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Markov random fields on graphs

Let {Xv : v ∈ V } be a family of random variables taking values on A (finite), with joint
distribution P

V is the set of vertices or nodes and can be finite or countable infinite

For each ∆ ⊂ V (finite) we write

p(a∆) = P(X∆ = a∆) with a∆ ∈ A∆

and if p(a∆) > 0 we denote by

p(aΦ|a∆) = P(XΦ = aΦ|X∆ = a∆) for aΦ ∈ AΦ, a∆ ∈ A∆

the corresponding conditional probabilities.
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Markov random fields on graphs

Given v ∈ V , a neighborhood W of v is any finite set of vertices such that v /∈W .

A Markov neighborhood is a neighborhood W that satisfies

p(av|aW ) = p(av|a∆)

for all finite set ∆ ⊃W, v /∈ ∆ and all av ∈ A, a∆ ∈ A∆ with p(a∆) > 0.

Note! if W is a Markov neighborhood of v ∈ V , then any finite set ∆ ⊃W is also a
Markov neighborhood of v. On the other hand, if W1 and W2 are Markov
neighborhoods of v, it is not always true that W1 ∩W2 is a Markov neighborhood of v.
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Hypotheses

(I) Positivity condition: for all finite set W ⊂ V and all aW ∈ AW we have that
p(aW ) > 0.

(II) Markov intersection property: for all v ∈ V and all W1 and W2 Markov
neighborhoods of v, the set W1 ∩W2 is also a Markov neighborhood of v.

(I)⇒ (II) (Lauritzen, 1996)

(II) 6⇒ (I) Markov chain with transition matrix

P =

(
1/2 1/2
1 0

)
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Basic neighborhood

If P satisfies the Markov intersection property we can define the basic neighborhood
of a vertex v ∈ V as

ne(v) =
⋂

W∈Θ(v)

W.

where Θ(v) = {W : W is a Markov neighborhood of v}.

ne(v) is the smallest Markov neighborhood of v ∈ V .

The graph of intercation G = (V,E) for the measure P is defined by

(v, w) ∈ E if and only if w ∈ ne(v).
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Examples

X1 X2 X3 X4 X5

1

X4

X3 X2

X1

X5

1

X−2 X−1 X0 X1 X2

1

X(0,0) X(1,0)X(−1,0)

X(0,−1) X(1,−1)X(−1,−1)

X(0,1) X(1,1)X(−1,1)

1
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Neighborhood estimator

Let Vn ↗ V and let {x(i)
Vn

, i = 1, . . . , n} an i.i.d (partial) sample of the distribution P.

The maximum pseudo-likelihood for the vertex v ∈ V given the neighborhood W is
defined by

P̂(x(1:n)
v |x(1:n)

W ) =
∏

aW∈AW

∏
av∈A

p̂(av|aW )N(av ,aW ) ,

where the product is computed over all aW ∈ AW with p̂(aW ) > 0 and all av ∈ A with
p̂(av|aW ) > 0.

Here, N(av, aW ) counts the number of occurrencies of the “pattern” (av, aW ) in the
sample and p̂(av|aW ) are the usual empirical probabilities deriver from these
counters.
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Neighborhood estimator

Given the sample {x(i)
Vn

, i = 1, . . . , n} and a constant c > 0, the empirical
neighborhood of v ∈ Vn is the set of vertices n̂e(v) defined by

n̂e(v) = arg max
W⊂Vn\{v}

{
log P̂(x(1:n)

v |x(1:n)
W )− c |A||W | log n

}
.
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Consistency of the neighborhood estimator

Theorem (L, Carvalho & Frondana, 2021)

Let v ∈ Vn for all n ≥ n0 and assume |Vn| = o(log n). Then for all c > 0, the
neighborhood estimator satisfies n̂e(v) = ne(v) with probability converging to 1 when
n→∞. Moreover, if c > |A|2[pmin(|A| − 1)]−1 then n̂e(v) = ne(v) eventually almost
surely as n→∞.

pmin(v) = min
W⊆ne(v)

min
av ,aW

{ p(av|aW ) : p(av|aW ) > 0 }
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Graph estimator

Given V ′ ⊂ V finite, we define GV ′ as the sub-graph induced by G; i.e the pair
(V ′, E′) where

E′ = {(v, w) ∈ E : v, w ∈ V ′}

To estimate G′ based on n̂e(v), we have two possibilities:

Ê′∧ = {(v, w) ∈ V ′ × V ′ : v ∈ n̂e(w) and w ∈ n̂e(v)} → conservative

Ê′∨ = {(v, w) ∈ V ′ × V ′ : v ∈ n̂e(w) or w ∈ n̂e(v)} → non-conservative
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Consistency of the sub-graph estimator

Corollary (L, Carvalho & Frondana, 2021)

Let G′ = (V ′, E′) be the sub-graph induced by G with a finite set of vertices V ′. Then
for all c > 0, if |Vn| = o(log n) we have that Ê′∧ = Ê′∨ = E′ with probability converging
to 1 when n→∞. If c > |A|2[pmin(V ′)(|A| − 1)]−1 then Ê′∧ = Ê′∨ = E′ eventually
almost surely as n→∞.
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Simulations

Graph of the generated
distribution
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Figura: Estimated graph with the conservative
approach
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Figura: Estimated graph with the non-conservative
approach
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Simulations
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Figura: Mean erros of overestimation, underestimation and total error computed on 30 runs
of the simulations, for the conservative and non-conservative estimators
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World wide stock indexes

I To illustrate the application of the graph estimator we analyzed stock indexed
from different countries extracted from
https://br.investing.com/indices/world-indices

I The sample consists of n = 530 observation in time, where each entry
corresponds to the indicator function of a positive change from the previous day,
for 15 countries

I In order to reduce dependency, we considered an interval of 4 days between
observations
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World wide stock indexes
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Figura: Grafo estimado para os dados dos índices de acões de diferentes países, com o
estimador “não conservador”
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São Francisco River
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São Francisco River
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Figure from Leonardi et al. (2021). Independent block
identification in multivariate time series, Journal of Time
Series Analysis, 2021.
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Discussion and future work

I The hypothesis of independence in the observations is strong, but the estimator
seems to be consistent also on dependent data

I We are working on consistency for mixing processes (Magno T.F. Severino’ PhD
project)

I Computing the estimator is a problem... the exhaustive search is prohibited even
for medium size graphs... So we are looking also for efficient algorithms

I An R package, called mrfse , was developed with the implementation of the
algorithm by Rodrigo R.S. Carvalho, who is also working now on other
algorithmic approaches

23 / 24



Discussion and future work

I The hypothesis of independence in the observations is strong, but the estimator
seems to be consistent also on dependent data

I We are working on consistency for mixing processes (Magno T.F. Severino’ PhD
project)

I Computing the estimator is a problem... the exhaustive search is prohibited even
for medium size graphs... So we are looking also for efficient algorithms

I An R package, called mrfse , was developed with the implementation of the
algorithm by Rodrigo R.S. Carvalho, who is also working now on other
algorithmic approaches

23 / 24



Discussion and future work

I The hypothesis of independence in the observations is strong, but the estimator
seems to be consistent also on dependent data

I We are working on consistency for mixing processes (Magno T.F. Severino’ PhD
project)

I Computing the estimator is a problem... the exhaustive search is prohibited even
for medium size graphs... So we are looking also for efficient algorithms

I An R package, called mrfse , was developed with the implementation of the
algorithm by Rodrigo R.S. Carvalho, who is also working now on other
algorithmic approaches

23 / 24



Discussion and future work

I The hypothesis of independence in the observations is strong, but the estimator
seems to be consistent also on dependent data

I We are working on consistency for mixing processes (Magno T.F. Severino’ PhD
project)

I Computing the estimator is a problem... the exhaustive search is prohibited even
for medium size graphs... So we are looking also for efficient algorithms

I An R package, called mrfse , was developed with the implementation of the
algorithm by Rodrigo R.S. Carvalho, who is also working now on other
algorithmic approaches

23 / 24



Thank you!
florencia@ime.usp.br

www.ime.usp.br/~leonardi

This work has the support of Brazilian agencies FAPESP and CNPq.
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