Contact process under renewal cures

Luiz Renato Fontes

with

Pablo Gomes, Domingos Marchetti, Tom Mountford, Remy Sanchis, Daniel Ungaretti, Maria Eulália Vares

(SPA, Bernoulli, arXiv)

Model for spread of an infection (Harris 1974)

×: cure times; $T, T_{x,i}$ iid; —: infection times; $PPP(\lambda)$

Question

P(infection started at the origin survives forever) > 0 for all λ > 0?

Remark Not true for the usual contact process ($T \sim \text{Exp}(1)$): $\exists \lambda_c > 0$ such that P(survival) = 0 for $\lambda < \lambda_c$

Proof Comparison to branching

Sufficiency for P(survival) > 0 for all $\lambda > 0$ on \mathbb{Z}^d

Theorem 1*

We have survival wpp for all $\lambda > 0$ if $P(T > t) > t^{-\alpha}$ for all large t, for some $\alpha < 1^{\dagger}$, plus regularity conditions.

Example

T attracted to α -stable law, $0 < \alpha < 1$.

Extension[‡]

Same for $P(T > t) = \frac{L(t)}{t}$, L slowly varying and \nearrow fast at ∞^{\dagger} .

*Marchetti, Mountford, Vares, F (SPA '18)

[†]In particular $E(T) = \infty$.

[‡]Mountford, Ungaretti, Vares, F (arXiv)

A key ingredient of proof: tunneling event T_n

 $\prod_{n\geq 1} P(\mathcal{T}_n) > 0$ for all $\lambda > 0$

Extensions/refinements: complete convergence

Theorem 2[§]

Let the distribution of T satisfy the conditions of Theorem 1. Then, for a RCP starting from any initial condition $\xi_0 \in \{0,1\}^{\mathbb{Z}^d}$ we have that ξ_t converges in law, as $t \to \infty$, to

$$P(\tau < \infty)\delta_{\underline{0}} + P(\tau = \infty)\delta_{\underline{1}},$$

where $\tau = \inf\{t > 0 : \xi_t \equiv 0\}$ is the *extinction time*.

[§]Mountford, Vares, Ungaretti, F (arXiv)

Extensions/refinements: closeness to determinism

Let ${\mathcal G}$ denote the $\sigma\text{-field}$ generated by the renewal processes and the extinction random time $\tau.$

Theorem 3[¶]

If T is attracted to an α -stable law, $0 < \alpha < 1$, then for all $x \in \mathbb{Z}^d$:

(i) If $\alpha < 1/2 \, + \, {\rm reg'ty} \mbox{ cond, it holds on } \{\tau = \infty\}$ that

$$\lim_{t\to\infty} \left| P(\xi_t(x) = 0 \mid \mathcal{G}) - e^{-2d\lambda Y_t(x)} \right| = 0 \text{ a.s.};$$

(ii) If $\alpha > 1/2$ and $F(t) > 0 \forall t > 0$, it holds on $\{\tau = \infty\}$ that

$$\overline{\lim_{t\to\infty}} \left| P(\xi_t(x) = 0 \mid \mathcal{G}) - e^{-2d\lambda Y_t(x)} \right| > 0 \text{ a.s.},$$

where $Y_t(x)$ is the age of the renewal process in x at time t.

Refinement[¶]

Precise asymptotics of max in t of $P(\xi_t(x) = 0 | \mathcal{G})$ as fn of $Y_t(x)$.

[¶]Mountford, Vares, Ungaretti, F (arXiv)

Thm 3: what is going on

(conditioning on *all* cure marks and survival)

Sufficiency for "P(survival) = 0 for some $\lambda > 0$ " on \mathbb{Z}^d

Theorem 4^{\parallel} If $E(T^2) < \infty$, then P(survival) = 0 for small $\lambda > 0$.

Proof: Standard supermartingale argument/comparison to branching

^{||}Mountford, Vares, F (SPA '20)

Tricky case

Remark 1

Thm's 1 and 4 leave a gap: T having a 1st but not a 2nd moment; then comp to branching/supermart argument does *not* hold.

Remark 2

Tunneling argument does not work either.

Theorem 5^{**} If $E(Te^{\theta\sqrt{\log T}}) < \infty$ for some const θ large enough, then P(survival) = 0 for small $\lambda > 0$.

Remark 3 Mountford, Vares, F (SPA '20) have much stricter conds for this: $E(T^{\alpha}) < \infty$ for some $\alpha > 1$; d = 1; T cont's and $\frac{f(t)}{1 - F(t)} \searrow$

Extensions and generalizations

Hilário, Ungaretti, Valesin, Vares; arXiv:2108.03219

**Mountford, Vares, Ungaretti, F (arXiv)

Finite graphs

Consider the RCP on a finite connected graph G = (V, E) with distr of T attracted to an α -stable law, $\frac{1}{2} < \alpha < 1$.

Theorem 6^{††}

For all $\lambda > 0$

- 1. P(survival) = 0, if $|V| < v^- := 2 + \frac{2\alpha 1}{(1 \alpha)(2 \alpha)}$;
- 2. P(survival) > 0, if $|V| > v^+ := \frac{1}{1-\alpha}$.

Remarks

1) $\alpha \leq \frac{1}{2}$: 1 holds trivially; for 2, need usual extra reg'ty on distr of T (in order to be able to apply SRT);

2) $v^+ - v^- < 1$ for all $\alpha \in (\frac{1}{2}, 1)$: if $[v^-, v^+] \cap \mathbb{Z} = \emptyset$, then above criteria determine situation for all V; otherwise, the situation is undetermined for exactly one value of |V|.

^{††}Gomes, Sanchis, F (Bernoulli '21)

Rough, approx ideas of proof — Extinction

$$X_{n+1} \stackrel{\text{and}}{\underset{i \in \mathcal{A}}{\overset{\text{def}}{\underset{i \in \mathcal{A}}{\overset{i \in \mathcal{A}}{\overset{\text{def}}{\underset{i \in \mathcal{A}}{\overset{i \in \mathcal{A}}}{\overset{i \in \mathcal{A}}{\overset{i \in$$

$$Ety = \int_{0}^{\infty} ly z f_{2}(z) dz < 0$$

Survival

I dea; 1) & n harge, at least one x w. no cure in
$$(t_n, t_n + (h + t)^{\epsilon})$$

2) ---- transmission of infection on at least one time subjut.
s) initial bransm. w, >0 pro5.

1)

$$A_{n} = \begin{cases} \max_{x \in V} E_{x}(t_{n}) > n^{\xi} \end{cases}$$

$$\Rightarrow P(A_{n}^{c}) \leq n^{-\beta}, \quad \beta = \frac{|V|(1 - \alpha - 3\varepsilon) > 1}{k}$$

$$\sum_{x \in V} P(A_{n}^{c}) = P(\frac{E_{x}(t_{n})}{t_{n}} \leq n^{-1}) \approx (\int_{0}^{t_{n}} e^{x} de_{n}) - n^{-k(1-\kappa)}$$

•

BC: An occurs Flagen

P(eventual tie) <1 ; a.s. reaurrance, antredicts 1) !