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Motivation

Cover time of random walks on different random graphs Cooper and
Frieze CF 2007-2008-2012, C et al 2013-2014.

One of the key ingredients of Cooper and Freze’s analysis is the so called
First Visit Time Lemma (FVTL).

Sequence of Markov chains (X (n))t≥0 on a growing state space of size n:
X (n)

Fix x ∈ X (n) and let τx be the hitting time of x :

τx = inf{t ≥ 0 | X (n)
t = x}. (1)

Notation: P(n) is the transition matrix of (X (n))t≥0.

f (n) ∼ g(n) ⇐⇒ f (n) = g(n)(1 + o(1)) i.e., lim
n→∞

f (n)

g(n)
= 1

f (n) . g(n) ⇐⇒ lim sup
n→∞

f (n)

g(n)
≤ 1

µαt (y) :=
∑

x∈X (n)

α(x)
(
P(n)

)t
(x , y), ∀y ∈ X (n).



C&F FVTL - Hypotheses

Assume

- for every sufficiently large n the chain is irreducible, admitting a
unique invariant measure π = πn

- there exists a time T = Tn such that

max
x,y

∣∣PT (x , y)− π(y)
∣∣ = O

( 1

n3
)
, (2)

and
T max

x
π(x) = o(1), min

x
π(x) = ω(n−2) (3)

- let a = 1
KT for a suitably large constant K , fix x ∈ X , the truncated

probability generating function

R(z) =
T−1∑
t=0

P t(x , x)z t , ∀z ∈ C

satisfies
min
|z|≤1+a

R(z) ≥ θ

for some constant θ > 0



C&F FVTL - Claim

then, for all y ∈ X and t ≥ 0

Pµy
T

(
τx > t

)
=
(

1 + O(Tπ(x))
)
λ̃tx + o

(
e−at/2

)
, (4)

where

λ̃x =
(

1 +
π(x)

RT (x)(1 + O(Tπ(x)))

)−1
where RT (x) ≥ 1 is the expected number of returns in x within the
mixing time T

RT (x) =
T∑
t=0

µx
t (x) ≥ 1. (5)

Equivalent to

Py (Xs 6= x , ∀s ∈ (T , t + T )) ∼
(
1− π(x)

RT (x)

)t



Remarks on C&F FVTL

C&F Hypotheses (2) and (3) on mixing and on the invariant measure are
strong but are typically satisfied by random walks on many models of
random graphs.

The techniques used in the proof by Cooper and Frieze rely on probability
arguments but also on tools from complex analysis and an analytical
expansion of probability generating functions.

The result is equivalent to

∣∣∣PµT
y

(
τx > t

)
λ̃tx

− 1
∣∣∣ = O(Tπ(x)) + λ̃−tx o

(
e−at/2

)
= o(1)

and by the hypotheses since
(
1 + π(x)

RT (x)

)
e−a/2 < 1 the control on the

distribution of τx is really good, also for large t.



Previous results
Exponential law of hitting times is a classic and widely studied topic in
probability. Recall for instance the pioneering book by Keilson [K’79] and
the papers by Aldous [A’82, AB’92-’93].

Two different regimes:
1) A single state m is frequently visited before τx . The hitting time is

dominated by the sum of many i.i.d. excursion times and therefore it
is almost exponential. See [K’79].

Applied to study metastability: processes that are trapped for a long
time in a part of their state space.
[CGOV’84], [Sh’92],....., [OV’05], [BdH’16] and [BG’16], [FMNS’15],
[FMNSS’16]



2) The chain is rapidly mixing
Analyzed in [A’82], where it is shown that

sup
t≥0

∣∣∣Pπ(τx > t)− e−
t

Eπ [τx ]

∣∣∣ ≤ δ, (6)

where

δ ∝ T

Eπ[τx ]

(
1 + log

Eπ[τx ]

T

)
By using the quasi-stationary measure introduced in the pioneering paper
by Darroch-Seneta [DS’65] .
Note that Aldous’ result concerns additive error bounds

Pπ(τx > t) = e−
t

Eπ [τx ] + o(1)

and therefore it cannot provide first-order asymptotics of the exponential
approximation when t is large, in contrast to the FVTL where a
multiplicative bound is proved

PµT
y

(
τx > t

)
= λ̃tx(1 + o(1))



Definitions and preliminary results

Let [P]x the sub-Markovian probability kernel obtained by removing the
x-th row and column by the matrix P. Assume that [P]x is a primitive
sub-Markovian kernel, i.e., all entries of ([P]x)m are positive for some
m ∈ N.

Py (τx > t) =
∑
z 6=x

(
[P]x

)t
(y , z).

By the Perron-Froboenius theorem there exists a unique probability
distribution µ?x and a leading eigenvalue λx ∈ (0, 1) of [P]x

µ?x [P]x = λxµ
?
x , (7)

Moreover, denoting by γx the corresponding right eigenvector, i.e.,

[P]xγx = λxγx , (8)

normalized by 〈γx , µ?x 〉 = 1 we have(
[P]x

)t
(z , y) = λtxγx(z)µ?x (y) + O(βt) (9)

with β ∈ (0, λx).



The quasi-stationary measure µ?x on X \ x is strictly related to the
exponential behavior of τx :

Pµ?x (τx > t) =
∑
z 6=x

µ?x (z)
∑
y 6=x

(
[P]x

)t
(z , y) =

λtx
∑
y 6=x

µ?x (y) = λtx .

The right eigenvector γx controls the dependence on the initial
distribution of the probability of the event τx > t.
Indeed by (9):

lim
t→∞

Py (τx > t)

Pz(τx > t)
=
γx(y)

γx(z)
y , z 6= x .

and for the eigenvectors the limits:

lim
t→∞

Pz(Xt = y |τx > t) = lim
t→∞

([P]x)t(z , y)

Pz(τx > t)
= µ∗(y) Yaglom limit

lim
t→∞

Py (τx > t)

λtx
= γx(y)



A randomized stopping time ταπ is a Strong Stationary Time (SST) for
the Markov chain Xt with starting distribution α and stationary measure
π, if for any t ≥ 0 and y ∈ X

Pα (Xt = y , ταπ = t) = π(y)Pα (ταπ = t) ,

which is equivalent to

Pα
(
Xt = y

∣∣ταπ ≤ t
)

= π(y) (10)

By defining the separation distance

sep(µαt , π) := max
y∈X

[
1− µαt (y)

π(y)

]
,

if ταπ is a SST then

Pα(ταπ > t) ≥ sep(µαt , π), ∀t ≥ 0, (11)

and when (11) holds with the equal sign for every t, the SST is minimal.
Moreover, a minimal SST always exists, (see [AD’86], [AD’87],
[LevPerW]).



Local chain on X \ x also called Doob’s transform:

For any y , z 6= x , define the stochastic matrix

P̃(z , y) :=
γx(y)

γx(z)

P(z , y)

λx
. (12)

More generally

P̃ t(z , y) =
γx(y)

γx(z)

(
[P]x

)t
(z , y)

λtx
∀t ≥ 0. (13)

It is immediate to show that P̃ is a primitive matrix and has invariant
measure

ν(y) := γx(y)µ?x (y).



A preliminary estimate
Consider any initial measure α on X \ {x} and define the transformation

α̃(y) :=
α(y)γx(y)

〈α, γx〉
, ∀y 6= x . (14)

and the separation distance sep(µ̃α̃t , ν) for the evolution of this chain
starting from α̃

sep(µ̃α̃t , ν) ≡ s̃α̃(t) := sup
y 6=x

s̃α̃(t, y).

with

s̃z(t, y) := 1− P̃ t(z , y)

ν(y)
; s̃α̃(t, y) :=

∑
z 6=x

α̃(z)s̃z(t, y) (15)

Note that s̃z(t) ∈ [0, 1] and recall that separation has the
sub-multiplicative property

s̃(t + u) ≤ s̃(t)s̃(u),

which in particular implies an exponential decay in time of s̃.



We have ([MS’19])

1− s̃α̃(t) ≤ Pα(τx > t)

λtx 〈α, γx〉
≤ 1 + s̃α̃(t)

(
1

miny γx(y)
− 1

)
.

Indeed

Pα(τx > t) =
∑
y 6=x

∑
z 6=x

α(z)
(
[P]x

)t
(z , y) (16)

=
∑
y 6=x

∑
z 6=x

α(z)γx(z)λtxµ
?
x (y)

P̃ t(z , y)

ν(y)
(17)

=λtx
∑
z 6=x

α(z)γx(z)
∑
y 6=x

µ?x (y)(1− s̃z(t, y)) (18)

=λtx 〈α, γx〉
(

1−
∑
y 6=x

µ?x (y)s̃α̃(t, y)
)

(19)



C&F regime in [MQS’21]

We consider the following asymptotic assumption for the sequence of
Markov chains: There exist

I A real number c > 2.

I A diverging sequence T = T (n) .

such that

(HP1) Fast mixing:
max
x,y∈X

|µx
T (y)− π(y)| = o(n−c).

(HP2) Small πmax:
T max

x∈X
π(x) = o(1).

(HP3) Large πmin:
min
x∈X

π(x) = ω(n−2).



First Visit Time Lemma in [MQS’21]

Theorem
Under the assumptions (HP1), (HP2) and (HP3) for all x ∈ X , it holds

sup
t≥0

∣∣∣∣Pπ(τx > t)

λtx
− 1

∣∣∣∣ −→ 0, (20)

and ∣∣∣∣∣∣ λx(
1− π(x)

RT (x)

) − 1

∣∣∣∣∣∣ −→ 0. (21)



Corollary
Under the same assumptions, for all x ∈ X∑

y∈X\{x}

π(y)γx(y)→ 1. (22)

For all t ≥ 0 and x ∈ X (n), ζt(x) denotes the random time spent by the

process in the state x within time t, i.e., ζt(x) :=
∑t−1

s=0 1Xs=x .

Theorem
Under the same set of assumptions, for every x ∈ X and for all
y ∈ X \ {x}:

γx(y) . 1,

γx(y) &
[
1− Ey [ζT (x)]

]
+



Remarks on the results in [MQS’21]

Comparison C&F - MQS

I no hypotheses on generating functions, only probabilistic arguments

I starting distribution: π or µy
T are essentially equal by fast mixing

(see definition of T )

I again multiplicative estimates but without precise magnitude of
second order corrections

I estimates on γx(y) for any y and s̃ π̃(t) = o(1) can be proved,
stationary and quasi-stationary distributions coincide in the
thermodynamic limit

I in MQS a direct and simple proof.



Simple extension to first visit to a set G instead of x by a collapsing
strategy G −→ g

On X̃ = (X \ G ) ∪ {g} define the transition matrix

P̃(x , y) =


P(x , y) if x , y 6= g∑

z∈G P(x , z) if x 6= g , y = g∑
z∈G

π(z)
π(G)P(z , y) if x = g , y 6= g∑

y∈G
∑

z∈G
π(z)
π(G)P(z , y) if x = y = g

(23)

we have immediately
π̃ = π̃P̃ (24)

with π̃(x) the projection of π on X̃

π̃(x) =

{
π(x) if x 6= g

π(G ) if x = g

The first hitting time to the set G under the original chain (X ,P),
starting at π, has the same law of the first hitting time to state g under
the chain (X̃ , P̃) starting at π̃. Notice further that [P]G = [P̃]g . Hence,
it is enough to check that the modified Markov chain satisfies
assumptions (HP1)-(HP2)-(HP3), so G “small”.



Main steps of the proof of FVTL

1) For all x , y ∈ X and t > 0 it holds

Pµy
T

(τx > t) ∼ Pπ(τx > t).

indeed for any y , z we have µy
T (z) ∼ π(z):

max
y ,z∈X

∣∣∣∣µy
T (z)

π(z)
− 1

∣∣∣∣ = max
y ,z∈X

1

π(z)
|µx

T (z)− π(z)|

≤ 1

minz∈X π(z)
max
y ,z∈X

|µy
T (z)− π(z)| ≤ o(n−c)

Cn−2
= o(n−c+2)

so that

Pµy
T

(τx > t) =
∑
z

µy
T (z)Px(τx > t) = (1 + o(1))

∑
z

π(z)Px(τx > t)

= (1 + o(1))Pπ(τx > t).



2) For all x ∈ X and for all t > T it holds

max
y∈X

Py (τx > t) . Pπ(τx > t − T ).

indeed

Py (τx > t) =
∑
z∈X

Py (XT = z ; τx > T )Pz(τx > t − T )

≤
∑
z∈X

Py (XT = z)Pz(τx > t−T ) ∼
∑
z∈X

π(z)Pz(τx > t−T ) = Pπ(τx > t−T )



3) for all t > T it holds

Pπ(τx > t − T ) ∼ Pπ(τx > t)

Similar result in [FMNS’15] in a metastable regime.

From 2) +3)
max
y∈X

Py (τx > t) . Pπ(τx > t).



4) For all x ∈ X
λTx ∼ 1

and

Eπ[τx ] ∼ Eµ?x [τx ] =
1

1− λx

5) Abdullah result:

Eπ[τx ] ∼ RT (x)

π(x)

From 4)+5) we get

1− λx ∼
π(x)

RT (x)



Proof of the FVTL

µ
µ?x
T (y) = Pµ?x (XT = y) = Pµ?x (XT = y , τx > T ) + Pµ?x (XT = y , τx ≤ T )

= λTx µ
?
x (y) + (1− λx)

T∑
s=1

λsxµ
x
T−s(y)

so that

λTx µ
?
x (y) ≤ µµ

?
x

T (y) ≤ λTx µ?x (y) + (1− λx)Ex [ζT (y)]

and for
Pπ(τx > t) ∼1) P

µ
µ?x
T

(τx > t)

we obtain
Pπ(τx > t) & λt+T

x ∼4) λtx

on the other hand

Pπ(τx > t) .
∑
y∈X

λTx µ
?
x (y)Py (τx > t)+(1−λx)

∑
y∈X

Ex [ζT (y)]Py (τx > t)

≤ λt+T
x + (1− λx)T max

y
Py (τx > t) =2)+3)+4)+5) λtx + o (Pπ(τx > t))



Idea of the proof of step 3)

Pπ(τx > t + T )

Pπ(τx > t)
≥ 1− o(1), ∀t > 0

Prove that for any t

Pπ(τx > t + T )

Pπ(τx > t)
≥ 1− ε · Pπ(τx > t − T )

Pπ(τx > t)

with ε = o(1) and consider the sequence (yi )i≥1

yi :=
Pπ(τx > (i + 1)T )

Pπ(τx > iT )
.

We have
yi+1 ≥ 1− ε

yi
.

Being ε < 1/4, we can define

ε̄ :=
1

2
−
√

1

4
− ε

and get by induction

yi ≥ 1− ε̄, ∀i ≥ 1.



Indeed, note that ε = ε̄(1− ε̄) < ε̄

y1 =
Pπ(τx > 2T )

Pπ(τx > T )
= 1− Pπ(τx ∈ [T , 2T ])

Pπ(τx > T )
≥ 1− (T + 1)π(x)

1− (T + 1)π(x)

≥ 1− ε

1− ε
≥ 1− ε̄

and
yi+1 ≥ 1− ε

yi
≥ 1− ε

1− ε̄
≥ 1− ε̄.

The result of the induction can be immediately extended from times iT
to general times t = iT + t0 with t0 < T by noting that again we get

1− (T + t0)π(x)

1− t0π(x)
≥ 1− ε

1− ε
.



Idea of the proof of step 4)

λ2Tx = Pµ?x (τx > 2T ) =
∑
z 6=x

Pµ?x (XT = z , τx > T ) Pz (τx > T )

=
∑
z 6=x

[
Pµ?x (XT = z)− Pµ?x ( XT = z , τx ≤ T )

]
Pz (τx > T )

∼1) Pπ(τx > T )−
∑
z 6=x

Pµ?x (XT = z , τx ≤ T ) Pz (τx > T )

≥ Pπ(τx > T )−max
z

Pz (τx > T ) Pµ?x (τx ≤ T )

∼2) Pπ(τx > T )
(
1− Pµ?x (τx ≤ T )

)
= Pπ(τx > T )

(
1− (1− λTx )

)
.

Hence
λTx & Pπ(τx > T ) ≥ 1− (T + 1)π(x)



Proof of step 5) (Abdullah): By [AF02]:

Eπ[τx ] =
Z (x , x)

π(x)
,

where Z is the fundamental matrix,

Z (x , x) :=
∞∑
t=0

µx
t (x)− π(x).

By the submultiplicativity of the sequence

D(t) := max
x,y
|µx

t (y)− π(y)| ,

i.e., D(t + s) ≤ 2D(t)D(s), ∀t, s > 0, and by fast mixing we get

max
x,y
|µx

kT (y)− π(y)| ≤
(

2

nc

)k

, ∀k ∈ N.

Noting that RT (x) ≥ 1, and Tn−c ≤ Tπmax

Z (x , x) =
∑
t≤T

(
µx
T (x)− π(x)

)
+ T

∑
k≥1

(
2

nc

)k

= RT (x) + O(Tπ(x)) + O(Tn−c) = RT (x)(1 + o(1))



General remark

In both the regimes, (1) metastability and (2) hitting to a rare state for
rapidly mixing chains, the exponential decay is due to the existence of
two asymptotically different time scales:

Eτx � T (local equilibrium)

{
fast recurrence to m in case(1)

fast recurrence to π in case(2)

The two regimes can be understood in a common framework:

recurrence to a point ⇐⇒ recurrence to a measure

The quasi-stationary measure plays the role of a recurrent measure before
the hitting.

The hitting to the measure can be studied by extending the theory of
strong stationary times to quasi-stationarity by means of conditional
strong quasi-stationary time (CSQST).



Conditional Strong Quasi-Stationary Times
(CSQST) and results in [MS’19]

Given an initial distribution α on X \ {x}, a randomized stopping time
τα?,x is a CSQST if for any y 6= x and t ≥ 0

Pα(Xt = y , τα?,x = t) = µ?x (y)Pα(τα?,x = t < τx)

or equivalently
Pα(Xτα?,x = y

∣∣τα?,x < τx) = µ?x (y)

We prove in [MS’19] that for any α there exists a CSQST τα?,x s.t. for
any t > 0

Pα(τx > t) = λtx 〈α, γx〉 (1− s̃α̃(t)) + Pα(τα?,x ∧ τx > t)

with Pα(τα?,x ∧ τx > t) exponentially decreasing to 0 in t.



Remarks on the results in [MS’19]
Hypotheses on the chain are very general

I finite (or countable) state space, n is fixed

I the target x can be a set of states

I the chain is ergodic

I the starting distribution α is arbitrary

explicit dependence on α

Pα(τx > t) = λtx 〈α, γx〉 (1− s̃α̃(t)) + Pα(τα?,x ∧ τx > t) (25)

We can obtain an exponential decay estimate of Pα(τx > t) only if the
local relaxation time

T := sup
α

E
(
τα?,x ∧ τx

)
is such that T (1− λx)� 1.

However can be difficult to control some of the quantities involved in
(25), in particular:

I the right eigenvector γx
I the decay of the separation distance s̃α̃



[MQS’21]+[MS’19]

In the regime of rare target and rapidly mixing chain :

I estimates on γx(y) for all y

I starting from π, estimates on s̃ π̃

Stationary and quasi-stationary distributions coincide in the limit n→∞


