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Let’s get the basics out of our way!

Our model generates a sequence

{(Tn, Xn)}n, where Tn is a rooted graph (tree) and

Xn is a vertex of Tn.

1. A graph is connected if for any pair of vertices

u and v , you can ‘walk’ from u to v and

vice-versa;

2. A tree is a connected graph with no cycles

3. A rooted graph is a graph with a

distinguishable vertex called the root.
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The Model

Let {Ln}nœN

be a sequence of probability distributions over N fi {0}, and (T , x) a

rooted graph and one of its vertex. We generate {(Tn, Xn)}n inductively, that is, we

obtain (Tn+1, Xn+1) from (Tn, Xn) as follows:

1. Add to Xn a random number, sampled

according to Ln+1, of new vertices; Put this

new graph as Tn+1;

2. Let Xn+1 be a uniformly chosen neighbor of Xn
in Tn+1

We call this model Tree Builder Random Walk (TBRW).
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Random Graph Perspective

Our model generates a sequence

{(Tn, Xn)}n. In the graph perspective, we see the

model as a random graph(tree) model, focusing on the sequence {Tn}nœN of random

trees.

Question: Why should we care about this perspective?

1. It is challenging and we are mathematicians!

2. We can model real phenomenon!
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Random Graph Perspective

A. Barábasi, R. Álbert. Emergence of Scaling in Random Networks, Science. 2000.

From empirical data the authors constructed graphs for the following concrete

situations

1. Neural system of worms (C. Elegans)

2. Power grids

3. Network of collaborations

Their findings showed that all graphs had a lot of properties in common. One of them

was their empirical degree distribution
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Random Graph Perspective

Their findings showed that all graphs had a lot of properties in common. One of them

was their empirical degree distribution.

The empirical degree distribution of a graph G = (V , E ) is a distribution over N
defined by

pd :=
# of vertices in G having degree d

# of vertices in G =:
NG(d)

|V |

A. Barábasi, R. Álbert. observed that when they mapped the data on graphs, all

graphs had essentially the same empirical degree distribution

# of vertices in G having degree d
# of vertices in G ¥ d≠3
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# of vertices in G having degree d
# of vertices in G ¥ d≠3
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Random Graph Perspective

So, if you want to use random graphs to model certain concrete phenomenon,

the

graphs produced by your model must have an empirical degree distribution which is

approximated by a power-law distribution of exponent 3.

Question: Does exist a sequence of distributions {Ln}nœN for which the TBRW

generates graphs whose empirical degree distribution is a power-law of exponent 3?
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Random Graph Perspective

Theorem (J. Englander, G. Iacobelli, R.R - 2021)

Let Ln = Ber (n≠“
), with “ œ (2/3, 1]. Then, for any d œ N,

limnæŒ
# of vertices in Tn having degree d

# of vertices in Tn
=

4

d(d + 1)(d + 2)
,

almost surely.

Proof.

Left to the reader. =)
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Random Graph Perspective

The idea of

generating graphs using random walks comes from Computer Science and

Physics

1. A. Vazquez. Growing network with local rules: Preferential attachment, clustering

hierarchy, and degree correlations. Physical Review E (2003)

2. J. Saramaki, K. Kaski. Scale-free networks generated by random walkers. Physica

A: Statistical Mechanics and its Applications (2004)
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Random Graph Perspective

Much latter, models without the restart feature started to be considered

1. B. Amorim, D. Figueiredo, G. Iacobelli, and G. Neglia. Growing Networks

Through Random Walks Without Restarts. Proceedings of the 7th Workshop on

Complex Networks CompleNet (2016)

They considered a model that at each s œ N steps of the walker adds a new vertex at

the walker’s position. Their simulations suggested for s even, Tn has power-law degree

distribution. Whereas for s odd the degree distribution decays exponentially fast on d .
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Random Walk Perspective

Our model generates a sequence

{(Tn, Xn)}n. In the random walk perspective, we see

the model as a random walk on random domain (environment) model, focusing on the

sequence {Xn}nœN, which is the walker’s trajectory.

Observe that {Xn}nœN is an example nonmarkovian random walk. The analysis of

{Xn}nœN imposes some new challenges that we do not see even in the classical theory

of RWRE. In this case the environment (domain) is dependent of the walker trajectory.
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Random Walk Perspective

One of the main questions when we are dealing with random walks regards

transience

and recurrence.

Question: Does the walker X visit any vertex infinitely many times?

Recurrence: We say that {Xn}nœN is recurrent if it visits any vertex infinitely many

times with probability 1.

P(X = v , i.o. ) = 1

Transience: We say that {Xn}nœN is transient if for any vertex we have

P(X = v , i.o. ) = 0
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Random Walk Perspective

Often in RW,

transience comes associated to some notion of ‘going fast to infinity’. In

our settings, we have a natural notion of distance to measure how fast X goes to

infinity.

We say {Xn}nœN is ballistic if

lim infn
distTn(Xn, root)

n > 0, a.s.
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Random Walk Perspective

In the TBRW,

ballisticity is connected to a condition over {Ln}nœN called uniform

ellipticity. We say the sequence {Ln}nœN is uniformly elliptic if

infn Ln({1, 2, . . . }) = Ÿ > 0 (UE)

In words, the above condition means that at each step the walker has probability at

least Ÿ of adding at least one new vertex to its position.
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Random Walk Perspective

Theorem ( G. Iacobelli, R.R, G. Valle, L. Zuaznabar - 2020)

Let Ln be a (UE) sequence of distributions over N fi {0}. Then, the walker is ballistic,
that is

P
3

lim infn
distTn(Xn, root)

n > 0

4
= 1

Proof.

Left to the reader. =)
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Random Walk Perspective

For Bernoulli sequences we do have a Law of Large numbers

Theorem ( D. Figueiredo, G. Iacobelli, R. Oliveira, B. Reed, R.R. - 2020)

Let Ln = Ber (p), with p œ (0, 1]. Then, there exists a constant c = c(p) > 0 such
that

limn
distTn(Xn, root)

n = c(p),

almost surely.

Proof.

Left to the reader. =)
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Random Walk Perspective

1. B. Amorim, D. Figueiredo, G. Iacobelli, and G. Neglia. Growing Networks

Through Random Walks Without Restarts. Proceedings of the 7th Workshop on

Complex Networks CompleNet (2016)

They considered a model that at each s œ N steps of the walker a new vertex is added

to the walker’s position. Their simulations suggested for s odd the degree distribution

decays exponentially fast on d . In our settings, this is equivalent to choose

Ln({1}) = 1, for n = s · k; Ln({0}) = 1, for n ”= s · k

So, {Ln}nœN does not satisfy (UE ) in the usual sense.
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Random Walk Perspective

Theorem ( G. Iacobelli, R.R, G. Valle, L. Zuaznabar - 2020)

For every s odd and Ln a sequence of distributions over N fi {0} satisfying

inf
kœN

Ls·k({1, 2, . . . }) = Ÿ > 0,

the walker is ballistic, that is

P
3

lim infn
distTn(Xn, root)

n > 0

4
= 1

This explains why Tn showed light tail empirical degree distribution in the simulations.
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What about recurrence?



Random Walk Perspective

Our results tell us that we must drop (UE ) condition

infn Ln({1, 2, . . . }) = Ÿ > 0 (UE)

One way to drop (UE ) is to choose {Ln}nœN in way that

limn Ln({1, 2, . . . }) = 0 ≈∆ limn Ln(0) = 1

In words, we can consider models in which the probability of adding at least one new

vertex to the position of the walker goes to zero.
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Random Walk Perspective

Theorem (J. Englander, G. Iacobelli, R.R - 2021)

Let mn denote the first moment of Ln, and assume the following about {Ln}nœN:

(A1) mn < Œ, n Ø 1;

(A2) qn := Ln({0}) ¬ 1, as n æ Œ;

(A3) (1 ≠ qn) · M2
n æ 0, as n æ Œ, where Mn :=

qn
1 mk ;

Then, {Xn}nœN is recurrent.

Conditions (A1)-(A3) have the advantage that they are easy to check: they require

computation of first moments. But they fail to be satisfied for some simple sequence

{Ln}nœN, such as, Ln = Ber(n≠“
), with “ œ (1/2, 2/3]
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Random Walk Perspective

1. It is possible to choose sequences of distributions {Ln}nœN such that {Xn}nœN is

transient but not ballistic;

2. It is also possible to choose sequences of distributions {Ln}nœN such that

{Xn}nœN gets trapped in the neighborhood of a single vertex;

3. So the TBRW exhibits all possible regimes for a RW: ballisticity, non-ballistic

transience, local traps and recurrence.

Made with ¸ - http://rodrigoribeiro.site 24



Random Walk Perspective

1. It is possible to choose sequences of distributions {Ln}nœN such that {Xn}nœN is

transient but not ballistic;

2. It is also possible to choose sequences of distributions {Ln}nœN such that

{Xn}nœN gets trapped in the neighborhood of a single vertex;

3. So the TBRW exhibits all possible regimes for a RW: ballisticity, non-ballistic

transience, local traps and recurrence.

Made with ¸ - http://rodrigoribeiro.site 24



Random Walk Perspective

1. It is possible to choose sequences of distributions {Ln}nœN such that {Xn}nœN is

transient but not ballistic;

2. It is also possible to choose sequences of distributions {Ln}nœN such that

{Xn}nœN gets trapped in the neighborhood of a single vertex;

3. So the TBRW exhibits all possible regimes for a RW: ballisticity, non-ballistic

transience, local traps and recurrence.

Made with ¸ - http://rodrigoribeiro.site 24



General Ideas Behind Recurrence



General Ideas Behind Recurrence

The mechanism behind

recurrence is cover times.
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General Ideas Behind Recurrence

(A2) qn := Ln({0}) ¬ 1, as n æ Œ;
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(A2) qn := Ln({0}) ¬ 1, as n æ Œ;
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General Ideas Behind Recurrence

(A3) (1 ≠ qn) · M2
n æ 0, as n æ Œ, where Mn :=

qn
1 mk ;

For a RW {Xn}nœN on a tree with k vertices, the cover time, which is the expected

time to visit all vertices, is at most 2k2
. So (A3) is a cover/mixing condition. It is a

condition to make sure the waker X has a chance to mix over Tn before it adds new

vertices to it.
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General Ideas Behind Recurrence

Theorem (J. Englander, G. Iacobelli, R.R - 2021)

Let Ln = Ber (n≠“
), with “ œ (1/2, 1]. Then {Xn}nœN is recurrent.

The key idea is to find a sequence of time intervals [tn, tn + sn] with the following

characteristics:

1. sn is small enough so that the trees Ttn and Ttn+sn are comparable in size;

2. X spends a large enough amount of time on Ttn in the time interval [tn, tn + sn];

3. sn is large enough so that the time spent on Ttn is enough for X to to cover Ttn ,

although it may not mix over Ttn+sn .
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General Ideas Behind Recurrence

1. sn is small enough so that the trees Ttn and Ttn+sn are comparable in size;

2. X spends a large enough amount of time on Ttn in the time interval [tn, tn + sn];

3. sn is large enough so that the time spent on Ttn is enough for X to to cover Ttn ,

although it may not mix over Ttn+sn .

The right choice is tn = n and sn = n2(1≠“)+”
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General Ideas Behind Recurrence

Lemma

Consider a TBRRW where Ln = Ber (n≠“
) and “ œ (1/2, 1]. Then, for any initial

condition (T , x), any m œ N (time shift) and 0 < ” < 2“ ≠ 1, it holds that

ET ,x ;L(m)

Ë
Nn,n+n2(1≠“)+”

È
= o

1
n2(1≠“)+”

2
.
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General Ideas Behind Power-law degree distribution

The mechanism behind

power-law degree distribution is mixing times.

For a RW {Xn}nœN on a tree with k vertices, we have that tmix Æ k2
. As a

consequence, we can say that, for n Ø k2

P(Xn = v) ¥ degree(v)

2k
Thus, for certain regimes of {Ln}nœN, it is possible to guarantee that the walker mixes

on Tn first and then adds a new vertex to its position. This way, the new vertex will

be connected to a vertex chosen with probability proportional to its degree. This allow

us to couple the TBRW to the classical Preferential attachment random graph model.

Made with ¸ - http://rodrigoribeiro.site 34



General Ideas Behind Power-law degree distribution

The mechanism behind power-law degree distribution

is mixing times.

For a RW {Xn}nœN on a tree with k vertices, we have that tmix Æ k2
. As a

consequence, we can say that, for n Ø k2

P(Xn = v) ¥ degree(v)

2k
Thus, for certain regimes of {Ln}nœN, it is possible to guarantee that the walker mixes

on Tn first and then adds a new vertex to its position. This way, the new vertex will

be connected to a vertex chosen with probability proportional to its degree. This allow

us to couple the TBRW to the classical Preferential attachment random graph model.

Made with ¸ - http://rodrigoribeiro.site 34



General Ideas Behind Power-law degree distribution

The mechanism behind power-law degree distribution is

mixing times.

For a RW {Xn}nœN on a tree with k vertices, we have that tmix Æ k2
. As a

consequence, we can say that, for n Ø k2

P(Xn = v) ¥ degree(v)

2k
Thus, for certain regimes of {Ln}nœN, it is possible to guarantee that the walker mixes

on Tn first and then adds a new vertex to its position. This way, the new vertex will

be connected to a vertex chosen with probability proportional to its degree. This allow

us to couple the TBRW to the classical Preferential attachment random graph model.

Made with ¸ - http://rodrigoribeiro.site 34



General Ideas Behind Power-law degree distribution

The mechanism behind power-law degree distribution is mixing times.

For a RW {Xn}nœN on a tree with k vertices, we have that tmix Æ k2
. As a

consequence, we can say that, for n Ø k2

P(Xn = v) ¥ degree(v)

2k
Thus, for certain regimes of {Ln}nœN, it is possible to guarantee that the walker mixes

on Tn first and then adds a new vertex to its position. This way, the new vertex will

be connected to a vertex chosen with probability proportional to its degree. This allow

us to couple the TBRW to the classical Preferential attachment random graph model.

Made with ¸ - http://rodrigoribeiro.site 34



General Ideas Behind Power-law degree distribution

The mechanism behind power-law degree distribution is mixing times.

For a RW {Xn}nœN

on a tree with k vertices, we have that tmix Æ k2
. As a

consequence, we can say that, for n Ø k2

P(Xn = v) ¥ degree(v)

2k
Thus, for certain regimes of {Ln}nœN, it is possible to guarantee that the walker mixes

on Tn first and then adds a new vertex to its position. This way, the new vertex will

be connected to a vertex chosen with probability proportional to its degree. This allow

us to couple the TBRW to the classical Preferential attachment random graph model.

Made with ¸ - http://rodrigoribeiro.site 34



General Ideas Behind Power-law degree distribution

The mechanism behind power-law degree distribution is mixing times.

For a RW {Xn}nœN on a tree with k vertices,

we have that tmix Æ k2
. As a

consequence, we can say that, for n Ø k2

P(Xn = v) ¥ degree(v)

2k
Thus, for certain regimes of {Ln}nœN, it is possible to guarantee that the walker mixes

on Tn first and then adds a new vertex to its position. This way, the new vertex will

be connected to a vertex chosen with probability proportional to its degree. This allow

us to couple the TBRW to the classical Preferential attachment random graph model.

Made with ¸ - http://rodrigoribeiro.site 34



General Ideas Behind Power-law degree distribution

The mechanism behind power-law degree distribution is mixing times.

For a RW {Xn}nœN on a tree with k vertices, we have that

tmix Æ k2
. As a

consequence, we can say that, for n Ø k2

P(Xn = v) ¥ degree(v)

2k
Thus, for certain regimes of {Ln}nœN, it is possible to guarantee that the walker mixes

on Tn first and then adds a new vertex to its position. This way, the new vertex will

be connected to a vertex chosen with probability proportional to its degree. This allow

us to couple the TBRW to the classical Preferential attachment random graph model.

Made with ¸ - http://rodrigoribeiro.site 34



General Ideas Behind Power-law degree distribution

The mechanism behind power-law degree distribution is mixing times.

For a RW {Xn}nœN on a tree with k vertices, we have that tmix Æ k2
.

As a

consequence, we can say that, for n Ø k2

P(Xn = v) ¥ degree(v)

2k
Thus, for certain regimes of {Ln}nœN, it is possible to guarantee that the walker mixes

on Tn first and then adds a new vertex to its position. This way, the new vertex will

be connected to a vertex chosen with probability proportional to its degree. This allow

us to couple the TBRW to the classical Preferential attachment random graph model.

Made with ¸ - http://rodrigoribeiro.site 34



General Ideas Behind Power-law degree distribution

The mechanism behind power-law degree distribution is mixing times.

For a RW {Xn}nœN on a tree with k vertices, we have that tmix Æ k2
. As a

consequence,

we can say that, for n Ø k2

P(Xn = v) ¥ degree(v)

2k
Thus, for certain regimes of {Ln}nœN, it is possible to guarantee that the walker mixes

on Tn first and then adds a new vertex to its position. This way, the new vertex will

be connected to a vertex chosen with probability proportional to its degree. This allow

us to couple the TBRW to the classical Preferential attachment random graph model.

Made with ¸ - http://rodrigoribeiro.site 34



General Ideas Behind Power-law degree distribution

The mechanism behind power-law degree distribution is mixing times.

For a RW {Xn}nœN on a tree with k vertices, we have that tmix Æ k2
. As a

consequence, we can say that,

for n Ø k2

P(Xn = v) ¥ degree(v)

2k
Thus, for certain regimes of {Ln}nœN, it is possible to guarantee that the walker mixes

on Tn first and then adds a new vertex to its position. This way, the new vertex will

be connected to a vertex chosen with probability proportional to its degree. This allow

us to couple the TBRW to the classical Preferential attachment random graph model.

Made with ¸ - http://rodrigoribeiro.site 34



General Ideas Behind Power-law degree distribution

The mechanism behind power-law degree distribution is mixing times.

For a RW {Xn}nœN on a tree with k vertices, we have that tmix Æ k2
. As a

consequence, we can say that, for n Ø k2

P(Xn = v) ¥ degree(v)

2k
Thus, for certain regimes of {Ln}nœN, it is possible to guarantee that the walker mixes

on Tn first and then adds a new vertex to its position. This way, the new vertex will

be connected to a vertex chosen with probability proportional to its degree. This allow

us to couple the TBRW to the classical Preferential attachment random graph model.

Made with ¸ - http://rodrigoribeiro.site 34



General Ideas Behind Power-law degree distribution

The mechanism behind power-law degree distribution is mixing times.

For a RW {Xn}nœN on a tree with k vertices, we have that tmix Æ k2
. As a

consequence, we can say that, for n Ø k2

P(Xn = v) ¥ degree(v)

2k

Thus, for certain regimes of {Ln}nœN, it is possible to guarantee that the walker mixes

on Tn first and then adds a new vertex to its position. This way, the new vertex will

be connected to a vertex chosen with probability proportional to its degree. This allow

us to couple the TBRW to the classical Preferential attachment random graph model.

Made with ¸ - http://rodrigoribeiro.site 34



General Ideas Behind Power-law degree distribution

The mechanism behind power-law degree distribution is mixing times.

For a RW {Xn}nœN on a tree with k vertices, we have that tmix Æ k2
. As a

consequence, we can say that, for n Ø k2

P(Xn = v) ¥ degree(v)

2k
Thus,

for certain regimes of {Ln}nœN, it is possible to guarantee that the walker mixes

on Tn first and then adds a new vertex to its position. This way, the new vertex will

be connected to a vertex chosen with probability proportional to its degree. This allow

us to couple the TBRW to the classical Preferential attachment random graph model.

Made with ¸ - http://rodrigoribeiro.site 34



General Ideas Behind Power-law degree distribution

The mechanism behind power-law degree distribution is mixing times.

For a RW {Xn}nœN on a tree with k vertices, we have that tmix Æ k2
. As a

consequence, we can say that, for n Ø k2

P(Xn = v) ¥ degree(v)

2k
Thus, for certain regimes of {Ln}nœN,

it is possible to guarantee that the walker mixes

on Tn first and then adds a new vertex to its position. This way, the new vertex will

be connected to a vertex chosen with probability proportional to its degree. This allow

us to couple the TBRW to the classical Preferential attachment random graph model.

Made with ¸ - http://rodrigoribeiro.site 34



General Ideas Behind Power-law degree distribution

The mechanism behind power-law degree distribution is mixing times.

For a RW {Xn}nœN on a tree with k vertices, we have that tmix Æ k2
. As a

consequence, we can say that, for n Ø k2

P(Xn = v) ¥ degree(v)

2k
Thus, for certain regimes of {Ln}nœN, it is possible to guarantee that the walker

mixes

on Tn first and then adds a new vertex to its position. This way, the new vertex will

be connected to a vertex chosen with probability proportional to its degree. This allow

us to couple the TBRW to the classical Preferential attachment random graph model.

Made with ¸ - http://rodrigoribeiro.site 34



General Ideas Behind Power-law degree distribution

The mechanism behind power-law degree distribution is mixing times.

For a RW {Xn}nœN on a tree with k vertices, we have that tmix Æ k2
. As a

consequence, we can say that, for n Ø k2

P(Xn = v) ¥ degree(v)

2k
Thus, for certain regimes of {Ln}nœN, it is possible to guarantee that the walker mixes

on Tn first

and then adds a new vertex to its position. This way, the new vertex will

be connected to a vertex chosen with probability proportional to its degree. This allow

us to couple the TBRW to the classical Preferential attachment random graph model.

Made with ¸ - http://rodrigoribeiro.site 34



General Ideas Behind Power-law degree distribution

The mechanism behind power-law degree distribution is mixing times.

For a RW {Xn}nœN on a tree with k vertices, we have that tmix Æ k2
. As a

consequence, we can say that, for n Ø k2

P(Xn = v) ¥ degree(v)

2k
Thus, for certain regimes of {Ln}nœN, it is possible to guarantee that the walker mixes

on Tn first and

then adds a new vertex to its position. This way, the new vertex will

be connected to a vertex chosen with probability proportional to its degree. This allow

us to couple the TBRW to the classical Preferential attachment random graph model.

Made with ¸ - http://rodrigoribeiro.site 34



General Ideas Behind Power-law degree distribution

The mechanism behind power-law degree distribution is mixing times.

For a RW {Xn}nœN on a tree with k vertices, we have that tmix Æ k2
. As a

consequence, we can say that, for n Ø k2

P(Xn = v) ¥ degree(v)

2k
Thus, for certain regimes of {Ln}nœN, it is possible to guarantee that the walker mixes

on Tn first and then

adds a new vertex to its position. This way, the new vertex will

be connected to a vertex chosen with probability proportional to its degree. This allow

us to couple the TBRW to the classical Preferential attachment random graph model.

Made with ¸ - http://rodrigoribeiro.site 34



General Ideas Behind Power-law degree distribution

The mechanism behind power-law degree distribution is mixing times.

For a RW {Xn}nœN on a tree with k vertices, we have that tmix Æ k2
. As a

consequence, we can say that, for n Ø k2

P(Xn = v) ¥ degree(v)

2k
Thus, for certain regimes of {Ln}nœN, it is possible to guarantee that the walker mixes

on Tn first and then adds a new vertex to its position.

This way, the new vertex will

be connected to a vertex chosen with probability proportional to its degree. This allow

us to couple the TBRW to the classical Preferential attachment random graph model.

Made with ¸ - http://rodrigoribeiro.site 34



General Ideas Behind Power-law degree distribution

The mechanism behind power-law degree distribution is mixing times.

For a RW {Xn}nœN on a tree with k vertices, we have that tmix Æ k2
. As a

consequence, we can say that, for n Ø k2

P(Xn = v) ¥ degree(v)

2k
Thus, for certain regimes of {Ln}nœN, it is possible to guarantee that the walker mixes

on Tn first and then adds a new vertex to its position. This way, the new vertex will

be connected to a vertex chosen with probability proportional to its degree.

This allow

us to couple the TBRW to the classical Preferential attachment random graph model.

Made with ¸ - http://rodrigoribeiro.site 34



General Ideas Behind Power-law degree distribution

The mechanism behind power-law degree distribution is mixing times.

For a RW {Xn}nœN on a tree with k vertices, we have that tmix Æ k2
. As a

consequence, we can say that, for n Ø k2

P(Xn = v) ¥ degree(v)

2k
Thus, for certain regimes of {Ln}nœN, it is possible to guarantee that the walker mixes

on Tn first and then adds a new vertex to its position. This way, the new vertex will

be connected to a vertex chosen with probability proportional to its degree. This allow

us to couple the TBRW

to the classical Preferential attachment random graph model.

Made with ¸ - http://rodrigoribeiro.site 34



General Ideas Behind Power-law degree distribution

The mechanism behind power-law degree distribution is mixing times.

For a RW {Xn}nœN on a tree with k vertices, we have that tmix Æ k2
. As a

consequence, we can say that, for n Ø k2

P(Xn = v) ¥ degree(v)

2k
Thus, for certain regimes of {Ln}nœN, it is possible to guarantee that the walker mixes

on Tn first and then adds a new vertex to its position. This way, the new vertex will

be connected to a vertex chosen with probability proportional to its degree. This allow

us to couple the TBRW to the classical Preferential attachment random graph model.

Made with ¸ - http://rodrigoribeiro.site 34



General Ideas Behind Ballistic

Behavior



General Ideas Behind Ballistic Behavior

Recall the walker {Xn}nœN is ballistic if

lim infn
distTn(Xn, root)

n > 0, a.s.

We observe ballistic behavior when {Xn}nœN has two properties

1. The walker is capable of building long enough ‘paths’ regardless the current tree

structure;

2. Once the walker is at a tip of a ‘path’, it takes very long time to backtracking.
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General Ideas Behind Ballistic Behavior

1. The walker is capable of building long enough ‘paths’ regardless the current tree

structure;

A more formal and quantitative version of (1) is the following:

There exist a large enough ¸ œ N and – œ (0, 1) such that

inf
(T0,x0)

PT0,x0 (÷m Æ exp{¸–}, distTm(Xm, root) Ø 2¸) >
1

2
(R)
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General Ideas Behind Ballistic Behavior

2. Once the walker is at a tip of a ‘path’, it takes very long time to backtracking.

A more formal and quantitative version of (2) is the following:

·¸ := inf{n Ø 0 : distTn(Xn, root) = distT0(X0, root) ≠ ¸}

sup
(T0,x0)

PT0,x0 (·¸ Æ exp{¸–}) <
1

2
(L)
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General Ideas Behind Ballistic Behavior

Theorem ( G. Iacobelli, R.R, G. Valle, L. Zuaznabar- Bernoulli - 2020)

The TBRW is ballistic whenever both (R) and (L) are satisfied.
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