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Epidermal nerve fibers

Thin bundles of fibers branching from root ganglion cells and terminating at all

levels of the epidermis, the outmost part of the skin. (Waller et al., 2011;

Myllymäki et al., 2012; Olsbo et al., 2013; Andersson et al., 2016).
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Thighs of four healthy
patients, data from
Wendelschafer-Crabb et al.
(2005).
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Interacting Cluster point processes

The central idea of this work is to obtain attractive/repulsive cluster
point process as invariant measures of birth and death cluster
processes.

Cluster process = marked point process

N = {(x1, nx1), (x2, nx2), . . . , (xL, nxL)}

{x1, . . . , xL} represents the germ process
nx the cluster process (fingers) associated with germ x .
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Inference
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Likelihood for point processes

Definition: The likelihood of a realization n = {x1, ..., xL} of a regular
point process on a bounded Borel set A ⊂ Rd is the local Janossy density.

pL jL(x1, ..., xL)

jL(x1, ..., xL)dx1...dxL ≈ Given that there are L points in the process, the
probability that they are located at (xi , xi + dxi ).
Usually too hard.
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Likelihood ratio

Compare our process with a standard process.

Example: Non-homogeneous Poisson process with intensity λ has
likelihood ratio wrt the unit Poisson process:

LNH(n|λ(·))

LH(n|1)
=

e−
∫
A λ(u)du

L!

∏L
j=1 λ(xj)

e−|A|

L! ×
∏L

j=1 1A(xj).

= e−
∫
A(λ(u)−1)du

L∏
j=1

λ(xj)1A(xj).

The independence property characterizes the Poisson process.

Most of the applications: point processes having interaction between
points.
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Process characterization

Point processes with law (restricted to a finite box W ) which are
absolutely continuous with respect to the law of a homogeneous
Poisson point process.

The set of possible configurations are the same for the interacting
process and the Poisson process (locally finite configurations).

Radon-Nikodym derivative

µW (dn) =
1

ZW
e−H(N,W )µ0W (dn)

where H(n,W ) is the energy function and ZW is a normalizing
constant.

The Radon-Nikodym derivative: how much more likely is the
configuration n in this process than in the Poisson process.
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Birth and Death Processes

Ripley (1977) showed that µW is the invariant measure of a spatial
birth and death process.

In fact, there is more than one process that has the same invariant
measure,

λ(x , n)e−H(n,W ) = δ(x , n)e−H(n∪{x},W ), if n ∪ x ∈ S

We can always take δ(x , n) = 1,

whenever a point is added to the configuration it lives an exponential
amount of time independently of the configuration of the process.
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Dynamics of birth

Germ: Given that at time t the configuration of the process is
N = {(x1, nx1), (x2, nx2), . . . , (xL, nxL)}, the birth rate for a germ at x
is

λ(x ,N ) = βφ
−

∑L
i=1

∑
z∈nxi

1{d(x ,z)<Rc}
.

We will treat the cluster nx as marks.
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Configuration at time t

Accepted with
p = 1.
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β = 70, φ = 2, γ = 5, σ = 0.05,
and κ = 3 (simulation # 1 setup).

Accepted with
p = 1/φ.

Garcia, Guttorp and Ludwig Interacting cluster process model for ENFs UFRJ2021 9 / 34



Accepted with
p = 1.
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Dynamics of birth

Germ: Given that at time t the configuration of the process is
N = {(x1, nx1), (x2, nx2), . . . , (xL, nxL)}, the birth rate for a germ at x
is

λ(x ,N ) = βφ
−

∑L
i=1

∑
z∈nxi

1{d(x ,z)<Rc}
.

Fingers: Given a germ is born at site x , a cluster nx appears
according to a Matérn-III repulsive process with radius R from a
inhomogeneous Poisson process with intensity γ and density given by

1 Direction: von Mises distribution in the circle with center x and
dispersion parameter κ,

2 the distances between the point on the cluster and the center are iid
half-normal with variance σ random variables restricted to the set A.
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Figure: Matérn type I, type II and type III processes obtained from a homogeneous
Poisson process with intensity 5 in the window [0, 1]× [0, 1], R = 0.3 and birth
times ta = 0.01, tb = 0.32, tc = 0.54, td = 0.61, te = 0.80, tf = 0.90, tg = 0.98.
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Circles around extremites have radii R,

greyed-out fingers were thinned (born

within shadow of an older finger)

Bayesian estimation methods for Matérn

type-III processes were introduced in Rao

et al. (2017)
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Dynamics of death

Germ: Given that at time t the configuration of the process is given
by N = {(x1, nx1), (x2, nx2), . . . , (xL, nxL)} the probability that a germ
at xi dies in the interval (t, t + ∆t) is approximately ∆t . That is, all
germs die at rate 1.

Fingers: Once the germ at x dies, all the points in the cluster nx die.
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Likelihood

First: assume random directions u and the random birth times t1, . . . , tL
from the Matérn III processes are known.

Nut = {(x1, u1, nx1 , t1), (x2, u2, nx2 , t2), . . . , (xL, uL, nxL , tL)}.

In this case, in order to satisfy the detailed balance conditions

λ((x , ux , nx , tx),Nut) =
µ (Nut + {(x , ux , nx , tx)})

µ(Nut)
,

The likelihood ratio with respect to the unit-homogeneous Poisson process
is

L(β, φ, γ, ζ|Nut) =
1

Z (β, φ,Rc ,R)
βLφ

−
∑

i

∑
j 6=i

∑
z∈nxj

1(d(xi ,z)<Rc )

×
L∏

i=1

exp(−γ) γ#(nxi )
∏
z∈nxi

φ̄ui ,xi ,ζ(z) exp(γ A(nxi , ui , t)︸ ︷︷ ︸
area of the shadow

),
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Log-likelihood

`(β, φ, γ, ζ|Nut) = − log(Z (β, φ,Rc ,R)) + L log(β)

+ log(φ)

−∑
i

∑
j 6=i

∑
z∈nxj

1(d(xi , z) < Rc)

− Lγ

+
L∑

i=1

∏
z∈nxi

#(nxi ) log(γ) +
∑
z∈nxi

log(φ̄xi ,ui ,ζ(z)) + γA(nxi , ui , t)

.
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Marginal likelihood

`(β, φ, γ, ζ|N ) = − log(Z (β, φ,Rc ,R)) + L log(β)

+ log(φ)

−∑
i

∑
j 6=i

∑
z∈nxj

1(d(xi , z) < Rc)

− Lγ +
L∑

i=1

#(nxi ) log(γ)

+
L∑

i=1

log

∫ 2π

0

1

2π

∏
z∈nxi

φ̄xi ,ui ,ζ(z)

∫
[0,1]#(nxi

)
exp(γA(nxi , ui , t))dtidui

.
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Marginal likelihood

`(β, φ, γ, ζ|N ) = − log(Z (β, φ,Rc ,R)) + L log(β)

+ log(φ)

−∑
i

∑
j 6=i

∑
z∈nxj

1(d(xi , z) < Rc)

− Lγ +
L∑

i=1

#(nxi ) log(γ)

+
L∑

i=1

log

∫ 2π

0

1

2π

∏
z∈nxi

φ̄xi ,ui ,ζ(z)

∫
[0,1]#(nxi

)
exp(γA(nxi , ui , t))dtidui

.
Two hard steps in evaluating this expression: integral of A over u, t and
evaluation of Z .
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Some approximations: Z

Following Geyer and Thompson (1992), we consider ` as a function of β
and φ only, it can be written as

`(β, φ|N ) = − log(Z(β, φ)) + L log(β) + log(φ)

−∑
i

∑
j 6=i

∑
z∈nxj

1(d(xi , z) < Rc )

 .
which belongs to the exponential family with natural parameter vector
θ = (log(β), log(φ)) and sufficient statistics:

T1(N ) = #(N ) and T2(N ) =

−∑
i

∑
j 6=i

∑
z∈nxj

1(d(xi , z) < Rc)

 .
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Some approximations: Z (cont.)

We use Monte Carlo methods to approximate the constant Z (β, φ). In
fact, denoting

Z (θ) =

∫
exp(< θ,T(N ) >)dµ0(m)

where µ0 is the reference measure. Then,

Z (θ) = Z (ψ)

∫
exp(< θ −ψ,T(N ) >)dµψ(m)

where µθ is the probability measure with parameter ψ with respect to µ0.
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Some approximations: Z (cont.)

Therefore, having M1,M2, . . . ,MJ an iid sample of the cluster processes
generated by µψ, it is possible to approximate

d(θ) =
Z (θ)

Z (ψ)

by

dJ(θ) =
1

J

J∑
j=1

exp(< θ −ψ,T(Mj) >).

Approximate likelihood

`(β, φ|N ) = − log dJ(θ)+L log(β)+log(φ)

−∑
i

∑
j 6=i

∑
z∈nxj

1(d(xi , z) < Rc)

 .
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Some approximations: A

In this case, we follow Rao et al. (2017):

The missing times are imputted by sampling from thinned events;
given initial times t0, we draw new fingers with rate γ within the
region of the shadow of the finger data, with density φ̄ui ,xi ,ζ .

Time imputation is made by sampling uniformly on [0, tmin), where
tmin is the first deletion of one thinned event exclusively within that
shadow.

These steps are iterated for some time.

The area (volume) of the shadow is estimated by Monte Carlo
integration.
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Simulation
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Simulation experiment

Using window W = [0, 1]2, R = 0.005 and Rc = 0.02.

β = 70, φ = 1 or φ = 2, γ = 2 or γ = 4, σ = 0.05, and κ = 3.

Priors:

β ∼ logN(log β̂, 1),
φ ∼ Γ(8/3, 3/4),
γ ∼ Γ(γ̂, 1),
σ2 ∼ Γ−1(σ̂2/10, 10/σ̂2),
κ ∼ Γ(κ̂2/10, 10/κ̂2).

Initial values for estimates are β̂ = L/|W |, φ̂ = 2, γ̂ = maxi{#(nxi )},
σ̂2 is the variance of length of fingers and κ̂ is the maximum likelihood
estimate of the von Mises parameter κ for pooled angle data.

mat3c R package is available for simulation and MCMC fitting, with
customizable priors. See www.github.com/guiludwig/mat3c.

Settled on b = 2000 burn-in period.

Replicated B = 20 independent experiments on each case.
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Posterior covarage of true parameters

Simulated Scenario β log(φ) γ σ κ

φ = 1, γ = 2 0.80 0.25 0.90 0.95 0.00
φ = 2, γ = 2 0.70 0.50 1.00 0.90 0.00
φ = 1, γ = 4 0.70 0.30 1.00 0.95 0.25
φ = 2, γ = 4 0.70 0.30 0.95 0.95 0.25
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Data Analysis
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Data analysis, using priors from simulation
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Predictive posteriors - statistics

For example,

T1(N ) = N (×) = L, the total number of base points;

T2(N ) =
∑

i

∑
z∈ηxj
j 6=i

{d(xi , z) < Rc}, the number of end points close

to a base point by a distance less than Rc ;

T3(N ) = L−1
∑L

i=1 ηxi (), the average size of the cluster;

T6(N ) = L−1
∑L

i=1MDE(ηxi ), where MDE is the minimum distance
between end points;
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1 Sample (β1, φ1, γ1, σ1, κ1), . . . , (βM , φM , γM , σM , κM), from the
posterior

2 Generate n1, . . . , nM from the likelihood L(n|θM)

3 Compute {T1,`, . . . ,T7,`}M`=1.

4 Define the Posterior predictive assesment (Bayarri and Berger, 2000)
as (1/M)

∑M
`=1 1(|Tk,`| > |Tk |).

We discarded burn-in period of b = 2000, and sampled (β, φ, γ, σ, κ) at
every 100 steps.
Note patients 171 and 224 have φ̂ ≈ 2 while patients 230 and 256 have
φ̂ ≈ 1.
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Posterior predictive assessment

Table: mat3c = proposed interacting cluster model, NI-mat3c = interacting
cluster model with non-informative priors, NOC-like model similar to the NOC
model of Olsbo et al. (2013).

Model Subject T1 T2 T3 T4 T5 T6 T7

4*mat3c 171 0.44 0.64 0.60 0.84 0.12 0.50 0.64
224 0.43 0.38 0.50 0.80 0.19 0.68 0.73
230 0.64 0.15 0.58 0.04 0.47 0.93 0.88
256 0.55 0.05 0.55 0.33 0.02 0.29 0.31

4*NI-mat3c 171 0.57 0.52 0.57 0.81 0.05 0.52 0.62
224 0.38 0.24 0.43 0.81 0.14 0.62 0.81
230 0.71 0.29 0.67 0.05 0.33 0.95 0.81
256 0.62 0.10 0.62 0.29 0.00 0.24 0.33

4*NOC-like 171 0.50 0.77 0.54 0.81 0.07 0.39 0.49
224 0.54 0.79 0.70 0.78 0.21 0.55 0.73
230 0.45 0.26 0.55 0.00 0.45 0.96 0.82
256 0.49 0.11 0.57 0.28 0.02 0.19 0.21
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Summary

We propose a model that is rich in parameters but motivated by
biological descriptors of the data.

Estimation is done via Bayesian methods, which provides credibility
intervals and other desirable tools. However, MCMC is somewhat
slow (roughly 4 hours to run an experiment with 10000 samples and
J = 10000 Geyer-Thompson steps).

Choice of ψ in Geyer-Thompson approximation is quite tricky.

Irregular parameters R and Rc affect estimates substantially (we
examined simulated cases to choose case studies’ parameters).

Future work: examine patients with mild and severe neuropathy,
develop model-based diagnostic descriptors.
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IMECC - UNICAMP

Thank you!
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