Structure recovery for partially observed discrete Markov random fields on graphs¹

Florencia Leonardi

October 18, 2021
Probability Webinar - IM-UFRJ

¹This talk is based on joint work with Iara Frondana, Rodrigo Carvalho and Magno Severino

Let $\{X_v \colon v \in V\}$ be a family of random variables taking values on A (finite), with joint distribution \mathbb{P}

Let $\{X_v \colon v \in V\}$ be a family of random variables taking values on A (finite), with joint distribution \mathbb{P}

V is the set of vertices or nodes and can be finite or countable infinite

Let $\{X_v \colon v \in V\}$ be a family of random variables taking values on A (finite), with joint distribution \mathbb{P}

V is the set of vertices or nodes and can be finite or countable infinite

For each $\Delta \subset V$ (finite) we write

$$p(a_{\Delta}) = \mathbb{P}(X_{\Delta} = a_{\Delta})$$
 with $a_{\Delta} \in A^{\Delta}$

and if $p(a_{\Delta}) > 0$ we denote by

$$p(a_{\Phi}|a_{\Delta}) = \mathbb{P}(X_{\Phi} = a_{\Phi}|X_{\Delta} = a_{\Delta}) \text{ for } a_{\Phi} \in A^{\Phi}, a_{\Delta} \in A^{\Delta}$$

the corresponding conditional probabilities.

Given $v \in V$, a neighborhood W of v is any finite set of vertices such that $v \notin W$.

Given $v \in V$, a neighborhood W of v is any finite set of vertices such that $v \notin W$.

A Markov neighborhood is a neighborhood ${\it W}$ that satisfies

$$p(a_v|a_W) = p(a_v|a_\Delta)$$

for all finite set $\Delta \supset W$, $v \notin \Delta$ and all $a_v \in A$, $a_\Delta \in A^\Delta$ with $p(a_\Delta) > 0$.

Given $v \in V$, a neighborhood W of v is any finite set of vertices such that $v \notin W$.

A Markov neighborhood is a neighborhood ${\it W}$ that satisfies

$$p(a_v|a_W) = p(a_v|a_\Delta)$$

for all finite set $\Delta \supset W$, $v \notin \Delta$ and all $a_v \in A, a_\Delta \in A^\Delta$ with $p(a_\Delta) > 0$.

Note! if W is a Markov neighborhood of $v \in V$, then any finite set $\Delta \supset W$ is also a Markov neighborhood of v. On the other hand, if W_1 and W_2 are Markov neighborhoods of v, it is not always true that $W_1 \cap W_2$ is a Markov neighborhood of v.

Hypotheses

- (I) Positivity condition: for all finite set $W \subset V$ and all $a_W \in A^W$ we have that $p(a_W) > 0$.
- (II) Markov intersection property: for all $v \in V$ and all W_1 and W_2 Markov neighborhoods of v, the set $W_1 \cap W_2$ is also a Markov neighborhood of v.

Hypotheses

- (I) Positivity condition: for all finite set $W \subset V$ and all $a_W \in A^W$ we have that $p(a_W) > 0$.
- (II) Markov intersection property: for all $v \in V$ and all W_1 and W_2 Markov neighborhoods of v, the set $W_1 \cap W_2$ is also a Markov neighborhood of v.
- $(I) \Rightarrow (II)$ (Lauritzen, 1996)

Hypotheses

- (I) Positivity condition: for all finite set $W \subset V$ and all $a_W \in A^W$ we have that $p(a_W) > 0$.
- (II) Markov intersection property: for all $v \in V$ and all W_1 and W_2 Markov neighborhoods of v, the set $W_1 \cap W_2$ is also a Markov neighborhood of v.
- $(I) \Rightarrow (II)$ (Lauritzen, 1996)
- (II) \neq (I) Markov chain with transition matrix

$$P = \begin{pmatrix} 1/2 & 1/2 \\ 1 & 0 \end{pmatrix}$$

Basic neighborhood

If $\mathbb P$ satisfies the Markov intersection property we can define the basic neighborhood of a vertex $v \in V$ as

$$\mathsf{ne}(v) = \bigcap_{W \in \Theta(v)} W.$$

where $\Theta(v) = \{W : W \text{ is a Markov neighborhood of } v\}.$

Basic neighborhood

If $\mathbb P$ satisfies the Markov intersection property we can define the basic neighborhood of a vertex $v \in V$ as

$$\mathsf{ne}(v) = \bigcap_{W \in \Theta(v)} W.$$

where $\Theta(v) = \{W : W \text{ is a Markov neighborhood of } v\}.$

ne(v) is the smallest Markov neighborhood of $v \in V$.

Basic neighborhood

If $\mathbb P$ satisfies the Markov intersection property we can define the basic neighborhood of a vertex $v \in V$ as

$$\mathsf{ne}(v) = \bigcap_{W \in \Theta(v)} W.$$

where $\Theta(v) = \{W : W \text{ is a Markov neighborhood of } v\}.$

ne(v) is the smallest Markov neighborhood of $v \in V$.

The graph of intercation G = (V, E) for the measure \mathbb{P} is defined by

$$(v,w) \in E$$
 if and only if $w \in \text{ne}(v)$.

Examples

Neighborhood estimator

Let $V_n \nearrow V$ and let $\{x_{V_n}^{(i)}, i=1,\ldots,n\}$ an i.i.d (partial) sample of the distribution \mathbb{P} .

Neighborhood estimator

Let $V_n \nearrow V$ and let $\{x_{V_n}^{(i)}, i=1,\ldots,n\}$ an i.i.d (partial) sample of the distribution \mathbb{P} .

The maximum pseudo-likelihood for the vertex $v \in V$ given the neighborhood W is defined by

$$\widehat{\mathbb{P}}(x_v^{(1:n)}|x_W^{(1:n)}) = \prod_{a_W \in A^W} \prod_{a_v \in A} \hat{p}(a_v|a_W)^{N(a_v,a_W)} \,,$$

where the product is computed over all $a_W \in A^W$ with $\hat{p}(a_W) > 0$ and all $a_v \in A$ with $\hat{p}(a_v|a_W) > 0$.

Here, $N(a_v,a_W)$ counts the number of occurrencies of the "pattern" (a_v,a_W) in the sample and $\hat{p}(a_v|a_W)$ are the usual empirical probabilities deriver from these counters.

X_1	X_2	X_3	X_4	X_5
<i>x</i> ₁₁	<i>x</i> ₁₂	<i>x</i> ₁₃	<i>x</i> ₁₄	<i>x</i> ₁₅
	•	•		•
		:		
x_{n1}	x_{n2}	x_{n3}	x_{n4}	x_{n5}

X_1	X_2		X_3		X_4	X_5
<i>x</i> ₁₁	x ₁₂		<i>x</i> ₁₃		x ₁₄	x ₁₅
***************************************		:			•	
			•			
x_{n1}	x_{n2}		x_{n3}		x_{n4}	x_{n5}

$$v = 3$$
, $W = \{4,5\}$
 $a_v = 0$, $a_W = \{0,1\}$

$$N(a_v, a_W) = \sum_{i=1}^{n} \mathbf{1}\{x_{i3} = 0, x_{i4} = 0, x_{i5} = 1\}$$

X_1	X_2		X_3		X_4	<i>X</i> ₅
<i>x</i> ₁₁	x ₁₂		<i>x</i> ₁₃	П	x ₁₄	x ₁₅
		•				
			•			
x_{n1}	x_{n2}	·	x_{n3}		x_{n4}	x_{n5}

$$v = 3$$
, $W = \{4,5\}$
 $a_v = 0$, $a_W = \{0,1\}$

$$\hat{p}(0_3 | 0_4, 1_5) = \frac{N(0_3, 0_4, 1_5)}{N(0_4, 1_5)}$$

Neighborhood estimator

Given the sample $\{x_{V_n}^{(i)}, i=1,\ldots,n\}$ and a constant c>0, the empirical neighborhood of $v\in V_n$ is the set of vertices $\widehat{\mathsf{ne}}(v)$ defined by

$$\widehat{\mathsf{ne}}(v) \; = \; \underset{W \subset V_n \backslash \{v\}}{\arg\max} \, \big\{ \log \hat{\mathbb{P}}(x_v^{(1:n)} | x_W^{(1:n)}) - c \, |A|^{|W|} \log n \, \big\} \, .$$

Consistency of the neighborhood estimator

Theorem (L, Carvalho & Frondana, 2021)

Let $v \in V_n$ for all $n \geq n_0$ and assume $|V_n| = o(\log n)$. Then for all c > 0, the neighborhood estimator satisfies $\widehat{\mathsf{ne}}(v) = \mathsf{ne}(v)$ with probability converging to 1 when $n \to \infty$. Moreover, if $c > |A|^2 [p_{\min}(|A|-1)]^{-1}$ then $\widehat{\mathsf{ne}}(v) = \mathsf{ne}(v)$ eventually almost surely as $n \to \infty$.

Consistency of the neighborhood estimator

Theorem (L, Carvalho & Frondana, 2021)

Let $v \in V_n$ for all $n \ge n_0$ and assume $|V_n| = o(\log n)$. Then for all c > 0, the neighborhood estimator satisfies $\widehat{\mathsf{ne}}(v) = \mathsf{ne}(v)$ with probability converging to 1 when $n \to \infty$. Moreover, if $c > |A|^2 [p_{\min}(|A|-1)]^{-1}$ then $\widehat{\mathsf{ne}}(v) = \mathsf{ne}(v)$ eventually almost surely as $n \to \infty$.

$$p_{\min}(v) = \min_{W \subset \mathsf{ne}(v)} \min_{a_v, a_W} \{ p(a_v | a_W) \colon p(a_v | a_W) > 0 \}$$

Graph estimator

Given $V' \subset V$ finite, we define $G_{V'}$ as the sub-graph induced by G; i.e the pair (V', E') where

$$E' = \{(v, w) \in E \colon v, w \in V'\}$$

Graph estimator

Given $V' \subset V$ finite, we define $G_{V'}$ as the sub-graph induced by G; i.e the pair (V', E') where

$$E' = \{(v, w) \in E \colon v, w \in V'\}$$

To estimate G' based on $\widehat{ne}(v)$, we have two possibilities:

$$\widehat{E}'_{\wedge} = \{(v,w) \in V' \times V' \colon v \in \widehat{\mathsf{ne}}(w) \ \ \mathsf{and} \ w \in \widehat{\mathsf{ne}}(v)\} \quad \to \quad \quad \mathsf{conservative}$$

Graph estimator

Given $V' \subset V$ finite, we define $G_{V'}$ as the sub-graph induced by G; i.e the pair (V', E') where

$$E' = \{(v, w) \in E \colon v, w \in V'\}$$

To estimate G' based on $\widehat{ne}(v)$, we have two possibilities:

$$\widehat{E}'_{\wedge} = \{(v, w) \in V' \times V' \colon v \in \widehat{\mathsf{ne}}(w) \text{ and } w \in \widehat{\mathsf{ne}}(v)\} \rightarrow \mathsf{conservative}$$

$$\widehat{E}'_{\vee} = \{(v, w) \in V' \times V' : v \in \widehat{\mathsf{ne}}(w) \text{ or } w \in \widehat{\mathsf{ne}}(v)\} \rightarrow \mathsf{non\text{-}conservative}$$

Consistency of the sub-graph estimator

Corollary (L, Carvalho & Frondana, 2021)

Let G'=(V',E') be the sub-graph induced by G with a finite set of vertices V'. Then for all c>0, if $|V_n|=o(\log n)$ we have that $\widehat{E}'_{\wedge}=\widehat{E}'_{\vee}=E'$ with probability converging to 1 when $n\to\infty$. If $c>|A|^2[p_{\min}(V')(|A|-1)]^{-1}$ then $\widehat{E}'_{\wedge}=\widehat{E}'_{\vee}=E'$ eventually almost surely as $n\to\infty$.

Simulations

Graph of the generated distribution

$$A = \{0, 1, 2\}$$

Figura: Estimated graph with the conservative approach

Simulations

Graph of the generated distribution

$$A = \{0, 1, 2\}$$

Figura: Estimated graph with the non-conservative approach

Simulations

Figura: Mean erros of overestimation, underestimation and total error computed on 30 runs of the simulations, for the conservative and non-conservative estimators

World wide stock indexes

➤ To illustrate the application of the graph estimator we analyzed stock indexed from different countries extracted from

```
https://br.investing.com/indices/world-indices
```

- ▶ The sample consists of n=530 observation in time, where each entry corresponds to the indicator function of a positive change from the previous day, for 15 countries
- ▶ In order to reduce dependency, we considered an interval of 4 days between observations

World wide stock indexes

Figura: Grafo estimado para os dados dos índices de acões de diferentes países, com o estimador "não conservador"

World wide stock indexes

Figura: Grafo estimado para os dados dos índices de acões de diferentes países, com o estimador "conservador"

São Francisco River

São Francisco River

Figure from Leonardi et al. (2021). *Independent block identification in multivariate time series*, Journal of Time Series Analysis, 2021.

Estimated graph

► The hypothesis of independence in the observations is strong, but the estimator seems to be consistent also on dependent data

- ► The hypothesis of independence in the observations is strong, but the estimator seems to be consistent also on dependent data
- We are working on consistency for mixing processes (Magno T.F. Severino' PhD project)

- ► The hypothesis of independence in the observations is strong, but the estimator seems to be consistent also on dependent data
- We are working on consistency for mixing processes (Magno T.F. Severino' PhD project)
- ► Computing the estimator is a problem... the exhaustive search is prohibited even for medium size graphs... So we are looking also for efficient algorithms

- ► The hypothesis of independence in the observations is strong, but the estimator seems to be consistent also on dependent data
- We are working on consistency for mixing processes (Magno T.F. Severino' PhD project)
- Computing the estimator is a problem... the exhaustive search is prohibited even for medium size graphs... So we are looking also for efficient algorithms
- ► An R package, called mrfse, was developed with the implementation of the algorithm by Rodrigo R.S. Carvalho, who is also working now on other algorithmic approaches

Thank you!

florencia@ime.usp.br
www.ime.usp.br/~leonardi

This work has the support of Brazilian agencies FAPESP and CNPq.