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Motivation

I A stochastic chain produce a sequence of stimuli

Stochastic

stimuli

X1,X2, . . . ,Xn

Physiological or

behavioral answear

Y1,Y2, . . . ,Yn
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Example of stochastic stimuli

Stimulus unit

I 2 - strong beat

I 1 - weak beat

I 0 - silent unit

I 2 - right

I 1 - center

I 0 - left

Stimuli sequence

1. Start with a deterministic sequence

2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 · · ·
2. Replace each weak beat by a silent unit independently and with a

probability ε > 0

One example of stochastic sequence would be

2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 · · ·
2 1 0 2 1 1 2 0 0 2 1 1 2 0 1 2 · · ·
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Characterizing the stochastic sequence

2 1 1 2 1 1 2 1 0 2 1 1 2 0 1 2 1 1 2 0 0 2 · · ·

00 10 20 01 11 21

2

τ = {2, 21, 11, 01, 20, 10, 00}:

I This two objects characterize the stochastic simulation algorithm
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Formal definition

I The string u is said to be a suffix of v (u � v), if there exists a string

s satisfying v = su.

I A context tree is defined as any set τ ⊂ A∗ = ∪∞m=1A
m satisfying

(i) Suffix Property. No string w ∈ τ is a proper suffix of another string

s ∈ τ .

(ii) Irreducibility. No string belonging to τ can be replaced by a proper

suffix without violating the suffix property.

I We say (Xn)n is a context tree model with parameters (τ, p) if there

exist a context function cτ : A∗ → τ such that

(i) for any n ≥ l(τ) and any finite sequence x−1
−n ∈ An such that

p(x−1
−n ) > 0, it holds that

P
(
Xn+1 = a|X n

1 = x−1
−n
)

= p
(
Xn+1 = a|cτ (x−1

−n )
)

for all a ∈ A.

(ii) no proper suffix of cτ (x−1
−n ) satisfies condition 2.
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Context tree models

I Elements of a context tree (the leaves) are called contexts

I Introduced by Rissanen as an universal system of data compression

I Also called

. stochastic chains with memory of variable length and

. variable length Markov chains



Stimuli and answers relation

I How we define the dependence of Yk in terms of

. . . , Xk−3, Xk−2, Xk−1, Xk?

I The distribution of Yk should depend only on the context

associated to this sequence of past stimulus



Formally

I The bivariate stochastic chain (Xn,Yn)n taking values in A× F is a

sequence of random objects driven by context tree models with

parameters (τ, p, q), where q = (q(· | w) : w ∈ τ) is a family of

probability measures on (F ,F), if

(i) (Xn)n is a context tree model with parameters (τ, p);

(ii) Conditionally to the sequence (Xn)n, (Yn)n are independent random

variables and, for any integers `(τ) ≤ m ≤ n, any string

xnm−`(τ)+1 ∈ An−m+`(τ) and any sequence Jm, . . . , Jn of

F-measurable sets, it holds

P
(
Ym ∈ Jm, . . . ,Yn ∈ Jn|X n

m−`(τ)+1 = xnm−`(τ)+1

)
=

n∏
k=m

q
(
Yk ∈ Jk |cτ

(
xk1
))



What about model selection?

I For CTM we have statistical procedures to (τ̂ , p̂) consistently.

. Algorithm context (Rissanen 83)

. BIC (Csiszár and Talata 06)

. SMC (Galves, Galves, Garćıa, Garcia and Leonardi 12)

I How to check the time-dependency of the answer sequence?

I It depends on the type of answer data: functional or categorical



Model selection procedures



Functional⇒ Algorithm context + Projective mehod

Categorical⇒


Algorithm context + Conditional likelihood

Algorithm context + Offspring emp. distr.

BIC

⇒ SMC



General algorithm context

Algorithm context

1. Set as candidate tree the biggest context tree possible

2. Choose a final branch which has not been tested yet

2.1 Test the branch statistically following some criterion

2.2 Use the criterion to prune or not the branch

3. Run step 2 until all branches are tested.

I A subtree in τ induced by s is defined as the set τs = {w ∈ τ : s ≺ w}.
I A subtree is said terminal if for all w ∈ τs it holds that w = as for

some a ∈ A.
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The biggest context tree

Given a finite string u ∈ A∗ , denote the number of its occurrence by

NX
n (u) =

n−1∑
t=l(u)

1{X t
t−l(u)+1

=u}.

An admissible context tree of maximum height L for the sample

(X1, ...,Xn) is any context tree τ satisfying

i) w ∈ τ if and only if l(w) ≤ L and NX
n (w) ≥ 1.

(any context appears at least once in the sample X)

ii) Any string v ∈ A∗ with NX
n (v) ≥ 1 is a suffix of some w ∈ τ or has

a suffix w ∈ τ . (any string which appears in the sample X is represented in τ)

The set of all admissible context trees of maximal height L: ΓL(X n
1 ).



Functional case

I Consider F = L2([0,T ]) and F the Borel σ−algebra on L2([0,T ]).

I For any string s ∈ A∗ with l(s) ≤ L, define

In(s) = {l(s) ≤ m ≤ n : Xm
m−l(s)+1 = s}. (1)

I By definition, the set In(s) has NX
n (s) elements.

I Set Y
(s)
k the k−occurrence of s.

I Thus Y (s) = {Y (s)
1 , ...,Y

(s)
NX

n (s)
} is the subsample of (Y1, ...,Yn)

induced by the string s.
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Given a sample (X1,Y1), . . . , (Xn,Yn).

1. Use (X1, . . . ,Xn) to construct a admissible context tree τ of

maximum height L.

2. Choose a terminal subtree τu = {w ∈ τ : w ≺ u} which has not

been tested yet

3. Test null hypothesis.

H
(u)
0 : L

(
Y

(s)
1 , ...,Y

(s)
NX

n (s)

)
= L

(
Y

(v)
1 , ...,Y

(v)
NX

n (v)

)
, ∀ s, v ∈ τ̂u,

3.1 I If the null hypothesis is not rejected, prune the branch.

I If the null hypothesis is rejected, keep the branch.

4. Run step 2 until all branches are tested.
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Projective Method

Projection on a

Brownian Motion

Y (u) Y (v)

R(u) ∈ RR(v) ∈ R

Cuesta-Albertos (2006): If the law of R
(u)
k and R

(v)
k are different, so are

the laws of Y
(u)
k and Y

(v)
k .



Step 3.

Given a string u ∈ A∗, we test

H
(u)
0 : L

(
Y (s)

)
= L

(
Y (v)

)
, ∀ s, v ∈ τ̂u,

using the test statistic

∆n(u) = ∆W
n (u) = max

s,v∈τ̂u

√
NX

n (s)NX
n (v)

NX
n (s) + NX

n (v)
KS(Q̂s,W

n , Q̂v ,W
n ).

Here W is a realization of a Brownian bridge in the interval [0,T ],

KS
(
Q̂s,W

n , Q̂v ,W
n

)
is the KS distance between the empirical distributions

Q̂s,W
n and Q̂v ,W

n of the projected samples

I If ∆n(u) < c , prune the brunch

I Otherwise, keep the brunch
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Hypothesis

Let P be a probability measure on (F ,F). Suppose that P satisfies

H1. The Carleman condition: all the absolute moments

mk =
∫
||h||kP(dh), k ≥ 1, are finite and∑

k≥1

m
−1/k
k = +∞.

H2. Continuity : for any h ∈ F , where Ph is defined by

Ph((−∞, t]) = P(x ∈ F : 〈x , h〉 ≤ t), t ∈ R.

H3. The family q is identifiable: for any context s ∈ τ there exits a pair

u, v ∈ τw such that and q(· | v) 6= q(· | u).



Theorem: DFGOV 19

Let (X0,Y0), . . . , (Xn,Yn) be a sample produced by sequence of random

objects driven by a context tree model compatible with (τ∗, p∗, q∗), and

let τ̂n be the context tree selected from the sample by Algorithm with

L ≥ `(τ∗) and threshold cαn =
√

(1/2) ln(2/αn), where αn ∈ (0, 1). If

(τ∗, p∗) is irreducible and q∗ is continuous and satisfies Carleman

condition, then for αn → 0 slowly enough as n→∞,

lim
n→∞

P(τ̂n 6= τ∗) = 0.



Categorical case

I Straight adaptation from single to bivariate case.

I Number of occurrences of the string u in the sample (X1, ...,Xn)

followed by the occurrence of the symbol a in the sample (Y1, ...,Yn)

NXY
n (u, a) =

n−1∑
t=l(u)

1{X t
t−l(u)+1

=u;Yt+1=a}.

I Empirical conditional transition probability

q̂(a|u) =
NXY

n (u, a)

NX
n (u)
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Statistic for the algorithm context

I The conditional likelihood for a sample (X1,Y1), . . . .(Xn,Yn)

L(τ,q̂)(Y
n
1 | X n

1 ) =
∏
u∈τ

∏
a∈A

q̂(a|u)N
XY
n (u,a),

I Define the statistics

∆̄n(u) =
∑
b∈A

∑
a∈A

NXY
n (bu, a) log

q̂(a|bu)

q̂(a|u)
,

and

∆̃n(u) = max
b∈A

(
max
a∈A
|q̂(a|u)− q̂(a|bu)|

)
.

I Fix a threshold δ > 0 and denote by ∆ either ∆̄ or ∆̃

(i) If ∆n(u) < δ we prune the subtree τ̂u.

(ii) If ∆n(u) ≥ δ we keep τ̂u.
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Formally

I Set Cw ((X ,Y )n1) = 0 for all w ∈ T L
n , and, for any u ≺ w ∈ T L

n define

Cu,n = max
{

1{∆n(u)≥δ},max
b∈A

Cbu,n)
}
.

The context tree estimator τ̂ δC ,n = τ̂ δC ((X ,Y )n1) is given by

τ̂ δC ,n = {w � v ∈ T L
n : Cw ,n = 0 and Cu,n = 1 for all u ≺ w}.

Consistency

Let (X0,Y0), . . . , (Xn,Yn) be a sample produced by sequence of random

objects driven by a context tree model compatible with (τ∗, p∗, q∗). The

context tree τ̂ δC ,n selected from the sample by Algorithm, with

`(τ∗) < L < log(n), eventually almost surely as n→∞, satisfies

τ̂ δC ,n = τ∗
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Bayesian Information Criterion (BIC)

I The BIC estimator is defined as

τ̂ cBIC ,n = argmaxτ∈ΓL
n

{
log L(τ,q̂)(Y

n
1 | X n

1 )− c df (τ) log(n)
}
.

where df stands for the degree of freedom of the model.

I For any w ∈ T L
n , define Vw ,n = n−c·df (w)L(w ,q̂)(Y

n
1 | X n

1 ) and the

indicator Xw ,n = 0

I For any w ≺ u ∈ T L
n define recursively the quantity

Vw ,n = max
{
n−c·df (w)L(w ,q̂)(Y

n
1 | X n

1 ) ,
∏
b∈A

Vbw ,n

}
and the indicator

Xw ,n = 1
{∏

b∈A

Vbw ,n > n−c·df (w)L(w ,q̂)(Y
n
1 | X n

1 )
}
.

I The estimated context tree can be written as

τ̂ cBIC ,n = {w � s ∈ T L
n : Xw ,n = 0 and Xu,n = 1 for all u ≺ w}.
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Consistency

Let (X0,Y0), . . . , (Xn,Yn) be a sample produced by sequence of random

objects driven by a context tree model compatible with (τ∗, p∗, q∗). The

context tree τ̂ δBIC ,n selected from the sample by BIC procedure, with

`(τ∗) < L < log(n), eventually almost surely as n→∞, satisfies

τ̂ cBIC ,n = τ∗



Constant dependency

I The tree estimation procedure presented are constant dependent

∆̄n(u) =
∑
b∈A

∑
a∈A

NXY
n (bu, a) log

q̂(a|bu)

q̂(a|u)
< δ

∆̃n(u) = max
b∈A

(
max
a∈A
|q̂(a|u)− q̂(a|bu)|

)
< δ

argmaxτ∈ΓL
n

{
log L(τ,q̂)(Y

n
1 | X n

1 )− c · df (τ) log(n)
}
.



Smallest Maximizer Criterion

(i) Construct a set of candidate models: champion trees.

(ii) Choose a optimal model within the set of champion trees.

The champion trees obtained will depend on

the model selection procedure

Compute the champion trees:

Denote by ` the constant either in the algorithm context or BIC.

Start with ` = 0 and successively increase the value of `
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Start with ` = 0 and successively increase the value of `



Theorem: General SMC

Assume (X1,Y1), · · · , (Xn,Yn) is a sample of a sequence of random

objects driven by a context tree model with parameters (τ∗, p∗, q∗).

Given a set Cn ⊂ ΓL(X 1
n ), with |τ∗| ≤ L < log(n), satisfying

(i) Cn is totally ordered with respect to � and

(ii) eventually almost surely τ∗ ∈ Cn as n→∞.

The following holds:

1. For any τ ∈ Cn, with τ ≺ τ∗, there exists a constant c(τ∗, τ) > 0

such that

log L(τ∗,q̂) − log L(τ,q̂) ≥ c(τ∗, τ)n (2)

2. For any τ ≺ τ ′ ∈ Cn, with τ∗ � τ, there exists a constant

c(τ ′, τ) > 0 such that

log L(τ ′,q̂) − log L(τ,q̂) ≤ c(τ ′, τ) log n (3)



The tree model selection procedures satisfy the Thm

Assume (X1,Y1), · · · , (Xn,Yn) is a sample of a sequence of random

objects driven by context tree model with parameters (τ∗, p∗, q∗).

Consider the map ` ∈ [0,+∞] 7→ τ̂ `n ∈ ΓL(X 1
n ) with |τ∗| ≤ L < log(n)

and τ̂ `n denoting either τ̂ `
C̄

((X ,Y )n1), τ̂ `
C̃

((X ,Y )n1) or τ̂ `BIC ((X ,Y )n1)

Denote by

Cn = {τ̂ `n : ` ∈ [0,+∞]}.

The set Cn is totally ordered with respect to � and eventually almost

surely τ∗ ∈ Cn as n→∞.



Model selection procedures future work



Functional⇒

Algorithm context + Projective mehod

Algorithm context + Other statistics

Categorical⇒


Algorithm context + Conditional likelihood

Algorithm context + Offspring emp. distr.

BIC

Other Statistics

⇒ SMC



I Functional case: Duarte, A., Fraiman, R., Galves, A., Ost, G., and

Vargas, C. D., 2019, Retrieving a context tree from eeg data.

Mathematics, 7(5).

I Application in neurobiological data:

I Categorical case: SeqROCTM: A Matlab toolbox for the analysis

of Sequence of Random Objects driven by Context Tree Models.

I Codes: https://github.com/noslenh/SeqROCTM-Matlab-Toolbox.


