Structure recovery for partially observed discrete Markov random fields on graphs¹

Florenicia Leonardi

October 18, 2021

Probability Webinar - IM-UFRJ

¹This talk is based on joint work with Iara Frondana, Rodrigo Carvalho and Magno Severino
Markov random fields on graphs

Let \(\{X_v : v \in V\} \) be a family of random variables taking values on \(A \) (finite), with joint distribution \(\mathbb{P} \).
Markov random fields on graphs

Let \(\{X_v : v \in V\} \) be a family of random variables taking values on \(A \) (finite), with joint distribution \(\mathbb{P} \).

\(V \) is the set of vertices or nodes and can be finite or countable infinite.
Markov random fields on graphs

Let \(\{X_v : v \in V\} \) be a family of random variables taking values on \(A \) (finite), with joint distribution \(\mathbb{P} \).

\(V \) is the set of vertices or nodes and can be finite or countable infinite.

For each \(\Delta \subset V \) (finite) we write

\[
p(a_\Delta) = \mathbb{P}(X_\Delta = a_\Delta) \quad \text{with } a_\Delta \in A^\Delta
\]

and if \(p(a_\Delta) > 0 \) we denote by

\[
p(a_\Phi | a_\Delta) = \mathbb{P}(X_\Phi = a_\Phi | X_\Delta = a_\Delta) \quad \text{for } a_\Phi \in A^\Phi, \ a_\Delta \in A^\Delta
\]

the corresponding conditional probabilities.
Markov random fields on graphs

Given $v \in V$, a neighborhood W of v is any finite set of vertices such that $v \notin W$.

Note! if W is a Markov neighborhood of $v \in V$, then any finite set $\Delta \supset W$ is also a Markov neighborhood of v. On the other hand, if W_1 and W_2 are Markov neighborhoods of v, it is not always true that $W_1 \cap W_2$ is a Markov neighborhood of v.
Markov random fields on graphs

Given \(v \in V \), a neighborhood \(W \) of \(v \) is any finite set of vertices such that \(v \notin W \).

A Markov neighborhood is a neighborhood \(W \) that satisfies

\[
p(a_v | a_W) = p(a_v | a_{\Delta})
\]

for all finite set \(\Delta \supset W \), \(v \notin \Delta \) and all \(a_v \in A, a_{\Delta} \in A^{\Delta} \) with \(p(a_{\Delta}) > 0 \).
Markov random fields on graphs

Given $v \in V$, a neighborhood W of v is any finite set of vertices such that $v \notin W$.

A Markov neighborhood is a neighborhood W that satisfies

$$p(a_v|a_W) = p(a_v|a_\Delta)$$

for all finite set $\Delta \supset W$, $v \notin \Delta$ and all $a_v \in A$, $a_\Delta \in A^\Delta$ with $p(a_\Delta) > 0$.

Note! if W is a Markov neighborhood of $v \in V$, then any finite set $\Delta \supset W$ is also a Markov neighborhood of v. On the other hand, if W_1 and W_2 are Markov neighborhoods of v, it is not always true that $W_1 \cap W_2$ is a Markov neighborhood of v.
Hypotheses

(I) **Positivity condition:** for all finite set $W \subset V$ and all $a_W \in A^W$ we have that $p(a_W) > 0$.

(II) **Markov intersection property:** for all $v \in V$ and all W_1 and W_2 Markov neighborhoods of v, the set $W_1 \cap W_2$ is also a Markov neighborhood of v.
Hypotheses

(I) Positivity condition: for all finite set $W \subset V$ and all $a_W \in A^W$ we have that $p(a_W) > 0$.

(II) Markov intersection property: for all $v \in V$ and all W_1 and W_2 Markov neighborhoods of v, the set $W_1 \cap W_2$ is also a Markov neighborhood of v.

(I) \Rightarrow (II) (Lauritzen, 1996)
Hypotheses

(I) **Positivity condition:** for all finite set $W \subset V$ and all $a_W \in A^W$ we have that $p(a_W) > 0$.

(II) **Markov intersection property:** for all $v \in V$ and all W_1 and W_2 Markov neighborhoods of v, the set $W_1 \cap W_2$ is also a Markov neighborhood of v.

(I) \Rightarrow (II) (Lauritzen, 1996)

(II) \nRightarrow (I) Markov chain with transition matrix

$$P = \begin{pmatrix} 1/2 & 1/2 \\ 1 & 0 \end{pmatrix}$$
Basic neighborhood

If \mathbb{P} satisfies the Markov intersection property we can define the basic neighborhood of a vertex $v \in V$ as

$$\text{ne}(v) = \bigcap_{W \in \Theta(v)} W.$$

where $\Theta(v) = \{W : W \text{ is a Markov neighborhood of } v\}$.

The graph of interaction $G = (V, E)$ for the measure \mathbb{P} is defined by $(v, w) \in E$ if and only if $w \in \text{ne}(v)$.

5/24
Basic neighborhood

If \mathbb{P} satisfies the Markov intersection property we can define the basic neighborhood of a vertex $v \in V$ as

$$\operatorname{ne}(v) = \bigcap_{W \in \Theta(v)} W.$$

where $\Theta(v) = \{W : W \text{ is a Markov neighborhood of } v\}$.

$\operatorname{ne}(v)$ is the smallest Markov neighborhood of $v \in V$.
Basic neighborhood

If \mathbb{P} satisfies the Markov intersection property we can define the basic neighborhood of a vertex $v \in V$ as

$$\text{ne}(v) = \bigcap_{W \in \Theta(v)} W.$$

where $\Theta(v) = \{W : W \text{ is a Markov neighborhood of } v\}$.

$\text{ne}(v)$ is the smallest Markov neighborhood of $v \in V$.

The graph of interaction $G = (V, E)$ for the measure \mathbb{P} is defined by

$$(v, w) \in E \text{ if and only if } w \in \text{ne}(v).$$
Examples
Let $V_n \uparrow V$ and let $\{x^{(i)}_{V_n}, i = 1, \ldots, n\}$ an i.i.d (partial) sample of the distribution \mathbb{P}.

The maximum pseudo-likelihood for the vertex $v \in V$ given the neighborhood W is defined by

$$
\hat{P}(x^{(1:n)}_{V_n} | x^{(1:n)}_{W}) = \prod_{a_W \in A_W} \prod_{a_v \in A} \hat{p}(a_v | a_W) N(a_v, a_W),
$$

where the product is computed over all $a_W \in A_W$ with $\hat{p}(a_W) > 0$ and all $a_v \in A$ with $\hat{p}(a_v | a_W) > 0$.

Here, $N(a_v, a_W)$ counts the number of occurrences of the "pattern" (a_v, a_W) in the sample and $\hat{p}(a_v | a_W)$ are the usual empirical probabilities derived from these counters.
Neighborhood estimator

Let $V_n \rightarrow V$ and let $\{x_{V_n}^{(i)}, i = 1, \ldots, n\}$ an i.i.d (partial) sample of the distribution \mathbb{P}.

The maximum pseudo-likelihood for the vertex $v \in V$ given the neighborhood W is defined by

$$
\hat{P}(x_{v}^{(1:n)}|x_{W}^{(1:n)}) = \prod_{a_{W} \in A^{W}} \prod_{a_{v} \in A} \hat{p}(a_{v}|a_{W})^{N(a_{v},a_{W})},
$$

where the product is computed over all $a_{W} \in A^{W}$ with $\hat{p}(a_{W}) > 0$ and all $a_{v} \in A$ with $\hat{p}(a_{v}|a_{W}) > 0$.

Here, $N(a_{v},a_{W})$ counts the number of occurrences of the “pattern” (a_{v},a_{W}) in the sample and $\hat{p}(a_{v}|a_{W})$ are the usual empirical probabilities derived from these counters.
\[v = 3, \quad W = \{4,5\} \]

\[a_v = 0, \quad a_W = \{0,1\} \]

\[N(a_v, a_W) = \sum_{i=1}^{n} 1\{x_{i3} = 0, x_{i4} = 0, x_{i5} = 1\} \]
\[v = 3, \quad W = \{4, 5\} \]
\[a_v = 0, \quad a_W = \{0, 1\} \]
\[\hat{p}(0_3 | 0_4, 1_5) = \frac{N(0_3, 0_4, 1_5)}{N(0_4, 1_5)} \]
Given the sample \(\{x_{V_n}^{(i)}, i = 1, \ldots, n\} \) and a constant \(c > 0 \), the empirical neighborhood of \(v \in V_n \) is the set of vertices \(\widehat{\text{ne}}(v) \) defined by

\[
\widehat{\text{ne}}(v) = \arg \max_{W \subset V_n \setminus \{v\}} \left\{ \log \hat{P}(x_{(1:n)}^{(1:n)} | x_{W}^{(1:n)}) - c |A||W| \log n \right\}.
\]
Consistency of the neighborhood estimator

Theorem (L, Carvalho & Frondana, 2021)

Let \(v \in V_n \) for all \(n \geq n_0 \) and assume \(|V_n| = o(\log n) \). Then for all \(c > 0 \), the neighborhood estimator satisfies \(\hat{\text{ne}}(v) = \text{ne}(v) \) with probability converging to 1 when \(n \to \infty \). Moreover, if \(c > |A|^2[p_{\min}(|A| - 1)]^{-1} \) then \(\hat{\text{ne}}(v) = \text{ne}(v) \) eventually almost surely as \(n \to \infty \).
Consistency of the neighborhood estimator

Theorem (L, Carvalho & Frondana, 2021)

Let \(v \in V_n \) for all \(n \geq n_0 \) and assume \(|V_n| = o(\log n) \). Then for all \(c > 0 \), the neighborhood estimator satisfies \(\widehat{\text{ne}}(v) = \text{ne}(v) \) with probability converging to 1 when \(n \to \infty \). Moreover, if \(c > |A|^2[p_{\min}(|A| - 1)]^{-1} \) then \(\widehat{\text{ne}}(v) = \text{ne}(v) \) eventually almost surely as \(n \to \infty \).

\[
p_{\min}(v) = \min_{W \subseteq \text{ne}(v)} \min_{a_v, a_W} \{ p(a_v|a_W) : p(a_v|a_W) > 0 \}
\]
Given $V' \subset V$ finite, we define $G_{V'}$ as the sub-graph induced by G'; i.e the pair (V', E') where

$$E' = \{(v, w) \in E : v, w \in V'\}$$
Graph estimator

Given $V' \subset V$ finite, we define $G_{V'}$ as the sub-graph induced by G'; i.e the pair (V', E') where

$$E' = \{(v, w) \in E : v, w \in V'\}$$

To estimate G' based on $\widehat{\text{ne}}(v)$, we have two possibilities:

$$\widehat{E}'_\wedge = \{(v, w) \in V' \times V' : v \in \widehat{\text{ne}}(w) \text{ and } w \in \widehat{\text{ne}}(v)\} \rightarrow \text{conservative}$$

$$\widehat{E}'_\vee = \{(v, w) \in V' \times V' : v \in \widehat{\text{ne}}(w) \text{ or } w \in \widehat{\text{ne}}(v)\} \rightarrow \text{non-conservative}$$
Graph estimator

Given $V' \subset V$ finite, we define $G_{V'}$ as the sub-graph induced by G'; i.e the pair (V', E') where

$$E' = \{(v, w) \in E : v, w \in V'\}$$

To estimate G' based on $\widehat{\text{ne}}(v)$, we have two possibilities:

$$\widehat{E}'_\wedge = \{(v, w) \in V' \times V' : v \in \widehat{\text{ne}}(w) \text{ and } w \in \widehat{\text{ne}}(v)\} \rightarrow \text{ conservative}$$

$$\widehat{E}'_\vee = \{(v, w) \in V' \times V' : v \in \widehat{\text{ne}}(w) \text{ or } w \in \widehat{\text{ne}}(v)\} \rightarrow \text{ non-conservative}$$
Corollary (L, Carvalho & Frondana, 2021)

Let $G' = (V', E')$ be the sub-graph induced by G with a finite set of vertices V'. Then for all $c > 0$, if $|V_n| = o(\log n)$ we have that $\hat{E}'_\wedge = \hat{E}'_\vee = E'$ with probability converging to 1 when $n \to \infty$. If $c > |A|^2[p_{\min}(V')(|A| - 1)]^{-1}$ then $\hat{E}'_\wedge = \hat{E}'_\vee = E'$ eventually almost surely as $n \to \infty$.
Simulations

Graph of the generated distribution

\[A = \{0, 1, 2\} \]

Figura: Estimated graph with the conservative approach
Simulations

Graph of the generated distribution

\[A = \{0, 1, 2\} \]

Figura: Estimated graph with the non-conservative approach
Simulations

Figura: Mean errors of overestimation, underestimation and total error computed on 30 runs of the simulations, for the conservative and non-conservative estimators.
World wide stock indexes

- To illustrate the application of the graph estimator we analyzed stock indexed from different countries extracted from
 https://br.investing.com/indices/world-indices

- The sample consists of \(n = 530 \) observation in time, where each entry corresponds to the indicator function of a positive change from the previous day, for 15 countries

- In order to reduce dependency, we considered an interval of 4 days between observations
Figura: Grafo estimado para os dados dos índices de ações de diferentes países, com o estimador “não conservador”
World wide stock indexes

Figura: Grafo estimado para os dados dos índices de acões de diferentes países, com o estimador “conservador”
São Francisco River
São Francisco River

Figure from Leonardi et al. (2021). *Independent block identification in multivariate time series*, Journal of Time Series Analysis, 2021.
Discussion and future work

- The hypothesis of independence in the observations is strong, but the estimator seems to be consistent also on dependent data.
Discussion and future work

- The hypothesis of independence in the observations is strong, but the estimator seems to be consistent also on dependent data.

- We are working on consistency for *mixing* processes (Magno T.F. Severino’ PhD project).

- Computing the estimator is a problem... the exhaustive search is prohibited even for medium size graphs... So we are looking also for efficient algorithms.

- An R package, called *mrfse*, was developed with the implementation of the algorithm by Rodrigo R.S. Carvalho, who is also working now on other algorithmic approaches.
Discussion and future work

- The hypothesis of independence in the observations is strong, but the estimator seems to be consistent also on dependent data.

- We are working on consistency for *mixing* processes (Magno T.F. Severino’ PhD project).

- Computing the estimator is a problem... the exhaustive search is prohibited even for medium size graphs... So we are looking also for efficient algorithms.
Discussion and future work

▶ The hypothesis of independence in the observations is strong, but the estimator seems to be consistent also on dependent data

▶ We are working on consistency for mixing processes (Magno T.F. Severino’ PhD project)

▶ Computing the estimator is a problem... the exhaustive search is prohibited even for medium size graphs... So we are looking also for efficient algorithms

▶ An R package, called mrfse, was developed with the implementation of the algorithm by Rodrigo R.S. Carvalho, who is also working now on other algorithmic approaches
Thank you!

florencia@ime.usp.br
www.ime.usp.br/~leonardi

This work has the support of Brazilian agencies FAPESP and CNPq.