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Model for spread of an infection (Harris 1974)

×: cure times; T ,Tx ,i iid; —–: infection times; PPP(λ)



Question

P(infection started at the origin survives forever) > 0 for all λ > 0?

Remark
Not true for the usual contact process (T ∼ Exp(1)):

∃ λc > 0 such that P(survival) = 0 for λ < λc

Proof
Comparison to branching



Sufficiency for P(survival) > 0 for all λ > 0 on Zd

Theorem 1∗

We have survival wpp for all λ > 0 if P(T > t) > t−α for all large
t, for some α < 1†, plus regularity conditions.

Example

T attracted to α-stable law, 0 < α < 1.

Extension‡

Same for P(T > t) = L(t)
t , L slowly varying and ↗ fast at ∞ †.

∗Marchetti, Mountford, Vares, F (SPA ’18)
†In particular E(T ) = ∞.
‡Mountford, Ungaretti, Vares, F (arXiv)



A key ingredient of proof: tunneling event Tn

∏
n≥1 P(Tn) > 0 for all λ > 0



Extensions/refinements: complete convergence

Theorem 2§

Let the distribution of T satisfy the conditions of Theorem 1.
Then, for a RCP starting from any initial condition ξ0 ∈ {0, 1}Z

d

we have that ξt converges in law, as t →∞, to

P(τ <∞)δ0 + P(τ =∞)δ1,

where τ = inf{t > 0 : ξt ≡ 0} is the extinction time.

§Mountford, Vares, Ungaretti, F (arXiv)



Extensions/refinements: closeness to determinism
Let G denote the σ-field generated by the renewal processes and
the extinction random time τ .

Theorem 3¶

If T is attracted to an α-stable law, 0 < α < 1, then for all x ∈ Zd :

(i) If α < 1/2 + reg’ty cond, it holds on {τ =∞} that

lim
t→∞

∣∣P(ξt(x) = 0 | G)− e−2dλYt(x)
∣∣ = 0 a.s.;

(ii) If α > 1/2 and F (t) > 0 ∀ t > 0, it holds on {τ =∞} that

lim
t→∞

∣∣P(ξt(x) = 0 | G)− e−2dλYt(x)
∣∣ > 0 a.s.,

where Yt(x) is the age of the renewal process in x at time t.

Refinement¶

Precise asymptotics of max in t of P(ξt(x) = 0 | G) as fn of Yt(x).
¶Mountford, Vares, Ungaretti, F (arXiv)



Thm 3: what is going on

𝛼 < 1/2Thm 3.i Thm 3.ii 𝛼 > 1/2

time t

𝑤 𝑤𝑥 𝑥𝑦 𝑦

time t

(conditioning on all cure marks and survival)



Sufficiency for ”P(survival) = 0 for some λ > 0” on Zd

Theorem 4‖

If E (T 2) <∞, then P(survival) = 0 for small λ > 0.

Proof: Standard supermartingale argument/comparison to
branching

‖Mountford, Vares, F (SPA ’20)



Tricky case
Remark 1
Thm’s 1 and 4 leave a gap: T having a 1st but not a 2nd moment;
then comp to branching/supermart argument does not hold.

Remark 2
Tunneling argument does not work either.

Theorem 5∗∗

If E (Teθ
√
logT ) <∞ for some const θ large enough, then

P(survival) = 0 for small λ > 0.

Remark 3
Mountford, Vares, F (SPA ’20) have much stricter conds for this:

E (Tα) <∞ for some α > 1; d = 1; T cont’s and f (t)
1−F (t) ↘

Extensions and generalizations

Hilário, Ungaretti, Valesin, Vares; arXiv:2108.03219

∗∗Mountford, Vares, Ungaretti, F (arXiv)



Finite graphs

Consider the RCP on a finite connected graph G = (V ,E ) with
distr of T attracted to an α-stable law, 1

2 < α < 1.

Theorem 6††

For all λ > 0

1. P(survival) = 0, if |V | < v− := 2 + 2α−1
(1−α)(2−α) ;

2. P(survival) > 0, if |V | > v+ := 1
1−α .

Remarks
1) α ≤ 1

2 : 1 holds trivially; for 2, need usual extra reg’ty on distr of
T (in order to be able to apply SRT);

2) v+ − v− < 1 for all α ∈ (12 , 1): if [v−, v+] ∩ Z = ∅, then above
criteria determine situation for all V ; otherwise, the situation is
undetermined for exactly one value of |V |.

††Gomes, Sanchis, F (Bernoulli ’21)



Rough, approx ideas of proof — Extinction
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