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Let A be a finite subset of R. (alphabet).

For k ≥ 1, denote x−k:−1 = (x−k , . . . , x−1) ∈ A{−k,...,−1}.

Consider a stationary Markov chain (Xt)t∈Z of order d ≥ 1:

P(Xt = a|Xt−k:t−1 = x−k:−1) = P(Xt = a|Xt−d :t−1 = x−d :−1) ∀ t ∈ Z, k > d ,

a ∈ A and x−k:−1 ∈ A{−k,...,−1} such that P(Xt−k:t−1 = xt−k:t−1) > 0.

Denote p(a|x−d :−1) = P(X0 = a|X−d :−1 = x−d :−1) (transition probabilities).
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Classical statistical questions: given a sample X1:n of a Markov chain,

I How to estimate the order d?

I How to estimate the transition probabilities p(a|x−d :−1)?

I Can we provide confidence intervals for p(a|x−d :−1)?

Focus on the high-dimensional setting: d = dn and p(a|x−d :−1) = pn(a|x−dn:−1).

One challenge is the curse of dimensionality: DimMC (d) = |A|d (|A| − 1) grows
exponentially with d.

Typically, in the high-dimensional setting DimMC (dn)� n. Need to seek for low
dimensional (sparse) Markov chains!
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Two examples of sparse Markov chains

Variable length Markov chains (VLMC) are Markov chains of order d such that

p(a|x−d :−1) = p(a|x−`:−1) for some ` = `(x−d :−1).

Denote τ = {x−`:−1 : ` = `(x−d :−1), x−d :−1 ∈ A{−d ,...,−1}}.

The dimension of an VLMC is DimVLMC (d) = |τ |(|A| − 1). Typically, |τ | � |A|d .

Minimal Markov Models (MMM) are Markov chains of order d such that there exist a
partition C1, . . . , CK of A{−d ,...,−1} with the property that

p(a|x−d :−1) = p(a|y−d :−1) if and only if x−d :−1, y−d :−1 ∈ Ci .

The dimension of an MMM is DimMMM(d) = K (|A| − 1). Typically, K � |A|d .
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Yet, in the high-dimensional setting, the model parameters (e.g. the transition
probabilities) can be estimated only if dn ≤ C log(n) for some constant C > 0.

To see this, recall that the estimator of p(a|x−d :−1) computed from X1:n is defined as

p̂n(a|x−d :−1) = Nn(x−d :−1, a)∑
b∈A Nn(x−d :−1, b) = Nn(x−d :−1, a)

N̄n(x−d :−1)
,

where Nn(x−d :−1, b) = |{d + 1 ≤ t ≤ n : Xt−d :t−1 = x−d :−1,Xt = b}|.

For the estimator p̂n(a|x−d :−1) to have any meaning, we need that N̄n(x−d :−1) ≥ 1.

By ergodicity, N̄n(x−d :−1) ≈ nP(X1:d = x−d :−1). If the transition probabilities are
bounded below from zero, then ∃ c > 0 such that P(X1:d = x−d :−1) < e−cd .

In this case, it follows that we need 1 ≤ ne−cd implying that d ≤ C log n with C = 1/c.



Yet, in the high-dimensional setting, the model parameters (e.g. the transition
probabilities) can be estimated only if dn ≤ C log(n) for some constant C > 0.

To see this, recall that the estimator of p(a|x−d :−1) computed from X1:n is defined as

p̂n(a|x−d :−1) = Nn(x−d :−1, a)∑
b∈A Nn(x−d :−1, b) = Nn(x−d :−1, a)

N̄n(x−d :−1)
,

where Nn(x−d :−1, b) = |{d + 1 ≤ t ≤ n : Xt−d :t−1 = x−d :−1,Xt = b}|.

For the estimator p̂n(a|x−d :−1) to have any meaning, we need that N̄n(x−d :−1) ≥ 1.

By ergodicity, N̄n(x−d :−1) ≈ nP(X1:d = x−d :−1). If the transition probabilities are
bounded below from zero, then ∃ c > 0 such that P(X1:d = x−d :−1) < e−cd .

In this case, it follows that we need 1 ≤ ne−cd implying that d ≤ C log n with C = 1/c.



Yet, in the high-dimensional setting, the model parameters (e.g. the transition
probabilities) can be estimated only if dn ≤ C log(n) for some constant C > 0.

To see this, recall that the estimator of p(a|x−d :−1) computed from X1:n is defined as

p̂n(a|x−d :−1) = Nn(x−d :−1, a)∑
b∈A Nn(x−d :−1, b) = Nn(x−d :−1, a)

N̄n(x−d :−1)
,

where Nn(x−d :−1, b) = |{d + 1 ≤ t ≤ n : Xt−d :t−1 = x−d :−1,Xt = b}|.

For the estimator p̂n(a|x−d :−1) to have any meaning, we need that N̄n(x−d :−1) ≥ 1.

By ergodicity, N̄n(x−d :−1) ≈ nP(X1:d = x−d :−1). If the transition probabilities are
bounded below from zero, then ∃ c > 0 such that P(X1:d = x−d :−1) < e−cd .

In this case, it follows that we need 1 ≤ ne−cd implying that d ≤ C log n with C = 1/c.



Yet, in the high-dimensional setting, the model parameters (e.g. the transition
probabilities) can be estimated only if dn ≤ C log(n) for some constant C > 0.

To see this, recall that the estimator of p(a|x−d :−1) computed from X1:n is defined as

p̂n(a|x−d :−1) = Nn(x−d :−1, a)∑
b∈A Nn(x−d :−1, b) = Nn(x−d :−1, a)

N̄n(x−d :−1)
,

where Nn(x−d :−1, b) = |{d + 1 ≤ t ≤ n : Xt−d :t−1 = x−d :−1,Xt = b}|.

For the estimator p̂n(a|x−d :−1) to have any meaning, we need that N̄n(x−d :−1) ≥ 1.

By ergodicity, N̄n(x−d :−1) ≈ nP(X1:d = x−d :−1).

If the transition probabilities are
bounded below from zero, then ∃ c > 0 such that P(X1:d = x−d :−1) < e−cd .

In this case, it follows that we need 1 ≤ ne−cd implying that d ≤ C log n with C = 1/c.



Yet, in the high-dimensional setting, the model parameters (e.g. the transition
probabilities) can be estimated only if dn ≤ C log(n) for some constant C > 0.

To see this, recall that the estimator of p(a|x−d :−1) computed from X1:n is defined as

p̂n(a|x−d :−1) = Nn(x−d :−1, a)∑
b∈A Nn(x−d :−1, b) = Nn(x−d :−1, a)

N̄n(x−d :−1)
,

where Nn(x−d :−1, b) = |{d + 1 ≤ t ≤ n : Xt−d :t−1 = x−d :−1,Xt = b}|.

For the estimator p̂n(a|x−d :−1) to have any meaning, we need that N̄n(x−d :−1) ≥ 1.

By ergodicity, N̄n(x−d :−1) ≈ nP(X1:d = x−d :−1). If the transition probabilities are
bounded below from zero, then ∃ c > 0 such that P(X1:d = x−d :−1) < e−cd .

In this case, it follows that we need 1 ≤ ne−cd implying that d ≤ C log n with C = 1/c.



Yet, in the high-dimensional setting, the model parameters (e.g. the transition
probabilities) can be estimated only if dn ≤ C log(n) for some constant C > 0.

To see this, recall that the estimator of p(a|x−d :−1) computed from X1:n is defined as

p̂n(a|x−d :−1) = Nn(x−d :−1, a)∑
b∈A Nn(x−d :−1, b) = Nn(x−d :−1, a)

N̄n(x−d :−1)
,

where Nn(x−d :−1, b) = |{d + 1 ≤ t ≤ n : Xt−d :t−1 = x−d :−1,Xt = b}|.

For the estimator p̂n(a|x−d :−1) to have any meaning, we need that N̄n(x−d :−1) ≥ 1.

By ergodicity, N̄n(x−d :−1) ≈ nP(X1:d = x−d :−1). If the transition probabilities are
bounded below from zero, then ∃ c > 0 such that P(X1:d = x−d :−1) < e−cd .

In this case, it follows that we need 1 ≤ ne−cd implying that d ≤ C log n with C = 1/c.



What if dn = βn for some β ∈ (0, 1)?

Why dn = βn is important? Many natural phenomena have very long memory!

In this talk: focus on another class of sparse Markov chains, called Mixture Transition
Distribution (MTD) models.

MTD models have been introduced by A. Raftery (’85). For applications see A.
Berchtold & Raftery (’02).
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MTD models

Markov chains of order d such that

p(a|x−d :−1) = λ0p0(a) +
−1∑

j=−d
λjpj(a|xj),

where:
I p0(·), pj(·, b), j ∈ {−d , . . . ,−1}, b ∈ A are probability measures on A.
I λ0, λ1, . . . , λ−d ∈ [0, 1] such that

∑0
j=−d λj = 1.

For each lag j ∈ {−d , . . . ,−1}, let δj = λj maxb,c∈A dTV (pj(·|b), pj(·|c)).

Denote Λ = {j ∈ {−d , . . . ,−1} : δj > 0} (set of relevant lags).

Note that p(a|x−d :−1) = p(a|xΛ) and DimMTD(d) = |Λ||A|(|A| − 1) + (|Λ| − 1).
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Goal of this talk:

I to present an efficient estimator of the set of relevant lags Λ, based on a sample
X1:n of a MTD model with order d .

I to provide some theoretical guarantees in the high-dimensional regime Λ = Λn and
d = dn = βn for some β ∈ (0, 1).

To estimate Λ, we propose to use the Forward Stepwise and Cut (FSC) estimator.

For a sample X1:n, integer m < n, S ⊆ {−d , . . . ,−1}, xS ∈ AS and a ∈ A, let

p̂m,n(a|xS) =


Nm,n(xS ,a)
N̄m,n(xS ) , if N̄m,n(xS) > 0,

1/|A|, otherwise
,

In the definition of p̂m,n(a|xS) the countings are over Xm+1:n.
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FSC estimator

The FSC estimator is defined as follows.

Step 1 (FS). From X1:m, build a random set Ŝm such that Λ ⊆ Ŝm with high probability.

Step 2 (CUT). For each j ∈ Ŝm, remove j from Ŝm only if

dTV (p̂m,n(·|xŜm
), p̂m,n(·|yŜm

)) < tm,n(xŜm
, yŜm

),

for all xŜm
, yŜm

∈ AŜm s.t. xk = yk for all k ∈ Ŝm \ {j}.
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dTV (p̂m,n(·|xŜm
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Choice of the random threshold

For S ⊆ {−d , . . . ,−1}, xS ∈ AS , we take tm,n(xS , yS) = sm,n(xS) + sm,n(yS), where

sm,n(xS) =
√

α(1 + ε)
2N̄m,n(xS)

∑
a∈A

√
Vm,n(a, xS) + α|A|

6N̄m,n(xS)
,

with α, ε > 0, µ ∈ (0, 3) s.t. µ > ψ(µ) = eµ − 1− µ and

Vm,n(a, xS) = µ

µ− ψ(µ) p̂m,n(a|xS) + α

N̄m,n(xS)(µ− ψ(µ))
.

The choice of sm,n(xS) is based on a Martingale concentration inequality.
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How do we build Ŝm?

For S ⊆ {−d , . . . ,−1} and j /∈ S, let ν̄j,S = E [|CovXS (X0,Xj)|] .

Notice that maxj∈Sc ν̄j,S = 0 if Λ ⊆ S.

From now on, we focus on the case A = {0, 1}.

Assumption 1. P(XS = xS) > 0 for all S ⊆ {−d , . . . ,−1} and xS ∈ {0, 1}S .

Proposition 1. Under Assumption 1 there exists κ > 0 such that the following
property holds: for all S ⊆ {−d , . . . ,−1} with Λ 6⊆ S, it holds that

max
j∈Sc

ν̄j,S ≥ max
j∈Λ\S
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For S ⊆ {−d , . . . ,−1} and j /∈ S, let ν̄j,S = E [|CovXS (X0,Xj)|] .

Notice that maxj∈Sc ν̄j,S = 0 if Λ ⊆ S.

From now on, we focus on the case A = {0, 1}.

Assumption 1. P(XS = xS) > 0 for all S ⊆ {−d , . . . ,−1} and xS ∈ {0, 1}S .

Proposition 1. Under Assumption 1 there exists κ > 0 such that the following
property holds: for all S ⊆ {−d , . . . ,−1} with Λ 6⊆ S, it holds that

max
j∈Sc

ν̄j,S ≥ max
j∈Λ\S

ν̄j,S ≥ κ



Denote ν̂m,j,S the empirical estimate of ν̄j,S computed from X1:m.

To build Ŝm, we do as follows. Fix 0 ≤ ` ≤ d .
1. Set Ŝm = ∅.
2. While |Ŝm| < `, compute j ∈ arg maxk∈Ŝc

m
ν̂m,k,Ŝm

and include j in Ŝm.

Theorem 1. (Consistency) Take m = n/2 and assume d = βm for some β ∈ (0, 1).
Suppose Assumption 1 holds and let κ > 0 given by Proposition 1. Let Λ̂n be the FSC
estimator computed with ` = 2κ−2 and α = (1 + η) log(n) for some η > 0. Under
some other mild assumptions and if ` ≤ (1− γ)/2 log2(n) for some γ ∈ (0, 1), then
there exits a constant C > 0 such that P(Λ̂n 6= Λ)→ 0 as n→∞, as long as

min
j∈Λ

δ2
j ≥ C log(n)

n(1+γ)/2 .
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Simulations: FSC estimator



Simulations: FSC estimator



Simulations: transition probability estimation
MTD model used: p(a|x−d :−1) = λ0p0(a|x0) + λipi (a|xi ) + λjpj(a|xj) where λ0 = 0.2,
λi = λj = 0.4, pi (0|0) = pi (1|1) = pj(0|0) = pj(1|1) = 0.7.

For each choice of i , j , d , and n we simulated 100 realizations. For each realization, we
estimated the transition probability p(0|0d ).



Further theoretical guarantees of FSC estimator

Theorem 2. Take m = n/2 and assume d = βm for β ∈ (0, 1). Suppose |Λ| ≤ L with
L known and the MTD model satisfies some weak dependence conditions. Let Λ̂n be
the FSC estimator constructed with parameters ` = L and α = (1 + η) log(n) for η > 0.
Under some other mild assumptions, there exits a positive constant C > 0 such that

P(Λ̂n 6= Λ)→ 0 as n→∞,

as long as
min
j∈Λ

δ2
j ≥ C log(n)

n .

If |Λ| = L and the MTD satisfies the weak dependence conditions, then we estimate Λ
by Ŝm. In this case, we neither need the CUT step not to split the data into two pieces!



Simulations: FSC without CUT



Final comments

If in Theorem 1 we suppose also that the Inward weak condition holds, then

κ = Γ1p2
min minj∈Λ δj

2
√
|Λ|

.

The lag selection is possible (in the minimax sense) only if

min
j∈Λ

δ2
j ≥ C log(n)

n .

What about multivariate MTD models?


