Models selection procedures for random objects driven by context tree models

Aline Duarte

works in colaboration with R. Fraiman, A. Galves, N. Hernandez, F. Lopes, G. Ost and C. Vargas

Universidade de São Paulo CEPID NeuroMat

UFRJ, November 2021

▶ A stochastic chain produce a sequence of stimuli

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

▶ A stochastic chain produce a sequence of stimuli

<u>Y1, Y2, ..., Yn</u> --MWW-impower-maddawywaliaddi --MWW-ampowra-iadawywaliaddi --MWW-ampowra-iadawywaliaddi --MWW-ampowra-iadawywaliaddi

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

▶ A stochastic chain produce a sequence of stimuli

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

https://game.numec.prp.usp.br/

Example of stochastic stimuli

Stimulus unit

- 2 strong beat
- 1 weak beat
- 0 silent unit

2 - right
 1 - center
 0 - left

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Example of stochastic stimuli

Stimulus unit

Stimuli sequence

1. Start with a deterministic sequence

 $\mathbf{2} \ 1 \ 1 \ \mathbf{2} \ \cdots$

2. Replace each weak beat by a silent unit independently and with a probability $\epsilon > 0$

One example of stochastic sequence would be

2 1 **1 2** 1 1 **2** 1 **1 2** 1 1 **2** 1 1 **2** 1 1 **2** ... **2** 1 0 **2** 1 1 **2** 0 0 **2** 1 1 **2** 0 1 **2**...

iernary erni			
context w	$\mathbf{p}(0 \mathbf{w})$	$\mathbf{p}(1 \mathbf{w})$	$\mathbf{p}(2 \mathbf{w})$
2	ϵ	$1-\epsilon$	0
21	ϵ	$1 - \epsilon$	0
20	ϵ	$1 - \epsilon$	0
11	0	0	1
10	0	0	1
01	0	0	1
00	0	0	1

Ternary CTM

 $\tau = \{2, 21, 11, 01, 20, 10, 00\}:$

 $\tau = \{2, 21, 11, 01, 20, 10, 00\}:$

 $\tau = \{2, 21, 11, 01, 20, 10, 00\}:$

(family of transition probabilities)

 $\tau = \{2, 21, 11, 01, 20, 10, 00\}$: (partition of the possible pasts)

(family of transition probabilities)

 $\tau = \{2, 21, 11, 01, 20, 10, 00\}$: (partition of the possible pasts)

This two objects characterize the stochastic simulation algorithm

Formal definition

▶ The string *u* is said to be a suffix of *v* $(u \leq v)$, if there exists a string *s* satisfying v = su.

- ▶ A context tree is defined as any set $\tau \subset A^* = \cup_{m=1}^{\infty} A^m$ satisfying
 - (i) Suffix Property. No string w ∈ τ is a proper suffix of another string s ∈ τ.
 - (ii) *Irreducibility*. No string belonging to τ can be replaced by a proper suffix without violating the suffix property.

Formal definition

▶ The string *u* is said to be a suffix of *v* ($u \leq v$), if there exists a string *s* satisfying v = su.

- ▶ A context tree is defined as any set $\tau \subset A^* = \cup_{m=1}^{\infty} A^m$ satisfying
 - (i) Suffix Property. No string w ∈ τ is a proper suffix of another string s ∈ τ.
 - (ii) *Irreducibility*. No string belonging to τ can be replaced by a proper suffix without violating the suffix property.

▶ We say $(X_n)_n$ is a context tree model with parameters (τ, p) if there exist a context function $c_\tau : A^* \to \tau$ such that

(i) for any $n \ge l(\tau)$ and any finite sequence $x_{-n}^{-1} \in A^n$ such that $p(x_{-n}^{-1}) > 0$, it holds that

$${\mathcal P}ig(X_{n+1}={\mathsf a}|X_1^n=x_{-n}^{-1}ig)={\mathcal p}ig(X_{n+1}={\mathsf a}|c_{ au}(x_{-n}^{-1})ig)$$
 for all ${\mathsf a}\in A$

(ii) no proper suffix of $c_{\tau}(x_{-n}^{-1})$ satisfies condition 2.

- ▶ Elements of a context tree (the leaves) are called contexts
- ▶ Introduced by Rissanen as an universal system of data compression

- Also called
 - > stochastic chains with memory of variable length and
 - variable length Markov chains

Stimuli and answers relation

• How we define the dependence of Y_k in terms of

$$\ldots, X_{k-3}, X_{k-2}, X_{k-1}, X_k?$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

► The distribution of *Y_k* should depend only on the **context** associated to this sequence of past stimulus

Formally

► The bivariate stochastic chain $(X_n, Y_n)_n$ taking values in $A \times F$ is a sequence of random objects driven by context tree models with parameters (τ, p, q) , where $q = (q(\cdot | w) : w \in \tau)$ is a family of probability measures on (F, \mathcal{F}) , if

(i) $(X_n)_n$ is a context tree model with parameters (τ, p) ;

(ii) Conditionally to the sequence (X_n)_n, (Y_n)_n are independent random variables and, for any integers ℓ(τ) ≤ m ≤ n, any string Xⁿ_{m-ℓ(τ)+1} ∈ A^{n-m+ℓ(τ)} and any sequence J_m,..., J_n of *F*-measurable sets, it holds

$$P(Y_m \in J_m, \dots, Y_n \in J_n | X_{m-\ell(\tau)+1}^n = x_{m-\ell(\tau)+1}^n)$$
$$= \prod_{k=m}^n q(Y_k \in J_k | c_\tau(x_1^k))$$

For CTM we have statistical procedures to $(\hat{\tau}, \hat{p})$ consistently.

- Algorithm context (Rissanen 83)
- BIC (Csiszár and Talata 06)
- SMC (Galves, Galves, García, Garcia and Leonardi 12)
- ▶ How to check the time-dependency of the answer sequence?
- ▶ It depends on the type of answer data: functional or categorical

$$\begin{cases} \mathsf{Functional} \Rightarrow \mathsf{Algorithm\ context} + \mathsf{Projective\ mehod} \\ \mathsf{Categorical} \Rightarrow \begin{cases} \mathsf{Algorithm\ context} + \mathsf{Conditional\ likelihood} \\ \mathsf{Algorithm\ context} + \mathsf{Offspring\ emp.\ distr.} \\ \mathsf{BIC} \end{cases} \Rightarrow \mathit{SMC} \end{cases}$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● ● ●

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Algorithm context

1. Set as candidate tree *the biggest* context tree possible

Algorithm context

- 1. Set as candidate tree the biggest context tree possible
- 2. Choose a final branch which has not been tested yet

Algorithm context

- 1. Set as candidate tree the biggest context tree possible
- 2. Choose a final branch which has not been tested yet
 - 2.1 Test the branch statistically following some criterion

- 2.2 Use the criterion to prune or not the branch
- 3. Run step 2 until all branches are tested.

Algorithm context

- 1. Set as candidate tree the biggest context tree possible
- 2. Choose a final branch which has not been tested yet
 - 2.1 Test the branch statistically following some criterion
 - 2.2 Use the criterion to prune or not the branch
- 3. Run step 2 until all branches are tested.

A subtree in *τ* induced by *s* is defined as the set *τ_s* = {*w* ∈ *τ* : *s* ≺ *w*}.
A subtree is said terminal if for all *w* ∈ *τ_s* it holds that *w* = *as* for some *a* ∈ *A*.

Given a finite string $u \in A^*$, denote the number of its occurrence by

$$N_n^X(u) = \sum_{t=l(u)}^{n-1} \mathbb{1}_{\{X_{t-l(u)+1}^t = u\}}.$$

An admissible context tree of maximum height L for the sample $(X_1, ..., X_n)$ is any context tree τ satisfying

i) $w \in \tau$ if and only if $I(w) \leq L$ and $N_n^X(w) \geq 1$.

(any context appears at least once in the sample X)

ii) Any string $v \in A^*$ with $N_n^X(v) \ge 1$ is a suffix of some $w \in \tau$ or has a suffix $w \in \tau$. (any string which appears in the sample X is represented in τ)

The set of all admissible context trees of maximal height L: $\Gamma^{L}(X_{1}^{n})$.

Functional case

- Consider $F = L^2([0, T])$ and \mathcal{F} the Borel σ -algebra on $L^2([0, T])$.
- ▶ For any string $s \in A^*$ with $I(s) \leq L$, define

$$I_n(s) = \{I(s) \le m \le n : X_{m-I(s)+1}^m = s\}.$$
 (1)

- By definition, the set $I_n(s)$ has $N_n^X(s)$ elements.
- Set $Y_k^{(s)}$ the *k*-occurrence of *s*.
- ► Thus $Y^{(s)} = \{Y_1^{(s)}, ..., Y_{N_n^X(s)}^{(s)}\}$ is the subsample of $(Y_1, ..., Y_n)$ induced by the string s.

Functional case

- Consider $F = L^2([0, T])$ and \mathcal{F} the Borel σ -algebra on $L^2([0, T])$.
- ▶ For any string $s \in A^*$ with $I(s) \leq L$, define

$$I_n(s) = \{I(s) \le m \le n : X_{m-I(s)+1}^m = s\}.$$
 (1)

- By definition, the set $I_n(s)$ has $N_n^X(s)$ elements.
- Set $Y_k^{(s)}$ the *k*-occurrence of *s*.
- ► Thus $Y^{(s)} = \{Y_1^{(s)}, ..., Y_{N_n^x(s)}^{(s)}\}$ is the subsample of $(Y_1, ..., Y_n)$ induced by the string s.

Given a sample $(X_1, Y_1), ..., (X_n, Y_n)$.

1. Use (X_1, \ldots, X_n) to construct a admissible context tree τ of maximum height L.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Given a sample $(X_1, Y_1), ..., (X_n, Y_n)$.

- 1. Use (X_1, \ldots, X_n) to construct a admissible context tree τ of maximum height L.
- 2. Choose a terminal subtree $\tau_u = \{ w \in \tau : w \prec u \}$ which has not been tested yet
- 3. Test null hypothesis.

$$H_{0}^{(u)}: \mathcal{L}\left(Y_{1}^{(s)}, ..., Y_{N_{n}^{x}(s)}^{(s)}\right) = \mathcal{L}\left(Y_{1}^{(v)}, ..., Y_{N_{n}^{x}(v)}^{(v)}\right), \, \forall \, s, v \in \hat{\tau}_{u},$$

- 3.1 ► If the null hypothesis is not rejected, prune the branch.
 ► If the null hypothesis is rejected, keep the branch.
- 4. Run step 2 until all branches are tested.

Projective Method

Cuesta-Albertos (2006): If the law of $R_k^{(u)}$ and $R_k^{(v)}$ are different, so are the laws of $Y_k^{(u)}$ and $Y_k^{(v)}$.

Step 3.

Given a string $u \in A^*$, we test

$$\mathcal{H}_0^{(u)}:\mathcal{L}ig(Y^{(s)}ig)=\mathcal{L}ig(Y^{(v)}ig),\,orall\,s,v\in\hat au_u,$$

using the test statistic

$$\Delta_n(u) = \Delta_n^W(u) = \max_{s,v \in \hat{\tau}_u} \sqrt{\frac{N_n^X(s)N_n^X(v)}{N_n^X(s) + N_n^X(v)}} KS(\hat{Q}_n^{s,W}, \hat{Q}_n^{v,W}).$$

Here W is a realization of a Brownian bridge in the interval [0, T], $KS(\hat{Q}_n^{s,W}, \hat{Q}_n^{v,W})$ is the KS distance between the empirical distributions $\hat{Q}_n^{s,W}$ and $\hat{Q}_n^{v,W}$ of the projected samples

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Step 3.

Given a string $u \in A^*$, we test

$$\mathcal{H}_0^{(u)}:\mathcal{L}ig(Y^{(s)}ig)=\mathcal{L}ig(Y^{(v)}ig),\,orall\,s,v\in\hat au_u,$$

using the test statistic

$$\Delta_n(u) = \Delta_n^W(u) = \max_{s,v \in \hat{\tau}_u} \sqrt{\frac{N_n^X(s)N_n^X(v)}{N_n^X(s) + N_n^X(v)}} KS(\hat{Q}_n^{s,W}, \hat{Q}_n^{v,W}).$$

Here W is a realization of a Brownian bridge in the interval [0, T], $KS(\hat{Q}_n^{s,W}, \hat{Q}_n^{v,W})$ is the KS distance between the empirical distributions $\hat{Q}_n^{s,W}$ and $\hat{Q}_n^{v,W}$ of the projected samples

- ▶ If $\Delta_n(u) < c$, prune the brunch
- ▶ Otherwise, keep the brunch

Let P be a probability measure on (F, \mathcal{F}) . Suppose that P satisfies H1. The *Carleman condition*: all the absolute moments $m_k = \int ||h||^k P(dh), \ k \geq 1$, are finite and

$$\sum_{k\geq 1}m_k^{-1/k}=+\infty.$$

H2. Continuity: for any $h \in F$, where P^h is defined by

$$P^h((-\infty,t]) = P(x \in F : \langle x,h \rangle \leq t), \ t \in \mathbb{R}.$$

H3. The family q is *identifiable:* for any context $s \in \tau$ there exits a pair $u, v \in \tau_w$ such that and $q(\cdot | v) \neq q(\cdot | u)$.

Theorem: DFGOV 19

Let $(X_0, Y_0), \ldots, (X_n, Y_n)$ be a sample produced by sequence of random objects driven by a context tree model compatible with (τ^*, p^*, q^*) , and let $\hat{\tau}_n$ be the context tree selected from the sample by Algorithm with $L \ge \ell(\tau^*)$ and threshold $c_{\alpha_n} = \sqrt{(1/2) \ln(2/\alpha_n)}$, where $\alpha_n \in (0, 1)$. If (τ^*, p^*) is irreducible and q^* is continuous and satisfies Carleman condition, then for $\alpha_n \to 0$ slowly enough as $n \to \infty$,

$$\lim_{n\to\infty} P(\hat{\tau}_n\neq\tau^*)=0.$$

► Straight adaptation from single to bivariate case.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

► Straight adaptation from single to bivariate case.

▶ Number of occurrences of the string u in the sample $(X_1, ..., X_n)$ followed by the occurrence of the symbol a in the sample $(Y_1, ..., Y_n)$

$$N_n^{XY}(u,a) = \sum_{t=l(u)}^{n-1} \mathbb{1}_{\{X_{t-l(u)+1}^t = u; Y_{t+1} = a\}}.$$

► Empirical conditional transition probability

$$\hat{q}(a|u) = rac{N_n^{XY}(u,a)}{N_n^X(u)}$$

Statistic for the algorithm context

▶ The conditional likelihood for a sample $(X_1, Y_1), \ldots, (X_n, Y_n)$

$$L_{(\tau,\hat{q})}(Y_1^n \mid X_1^n) = \prod_{u \in \tau} \prod_{a \in A} \hat{q}(a|u)^{N_n^{XY}(u,a)},$$

Define the statistics

$$\bar{\Delta}_n(u) = \sum_{b \in A} \sum_{a \in A} N_n^{XY}(bu, a) \log \frac{\hat{q}(a|bu)}{\hat{q}(a|u)},$$

Statistic for the algorithm context

▶ The conditional likelihood for a sample $(X_1, Y_1), \ldots, (X_n, Y_n)$

$$L_{(\tau,\hat{q})}(Y_1^n \mid X_1^n) = \prod_{u \in \tau} \prod_{a \in A} \hat{q}(a|u)^{N_n^{XY}(u,a)},$$

Define the statistics

$$\bar{\Delta}_n(u) = \sum_{b \in A} \sum_{a \in A} N_n^{XY}(bu, a) \log \frac{\hat{q}(a|bu)}{\hat{q}(a|u)},$$

and

$$ilde{\Delta}_n(u) = \max_{b \in A} \Big(\max_{a \in A} |\hat{q}(a|u) - \hat{q}(a|bu)| \Big).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Statistic for the algorithm context

▶ The conditional likelihood for a sample $(X_1, Y_1), \ldots, (X_n, Y_n)$

$$L_{(\tau,\hat{q})}(Y_1^n \mid X_1^n) = \prod_{u \in \tau} \prod_{a \in A} \hat{q}(a|u)^{N_n^{XY}(u,a)},$$

Define the statistics

$$\bar{\Delta}_n(u) = \sum_{b \in \mathcal{A}} \sum_{a \in \mathcal{A}} N_n^{XY}(bu, a) \log \frac{\hat{q}(a|bu)}{\hat{q}(a|u)},$$

and

$$ilde{\Delta}_n(u) = \max_{b \in A} \Big(\max_{a \in A} |\hat{q}(a|u) - \hat{q}(a|bu)| \Big).$$

Fix a threshold δ > 0 and denote by Δ either Δ or Δ
(i) If Δ_n(u) < δ we prune the subtree τ̂_u.
(ii) If Δ_n(u) ≥ δ we keep τ̂_u.

Formally

▶ Set $C_w((X, Y)_1^n) = 0$ for all $w \in \mathcal{T}_n^L$, and, for any $u \prec w \in \mathcal{T}_n^L$ define

$$C_{u,n} = \max\left\{1_{\{\Delta_n(u)\geq\delta\}}, \max_{b\in\mathcal{A}}C_{bu,n}\right\}.$$

The context tree estimator $\hat{\tau}^{\delta}_{C,n} = \hat{\tau}^{\delta}_{C}((X,Y)^{n}_{1})$ is given by

$$\hat{\tau}_{\mathcal{C},n}^{\delta} = \{ w \preceq v \in \mathcal{T}_n^{\mathcal{L}} : \mathcal{C}_{w,n} = 0 \text{ and } \mathcal{C}_{u,n} = 1 \text{ for all } u \prec w \}.$$

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Formally

▶ Set $C_w((X, Y)_1^n) = 0$ for all $w \in \mathcal{T}_n^L$, and, for any $u \prec w \in \mathcal{T}_n^L$ define

$$C_{u,n} = \max\left\{1_{\{\Delta_n(u) \geq \delta\}}, \max_{b \in \mathcal{A}} C_{bu,n}\right\}.$$

The context tree estimator $\hat{\tau}^{\delta}_{C,n} = \hat{\tau}^{\delta}_{C}((X,Y)^{n}_{1})$ is given by

$$\hat{\tau}^{\delta}_{\mathcal{C},n} = \{ w \preceq v \in \mathcal{T}^{\mathcal{L}}_{n} : \mathcal{C}_{w,n} = 0 \text{ and } \mathcal{C}_{u,n} = 1 \text{ for all } u \prec w \}.$$

Consistency

Let $(X_0, Y_0), \ldots, (X_n, Y_n)$ be a sample produced by sequence of random objects driven by a context tree model compatible with (τ^*, p^*, q^*) . The context tree $\hat{\tau}_{C,n}^{\delta}$ selected from the sample by Algorithm, with $\ell(\tau^*) < L < \log(n)$, eventually almost surely as $n \to \infty$, satisfies

$$\hat{\tau}_{C,n}^{\delta} = \tau^*$$

Bayesian Information Criterion (BIC)

$$\hat{\tau}^{c}_{BIC,n} = \operatorname{argmax}_{\tau \in \Gamma^{L}_{n}} \Big\{ \log L_{(\tau,\hat{q})}(Y_{1}^{n} \mid X_{1}^{n}) - c \, df(\tau) \log(n) \Big\}.$$

(ロ)、(型)、(E)、(E)、 E) の(の)

where df stands for the degree of freedom of the model.

Bayesian Information Criterion (BIC)

▶ The BIC estimator is defined as

$$\hat{\tau}^{c}_{BIC,n} = \operatorname{argmax}_{\tau \in \Gamma_{n}^{L}} \Big\{ \log L_{(\tau,\hat{q})}(Y_{1}^{n} \mid X_{1}^{n}) - c \, df(\tau) \log(n) \Big\}.$$

where df stands for the degree of freedom of the model.

▶ For any $w \in \mathcal{T}_n^L$, define $V_{w,n} = n^{-c \cdot df(w)} L_{(w,\hat{q})}(Y_1^n \mid X_1^n)$ and the indicator $\mathcal{X}_{w,n} = 0$

For any $w \prec u \in \mathcal{T}_n^L$ define recursively the quantity

$$V_{w,n} = \max\left\{n^{-c \cdot df(w)} L_{(w,\hat{q})}(Y_1^n \mid X_1^n), \prod_{b \in A} V_{bw,n}\right\}$$

and the indicator

$$\mathcal{X}_{w,n} = \mathbb{1}\Big\{\prod_{b\in A} V_{bw,n} > n^{-c\cdot df(w)} L_{(w,\hat{q})}(Y_1^n \mid X_1^n)\Big\}.$$

Bayesian Information Criterion (BIC)

▶ The BIC estimator is defined as

$$\hat{\tau}^{c}_{BIC,n} = \operatorname{argmax}_{\tau \in \Gamma_{n}^{L}} \Big\{ \log L_{(\tau,\hat{q})}(Y_{1}^{n} \mid X_{1}^{n}) - c \, df(\tau) \log(n) \Big\}.$$

where df stands for the degree of freedom of the model.

▶ For any $w \in \mathcal{T}_n^L$, define $V_{w,n} = n^{-c \cdot df(w)} L_{(w,\hat{q})}(Y_1^n \mid X_1^n)$ and the indicator $\mathcal{X}_{w,n} = 0$

▶ For any $w \prec u \in \mathcal{T}_n^L$ define recursively the quantity

$$V_{w,n} = \max\left\{n^{-c \cdot df(w)} L_{(w,\hat{q})}(Y_1^n \mid X_1^n), \prod_{b \in A} V_{bw,n}\right\}$$

and the indicator

$$\mathcal{X}_{w,n} = \mathbb{1}\Big\{\prod_{b\in A} V_{bw,n} > n^{-c \cdot df(w)} \mathcal{L}_{(w,\hat{q})}(Y_1^n \mid X_1^n)\Big\}.$$

▶ The estimated context tree can be written as

$$\hat{\tau}^{c}_{BIC,n} = \{ w \leq s \in \mathcal{T}_{n}^{L} : \mathcal{X}_{w,n} = 0 \text{ and } \mathcal{X}_{u,n} = 1 \text{ for all } u \prec w \}.$$

Consistency

Let $(X_0, Y_0), \ldots, (X_n, Y_n)$ be a sample produced by sequence of random objects driven by a context tree model compatible with (τ^*, p^*, q^*) . The context tree $\hat{\tau}^{\delta}_{BIC,n}$ selected from the sample by BIC procedure, with $\ell(\tau^*) < L < \log(n)$, eventually almost surely as $n \to \infty$, satisfies

$$\hat{\tau}_{BIC,n}^{c} = \tau^*$$

▶ The tree estimation procedure presented are constant dependent

$$\bar{\Delta}_n(u) = \sum_{b \in A} \sum_{a \in A} N_n^{XY}(bu, a) \log \frac{\hat{q}(a|bu)}{\hat{q}(a|u)} < \delta$$
$$\tilde{\Delta}_n(u) = \max_{b \in A} \left(\max_{a \in A} |\hat{q}(a|u) - \hat{q}(a|bu)| \right) < \delta$$
$$\operatorname{argmax}_{\tau \in \Gamma_n^L} \left\{ \log L_{(\tau, \hat{q})}(Y_1^n | X_1^n) - c \cdot df(\tau) \log(n) \right\}.$$

- (i) Construct a set of candidate models: champion trees.
- (ii) Choose a optimal model within the set of champion trees.

The champion trees obtained will depend on the model selection procedure

- (i) Construct a set of candidate models: champion trees.
- (ii) Choose a optimal model within the set of champion trees.

The champion trees obtained will depend on the model selection procedure

Compute the champion trees:

Denote by ℓ the constant either in the algorithm context or BIC. Start with $\ell = 0$ and successively increase the value of ℓ

Theorem: General SMC

Assume $(X_1, Y_1), \dots, (X_n, Y_n)$ is a sample of a sequence of random objects driven by a context tree model with parameters (τ^*, p^*, q^*) . Given a set $\mathcal{C}_n \subset \Gamma^L(X_n^1)$, with $|\tau^*| \leq L < \log(n)$, satisfying

(i) C_n is totally ordered with respect to \succ and

(ii) eventually almost surely $\tau^* \in \mathcal{C}_n$ as $n \to \infty$.

The following holds:

1. For any $\tau \in C_n$, with $\tau \prec \tau^*$, there exists a constant $c(\tau^*, \tau) > 0$ such that

$$\log L_{(\tau^*,\hat{q})} - \log L_{(\tau,\hat{q})} \ge c(\tau^*,\tau)n \tag{2}$$

2. For any $\tau \prec \tau' \in C_n$, with $\tau^* \preceq \tau$, there exists a constant $c(\tau', \tau) > 0$ such that

$$\log L_{(\tau',\hat{q})} - \log L_{(\tau,\hat{q})} \le c(\tau',\tau) \log n \tag{3}$$

The tree model selection procedures satisfy the Thm

Assume $(X_1, Y_1), \dots, (X_n, Y_n)$ is a sample of a sequence of random objects driven by context tree model with parameters (τ^*, p^*, q^*) . Consider the map $\ell \in [0, +\infty] \mapsto \hat{\tau}_n^\ell \in \Gamma^L(X_n^1)$ with $|\tau^*| \leq L < \log(n)$ and $\hat{\tau}_n^\ell$ denoting either $\hat{\tau}_{\bar{C}}^\ell((X, Y)_1^n), \hat{\tau}_{\tilde{C}}^\ell((X, Y)_1^n)$ or $\hat{\tau}_{BIC}^\ell((X, Y)_1^n)$ Denote by

$$\mathcal{C}_n = \{\hat{\tau}_n^\ell : \ell \in [0, +\infty]\}.$$

The set C_n is totally ordered with respect to \succ and eventually almost surely $\tau^* \in C_n$ as $n \to \infty$.

$$\begin{cases} \mathsf{Functional} \Rightarrow \begin{cases} \mathsf{Algorithm\ context\ +\ Projective\ mehod} \\ \mathsf{Algorithm\ context\ +\ Other\ statistics} \end{cases} \\ \\ \mathsf{Categorical} \Rightarrow \begin{cases} \mathsf{Algorithm\ context\ +\ Other\ statistics} \\ \mathsf{Algorithm\ context\ +\ Offspring\ emp.\ distr.} \\ \\ \mathsf{BIC} \\ \\ \mathsf{Other\ Statistics} \end{cases} \end{cases} \Rightarrow SMC$$

◆□ → ◆昼 → ◆臣 → ◆臣 → ◆□ →

- Functional case: Duarte, A., Fraiman, R., Galves, A., Ost, G., and Vargas, C. D., 2019, Retrieving a context tree from eeg data. Mathematics, 7(5).
- ► Application in neurobiological data:
- Categorical case: SeqROCTM: A Matlab toolbox for the analysis of Sequence of Random Objects driven by Context Tree Models.
- **Codes:** https://github.com/noslenh/SeqROCTM-Matlab-Toolbox.