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Drainage Network with Branching

Figure: Construction of the Drainage Network with Branching
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Drainage Network with Branching

The Drainage Network with Branching (DNB) will depend of two family of variables:

• (ω(z))z∈Z2 : A family of independent Bernoulli random variables with
parameter p ∈ (0, 1).

• (θ(z))z∈Z2 : A family of independent and identically distributed random
variables on {−1, 0, 1} that depends on a parameter ϵ ∈ (0, 1) and have the
following probability function:

P(θ(z) = 0) = ϵ, P(θ(z) = −1) = P(θ(z) = 1) =
1− ϵ

2
.

Xϵ will denote the DNB with branching parameter ϵ.

X n
ϵn = {( z1n ,

z2
n2 ) ∈ R2 : (z1, z2) ∈ Xϵ} will denote the diffusively rescaled DNB.

W l
n ⊂ X n will be the subset of the l-paths.

W r
n ⊂ X n will be the subset of the r-paths.
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Drainage Network with Branching

Our main objective is to describe the asymptotic behavior of the diffusively
rescaled DNB when ϵn = bn−α for different values of α > 0, where b is a positive
constant.

If we have α ∈ [0, 1), then X n
ϵn does not converge in distribution under diffusive

scaling. In this case, n ϵn diverges to infinity when n → ∞, which means that the
lattice Z2 is compressed faster than the reduction of the branching probability.
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Dual process for Drainage Network with Branching.

Figure: Construction of the dual process for the Drainage Network with Branching
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Brownian Web

Intuitively, the Brownian Web is a collection of coalescing Brownian motions,
starting from every point in space-time plane R2.

[Fontes, Isopi, Newman and Ravishankar] Brownian Web

There exists an (H,BH)-valued random variableW, called standard Brownian Web,
whose distribution is uniquely determined by the following properties:

(a) For each deterministic z ∈ R2, almost surely there is a unique path πz ∈ W(z);

(b) For any finite deterministic set of points z1, . . . , zk ∈ R2, the collection
(πz1 , . . . , πzk ) is distributed as coalescing (standard) Brownian motions;

(c) For any deterministic countable dense subset D ⊂ R2, almost surely, W is the
closure of {πz : z ∈ D} in (Π, d).
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Brownian Web

The Brownian Web W has a dual process Ŵ, which is called the dual Brownian
Web. Ŵ is a collection of coalescing paths running backward in time, which is
uniquely determined by the restriction that these paths cannot cross any path from
W.

The previous characterization can be extended to allow the Brownian paths to
have a fixed diffusion coefficient λ2 ̸= 1 and a drift b ̸= 0. The only difference
is in property (b), where the coalescing Brownian motions may have a diffusion
coefficient distinct from one and a non-zero drift. We denote by Wλ,b the Brownian
Web with diffusion coefficient λ2 > 0 and drift b ∈ R, We also denote Wλ,b = Wλ

if b = 0.
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Brownian Net

The Brownian Net generalizes the Brownian Web by allowing paths to branch
and was described by Rongfeng Sun and J. M. Swart. We will denote by Nb the
Brownian Net with branching parameter b.
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Brownian Net

Consider the paths (lz1 , . . . , lzk , rz′1 , . . . , rz′k′
) starting from the points (zi )1≤i≤k and

(z ′j )1≤j≤k′ in R2 that satisfy:

• (lz1 , . . . , lzk , rz′1 , . . . , rz′k′
) evolve independently until they meet each other. The

l-paths (lz1 , . . . , lzk ) coalesce when they meet and the same is true for the r-paths
(rz′1 , . . . , rz′k′

).

• Each pair of left-right paths (lzi , rz′j ) solves the following system of SDEs:{
dLt = I{Lt ̸=Rt}dB

l
t + I{Lt=Rt}dB

s
t − dt,

dRt = I{Lt ̸=Rt}dB
r
t + I{Lt=Rt}dB

s
t + dt,

where the l-path L and the r-path R have the restriction that Lt ≤ Rt for all t ≥ inf{u ≥
σL ∨ σR : Lu ≤ Ru}, with σL and σR being the starting times of L and R.

The pair of SDEs above has a unique solution and the above properties uniquely
determine the joint law of (lz1 , . . . , lzk , rz′1 , . . . , rz′k′

), called left-right coalescing Brownian

motions.
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Brownian Net

[Rongfeng Sun & Swart] Left-Right Brownian Web and it’s dual

There exists an H2-valued random variable (W l ,W r ), called the (standard) left-right
Brownian Web, whose distribution is uniquely determined by the following properties:

(i) For each deterministic z ∈ R2, W l and W r almost surely contain a single path
each that start from point z;

(ii) For any finite deterministic set of points z1, . . . zk , z
′
1, . . . z

′
k′ ∈ R2, the collection of

paths (lz1 , . . . , lzk , rz′1 , . . . , rz′k′
) is distributed as a family of left-right coalescing

Brownian motions.

(iii) For any deterministic countable dense sets Dl ,Dr ⊂ R2,

W l = {lz : z ∈ Dl} and W r = {rz : z ∈ Dr} a.s.

Futhermore, almost surely there exists a dual left-right Brownian Web (Ŵ l , Ŵ r ) ∈
Ĥ2, such that (W l , Ŵ l) (resp. (W r , Ŵ r )) is distributed as (W, Ŵ) tilted with drift −1
(resp. +1).
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Brownian Net

Given a set of paths K , denote by Hcross(K) the set of paths obtained by hopping a fi-
nite number of times among paths in K at crossing times. The Brownian Net is a (H,BH)-
valued random variable that can be constructed by setting N = Hcross(W l ∪W r ). It gives
the hopping characterization of The Brownian Net.

[Rongfeng Sun & Swart] Brownian Net - Wedge characterization

Let (W l ,W r , Ŵ l , Ŵ r ) be the standard left-right Brownian Web and its dual. Then almost
surely,

N = {π ∈ Π : π does not enter any wedge of (Ŵ l , Ŵ r ) from outside}

is the standard Brownian Net associated with (Ŵ l , Ŵ r ), i.e., N = Hcross(W l ∪W r ).
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Drainage Network with Branching - Main results

Our main objective is to describe the asymptotic behavior of the diffusively
rescaled DNB when ϵn = bn−α for different values of α > 0.

Theorem 1:

If ϵn = bn−α for some b > 0 and α > 1, then X n
ϵn converges in distribution in

H to the Brownian Web Wλ when n → ∞, where λ2 = λ2
p is the variance of an

increment of a DNB path.
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Drainage Network with Branching - Main results

Theorem 2:

Let W l
n (resp. W r

n ) be the set of l-paths (resp. r-paths) of a diffusively rescaled
DNB with parameter ϵn = bn−1 for some b > 0. There exist Ŵ l

n and Ŵ r
n dual

processes of W l
n and W r

n respectively such that

(W l
n,W

r
n , Ŵ

l
n, Ŵ

r
n ) =⇒ (W l

λ,bp ,W
r
λ,bp , Ŵ

l
λ,bp , Ŵ

r
λ,bp ) as n → ∞,

where bp = b(1−p)
(2−p)2 .
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Drainage Network with Branching - Main results

Theorem 3:

If we have X n
ϵn the diffusively rescaled Drainage Network with branching parameter

ϵn = bn−1 for b > 0, then X n
ϵn is tight and any subsequential limit contains the

Brownian Net Nbp,λ with bp = b(1−p)
(2−p)2 .

We conjecture that X n
ϵn converges to Nbp,λ
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Two key ingredients of the proofs

• Control on the probability of “long jumps”: For any fixed s > 0 and n ∈ N,
the probability that an specific path π from the DNB will make at least one
jump of size greater than g ≥ 1 in a time window of size sn2 is bounded from
above by 2sn2e−c(g−1), for some c = cp > 0.

• Estimates for coalescence times: Let τk denote the time until coalescence
between two l-paths (or two r-paths) that start within distance k from each
other. There exists a constant C0 > 0 such that for every t > 0 and k ∈ N
we have:

P(τk > t) ≤ C0k√
t
.
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Main steps in the proof of Theorem 1 (α > 1)

Consider a sequence of (H,BH)-valued random variables (Zn)n∈N. If (Zn)n∈N satisfies
the following four conditions, then it converges to a Brownian Web.

(T): The law of (Zn)n∈N is tight.

(I): There exists πn,z ∈ Zn for each z ∈ R2, such that for any deterministic z1, . . . , zk ∈ R2,
(πn,zi )1≤i≤k converge in distribution to coalescing Brownian motions starting at (zi )1≤i≤k .

(B1*): For any Z a subsequential weak limit of Zn, we have that for all t > 0,

lim sup
δ↓0

sup
a,t0∈R

P[ηZ(t0, t; a, a+ δ) ≥ 2] = 0

,
where ηX (t0, t; a, b) = |{π(t0 + t) : π ∈ X , π(t0) ∈ [a, b]}|, t0 ∈ R, t > 0, a < b, which
counts the number of distinct paths in X at time t0 + t, among all paths that start from
interval [a,b] at time t0.

(B2*): For any Z a subsequential weak limit of Zn, we have that for all t > 0

lim sup
δ↓0

1

δ
sup

a,t0∈R
P[ηZ(t0, t; a, a+ δ) ≥ 3] = 0.
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Main steps in the proof of Theorem 1 (α > 1)

(i) To prove (I), we show that under diffusive scaling, the distance between any
DNB path starting from a fixed point z and the path from the usual drainage
network starting from this same point and in the same environment goes to
zero as n → ∞.

(ii) To prove (T), we use that condition (I) implies tightness of (W l
n ∪W r

n ) and
the fact that the modulus of continuity of the entire system can be bounded
by the modulus of continuity of the collection of l-paths and r-paths.

(iii) The proofs of conditions (B1*) and (B2*) are more technical.
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Main steps in the proof of Theorem 3 (α = 1)

Consider a sequence of (H,BH)-valued random variables (Yn)n∈N. Based
on the existence of subsets of non-crossing paths W l

n, W
r
n ⊂ Yn, there are five

conditions that, if satisfied, guarantees that (Yn)n∈N converges to the Brownian
Net.

(C) No path π ∈ Yn crosses any l ∈ W l
n from right to left and no path π ∈ Yn

crosses any r ∈ W r
n from left to right.

(IN ) There exist ln,z ∈ W l
n and rn,z ∈ W r

n for each z ∈ R2, such that for any de-
terministic z1, . . . , zk , z

′
1, . . . , z

′
k′ ∈ R2, (ln,z1 , . . . , ln,zk , rn,z′1 , . . . , rn,z′k′ ) converges in

distribution to a random vector of paths (lz1 , . . . , lzk , rz′1 , . . . rz′k′ ) that is distributed
as a family of left-right coalescing Brownian motions.
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Main steps in the proof of Theorem 3 (α = 1)

(H) A.s., Yn contains all paths obtained by hopping among paths in W l
n ∪W r

n at
crossing times.

(U
′

N ) There exist Ŵ l
n, Ŵ

r
n ∈ Ĥ, whose starting points become dense in R2 as

n → ∞, such that a.s. paths in W l
n and Ŵ l

n (resp. paths in W r
n and Ŵ r

n ) do not
cross.

(U
′′

N ) For any weak limit point (Y,W l ,W r , Ŵ l , Ŵ r ) of (Yn,W
l
n,W

r
n , Ŵ

l
n, Ŵ

r
n )

and for any deterministic countable dense set D ⊂ R2, a.s. paths in Y do not enter

any wedge of (Ŵ l(D), Ŵ r (D)) from outside.

Rafael Santos Convergence of the DNB 22 / 25



Main steps in the proof of Theorem 3 (α = 1)

(i) Conditions (C) and (H) holds by the construction of the DNB. Condition
(U

′

N ) follows from the construction of the dual of the DNB.

(ii) Show that an l-path individually converges weakly under diffusive scaling to a
Brownian motion with diffusion coefficient λ2 and drift −bp.

(iii) Show that a single pair of l-path and r-path converge under diffusive scaling
to left-right Brownian motions. To achieve that we replace the r-path by a
different version that uses another environment when gets near to the l-path,
prove the convergence using this different path and prove that the system
with the original paths needs to converge to this same limit.

(iv) Extend the proof considering more l-paths and r-paths evolving together using
a construction argument.
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Final discussion: On the condition (U
′′

N )

We conjecture that the DNB with branching parameter ϵn = bn−1 converges
to the Brownian Net under diffusive scaling. But to prove that, still remains to
verify that the Brownian Net is an upper bound to any subsequential limit that we
obtain in Theorem 3, which can be achieved by proving that condition (U

′′

N ) holds.

So, we need to verify that for any subsequential weak limit (X ,W l ,W r , Ŵ l , Ŵ r )

of (Xn,W
l
n,W

r
n , Ŵ

l
n, Ŵ

r
n ) and for any deterministic countable dense set D ⊂ R2,

a.s. paths in X do not enter any wedge of (Ŵ l(D), Ŵ r (D)) from outside.
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