D

d
= 〈ϕj ,W〉D, for j = 1, . . . , n.

We begin by handling the right-hand side of the above expression. At
first, notice that

〈ϕj ,W〉D =

∫
D
ϕj(s)dW(s) ∼ N

(
0,

∫
D
ϕ2
j (s)ds

)
,

since ϕj is deterministic.
Also, by using, again, the fact that ϕj is deterministic, we have that

C
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D
ϕi(s)dW(s),
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Idea of the SPDE approach

This shows that

(〈ϕ1,W〉D, . . . , 〈ϕn,W〉D) ∼ N(0,C),

where C is an n× n matrix with (i, j)th entry given by

Ci,j =

∫
D
ϕi(s)ϕj(s)ds.

The matrix C is known as the mass matrix in FE theory.



Idea of the SPDE approach

Now let us handle the left hand side of the weak formulation of the
SPDE. By using integration by parts we obtain for j = 1, . . . , n,〈
ϕj , (κ

2 −∆) (
∑n
i=1 wiϕi)

〉
D =

∑n
i=1〈ϕj , (κ2 −∆)wiϕi〉D

=
∑n
i=1(κ2〈ϕj , ϕi〉D + 〈∇ϕj ,∇ϕi〉D)wi,

where the boundary terms vanish due to boundary conditions (for both
Dirichlet and Neumann).

We can then rewrite the last term in matrix form as

(κ2C + G)w,

where w = (w1, . . . , wn) and G is an n× n matrix with (i, j)th entry
given by

Gi,j =

∫
D
∇ϕi(s)∇ϕj(s)ds.

The matrix G is known in FEM theory as stiffness matrix.
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Idea of the SPDE approach

Putting everything together, we have that

(κ2C + G)w ∼ N(0,C).

Therefore, w is a centered Gaussian variable with precision matrix given
by

Q = (κ2C + G)>C−1(κ2C + G).
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Computational advantages of the SPDE approach

I For spatial problems, the computational cost usually scales as
O(n3/2), where n is the number of basis functions. This should be
compared to the O(N3) of the Gaussian random field approach.

I This implies in accurate approximations which drastically reduces the
computational cost for sampling and inference.



Limitations of the SPDE approach

I β controls the smoothness of u(s), which is important for spatial
prediction (Stein, 1999). Stein recommended “use the Matérn
covariance” since it allows for estimating the smoothness from data.

I The SPDE approach has the restriction that 2β ∈ N.
I Therefore, β is typically kept fixed when the SPDE approach is used.
I 2β = 1.5 /∈ N corresponds to exponential covariance on R2.
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The rational SPDE approach

I Bolin and Kirchner (2020) 2 introduced the rational SPDE approach,
which allows one to consider arbitrary smoothness.

I In particular, by using their approach it is possible to estimate the
smoothness from the data.

I They also considered more general elliptic operators, thus allowing
one to use the rational SPDE approach on several extensions of the
SPDE approach such as
I The non-stationary Matérn models by Lindgren et al. (2011),
I The models with locally varying anisotropy by Fuglstad et al. (2015),
I The barrier models by Bakka et al. (2019).

2Bolin, D. and Kirchner, K. (2020)The rational SPDE approach for Gaussian
random fields with general smoothness, Journal of Computational and Graphical
Statistics
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Assumptions of the model
Let u be a Gaussian random field defined through

Lβu =W in D, P-a.s., (MP)

where β > 0 and
I D ⊂ Rd is a bounded and convex polytope,
I W is Gaussian white noise on L2(D),
I L is a linear second-order differential operator in divergence form:

Lu = −∇ · (H∇u) + κ2u,

with Neumann (or Dirichlet) boundary conditions.

Assumptions on the functions H and κ
(I) H : D → Rd×d is symmetric, Lipschitz continuous and

uniformly positive definite.
(II) κ ∈ L∞(D) (with ess infs∈D κ(s) ≥ κ0 > 0 in the case of

Neumann boundary condition).
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Spectral properties of L

I Under these hypothesis, the operator L has a compact resolvent.

I Hence, there exists an orthonormal basis {ej}j∈N formed by
eigenvectors of L whose eigenvalues are nonnegative and can be
arranged in a non-decreasing order.

I By Weyl’s law, we also have that

λj hκ,H,D j
2/d as n→∞.
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Existence and uniqueness

Proposition
Under the above assumptions and if β > d/4, (MP) has a solution which
is unique P-a.s. in L2(D).
Note: β > d/4⇔ ν > 0 in the Matérn case.

Idea: If W is a Gaussian white noise in L2(D) and T : L2(D)→ L2(D)
is Hilbert-Schmidt, then TW is a well-defined element in L2(P).
Since L induces a continuous and coercive bilinear form, it is invertible.
Now, from Weyl’s law we have that L−β is Hilbert-Schmidt if, and only
if, β > d/4.
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Regularity of trajectories

Proposition
Under the above assumptions, also if d ∈ {1, 2, 3} and 2β ≥ γ + d/2,
where γ ∈ (0, 1), then for every θ ∈ (0, γ) the trajectories of the solution
of (MP) are Hölder continuous with exponent θ.

Idea: Sobolev embedding + Kolmogorov-Centsov theorem.
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Finite element approximation

We will consider the following assumptions related to the finite element
method:

I Vh ⊂ V is a finite element space with continuous piecewise linear
basis functions {ϕj}nhj=1, with nh ∈ N, defined with respect to a
triangulation Th of the closure of the domain D indexed by the mesh
width h := maxT∈Th hT , where hT := diam(T ) is the diameter of
the element T ∈ Th.

I The family (Th)h∈(0,1) of triangulations inducing the
finite-dimensional subspaces (Vh)h∈(0,1) of V is supposed to be
quasi-uniform, that is, there exist constants K1,K2 > 0 such that
ρT ≥ K1hT and hT ≥ K2h for all T ∈ Th and h ∈ (0, 1). Here
ρT > 0 is the radius of the largest ball inscribed in T ∈ Th.
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The discrete fractional problem

Consider for β > d/4 the discretized SPDE

Lβhuh =Wh in D ⊂ Rd, (DP)

where Wh is Gaussian white noise on Vh and Lh : Vh → Vh satisfies

〈Lhψ, φ〉D = 〈H∇ψ,∇φ〉D + 〈κ2ψ, φ〉D, ∀ψ, φ ∈ Vh.



Idea of Bolin and Kirchner’s rational SPDE approach

I Construct an approximation uRh,m of the nested SPDE form

P`,hu
R
h,m = Pr,hWh in D, (RP)

with Pj,h := pj(Lh) defined in terms of a polynomial pj , j ∈ {`, r}.
I P`,h and Pr,h are commutative by construction.
⇒ Equation (RP) can be rewritten as

uRh,m = Pr,hx in D,
P`,hx=Wh in D,

I Here x is a GMRF, so the model is expressed as a latent GMRF.
⇒ we can use all computational methods for GMRFs in statistics!



Construction of the polynomials

I p` and pr can be obtained from a rational approximation of
f(x) = xβ on an interval Jh that covers the spectrum of L−1h .

I To get smoothness mβ = max{1, bβc}, let f(x) = xmβ f̂(x) and
compute the rational approximation r̂ of f̂(x) = xβ−mβ .

I Compute r̂ as the L∞-best rational approximation of f̂(x) on Jh,
with polynomial orders m & m+ 1 for numerator & denominator.



Convergence rates of the rational approximation

Theorem (Strong L2-L2 and weak convergence)
Choose m ∈ N such that |β −mβ |m ∝ (max{β, 1} log(h))2. Under the
above assumptions, there exists constants Cs, Cw > 0, independent of h
and m, such that for sufficiently small h,(

E[‖u− uRh,m‖2L2(D)]
)1/2
≤ Cshmin{2β−d/2, 2} (strong error),

|E[ϕ(u)]− E[ϕ(uRh,m)]|≤ Cwhmin{4β−d, 2} (weak error),

for every ϕ : L2(D)→ R sufficiently smooth (in Fréchet sense).



A covariance-based rational approximation

I For statistical applications, we are not interested in pathwise
approximations, we only need an approximation of the distribution.

I The Generalized Whittle–Matérn field is a centered Gaussian field
with covariance operator L−2β .

I We can perform the rational approximation of the covariance
operator:

L−2βh = (L−1h )2β ≈ L−m̃βh p`(Lh)pr(Lh)−1

where the polynomials p` and pr are obtained from a rational
approximation of f(x) = x2β−m̃β and m̃β = bβc.
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Convergence rates for the covariance-based approximation

Theorem
Let rβ,m(Lh) = L

−m̃β
h p`(Lh)pr(Lh)−1, where m indicates the degree of

the polynomial in the numerator of the rational approximation. Under all
the previous assumptions, we have that for every β > d/4 and every
ε > 0 there exists m ∈ N such that

‖L−2β − rβ,m(Lh)‖L2(L2(D)) ≤ hmin{4β−d/2−ε,2}.

Idea: The idea is based on Cox and Kirchner’s (2020) paper. There they
obtained some bounds on operator’s norm, and we use several times the
inequality

‖AB‖HS ≤ ‖A‖‖B‖HS
and

‖AB‖HS ≤ ‖A‖HS‖B‖.

Where we show that the Hilbert-Schmidt norm appearing are bounded
and the rate comes from the bounds in the operator’s norm.
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Consequences

I For an m-order approximation for the operator-based method, we
can here choose the order as 2(m+mβ)− m̃β to have the same
computational cost.

I This also enables us to represent the rational approximation
uCh,m ∼ N(0, L

−m̃β
h p`(Lh)pr(Lh)−1) as

uCh,m
d
=

m∑
k=1

ur,k, ur,k ∼ N(0, akL
−m̃β
h (Lh + bkI)−1)

where the ur,k are independent and ak, bk > 0.



Finite element representation

In terms of the finite element representation, the covariance matrix is
given by

Σû = (L−1C)m̃β
m∑
k=1

ak(L + bkC)−1 + K

where:

K =

{
kC m̃β = 0

kL−1(CL−1)m̃β−1 m̃β >= 1

and L is the matrix of the operator Lh in terms of the basis functions of
Vh.



Improving computational performance

I In order to perform statistical inference, one needs to invert the
mass matrix C, which is not diagonal.

I To circumvent this problem one replaces C by a diagonal matrix C̃
with ith diagonal entry given by the sum of the elements in the ith
row.

I This was called the "Markov approximation" in the paper by
Lindgren et al. (2011)

I In the numerical analysis literature this is known as the lumped mass
method.
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The lumped mass method

I Our goal now is to obtain rates of convergence of the lumped mass
covariance matrix to the covariance operator L−2β .

I We will assume d = 2.
I It is known in numerical analysis that in our finite element setup the

replacement of the mass matrix C by the lumped mass matrix C̃ is
equivalent to replace the L2 inner product by a quadrature
approximation.

I We will then use some tools from numerical analysis to obtain our
rate of convergence.
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The lumped mass method

I Fix some h ∈ (0, 1) and an element τ ∈ Th. Let V1,τ , . . . , V3,τ be
the vertices of the triangle τ and consider the quadrature formula

Qτ,h(f) =
area(τ)

3

3∑
j=1

f(Vj,τ ).

I Obs: The quadrature scheme given above is exact for polynomials of
degree less or equal to 1.

I Consider the following quadrature scheme to approximate the
L2-inner-product:

〈f, g〉h =
∑
τ∈Th

Qτ,h(fg).



The lumped mass method

Take {ϕi}nhi=1 to be the set of standard basis of Vh consisting of the “hat”
basis functions, which are continuous and piecewise linear, defined with
respect to the triangulation Th in such a way that if {Vi}nhi=1 are the
vertices of the triangulation Th, then ϕi(Vj) = δij . Then, we have that
for every j = 1, . . . , nh

‖ϕj‖2h = 〈ϕj , ϕj〉h =

nh∑
k=1

〈ϕj , ϕk〉L2(D)

and that
〈ϕi, ϕj〉h = 0

if i 6= j as ϕi(x)ϕj(x) vanishes at all vertices of Th (see Thomee, chapter
15 and also to Jin, Lazarov and Zhou (2013)) for further details.



I Define the operator L̃h : Ṽh → Ṽh as

〈L̃hφh, ψh〉h = ah(φh, ψh) = 〈H∇φh,∇ψh〉h + 〈κ2φh, ψh〉h.

I By defining the operator in this way, for constant κ one will replace
every mass matrix C by the lumped mass matrix C̃, even the mass
matrices inside the discretization of the operator.

I One can also define the operator L̃h : Ṽh → Ṽh as

〈L̃hφh, ψh〉h = aL(φh, ψh) = 〈H∇φh,∇ψh〉D + 〈κ2φh, ψh〉D.

I In this case we are only replacing the mass matrices "outside" of the
operator.
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Rate of convergence of the lumped mass operator

We have the following theorem:

Theorem
Under all the previous assumptions and additionally, if β > 1/2 and H, κ
belong to W 2,∞(D), then,

‖(L−2βh − L̃−2βh )Πh‖L(H1(D)) ≤ Ch2.

Obs: If we consider the second form of discretization, the above rate
hold under the usual assumptions on H and κ.



Rate of convergence of the lumped mass operator in the
Hilbert-Schmidt norm

Theorem
Under all the previous assumptions and additionally, if β > 1 and H, κ
belong to W 2,∞(D), then,

‖(L−2βh − L̃−2βh )Πh‖L2(H1(D)) ≤ Ch2.

The idea of the proof is to use sharp rates of the quadrature
approximation of the L2-inner product with the strategy used for the
covariance-based rational approximation.



Maximum likelihood estimation

We now move our attention towards maximum likelihood estimation of
the parameters of the model.
To this end, consider the SPDE:

τ(κ2I −∆)βu =W,

where τ, κ and β are assumed to be positive constants.



Identifiability

We have the following theorem by Bolin and Kirchner (2020):

Theorem
Let D ⊂ Rd be bounded, open and connected. For i ∈ {1, 2}, let
βi > d/4, κi, τi > 0, and consider the Gaussian measure
µi := N(mi,Q−1i ) on L2(D) with mean mi = 0 and precision operator
Qi = τ2i L

2βi
i , where for i ∈ {1, 2}, the operators Li = κ2i I −∆ are

augmented with the same homogeneous Neumann or Dirichlet boundary
conditions. Then, µ1 and µ2 are equivalent if, and only if, β1 = β2 and
τ1 = τ2.



Consistency of the MLE of τ

In the first scenario, assume that we have a sequence of finite sample
points Dn whose union is dense in D. Then,

Proposition
Assume β > d/4 is known, and let τ̂2n be the MLE of τ based on the
sample u(s1), . . . , u(skn), where si ∈ Dn and u is the solution of

τ(κ2I −∆)βu =W.

Then, τ̂2n is weakly consistent.



Consistency of the MLE of τ

In the second scenario, we also assume we have a sequence of finite
sample points Dn whose union is dense in D. We consider the same
equation, we also consider a finite element approximation of u, given by

unh(s) =

nh∑
i=1

wiϕi(s).

Let A be an n× nh matrix with i, jth entry given by ϕj(si). Then, we
assume we observe y = (y1, . . . , yn), where

y = Aw.

Proposition
Assume β > d/4 is known, and let h := h(n) be any sequence such that
n ≤ nh for every n. Let τ̂2n be the MLE of τ based on the sample
y1, . . . , yn. Then, τ̂2n is weakly consistent.



Consistency of the MLE of τ

Idea: Combine the identifiability with an explicit expression of the
maximum likelihood estimator and the law of large numbers.



Consistency of the MLE of τ

Finally, in the third scenario we replace, in the likelihood equation, the
mass matrix by the lumped mass matrix. Then, we have the following
Proposition:

Proposition
Consider the same assumptions of the second scenario. Additionally,
assume d = 2 and β > 1/2 is known, and let h = h(n) be chosen such
that nh2 = o(1) and n ≤ nh for every n. Let τ̂2n,lump be the MLE of τ
based on the sample y1, . . . , yn with the mass matrix replaced by the
lumped mass matrix. Then, τ̂2n,lump is weakly consistent.
Idea of the proof: Use the bound in operator’s norm for the lumped
mass covariance operator to bound the difference |τ̂2n,lump − τ̂2n|.



Thank you!
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