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Consider a stationary Markov chain (X;)¢ez of order d > 1:
P(X: = a|Xi—kit-1 = X_k—1) = P(Xy = a| Xe—git-1 = x_g.1) VEEZ, k> d,
a€ Aand x_p._1; € Al=F=1} such that P(Xe_j.r—1 = Xe—ket—1) > 0.

Denote p(alx_q.—1) = P(Xo = a|X_4.—1 = x_q:—1) (transition probabilities).
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Classical statistical questions: given a sample Xi., of a Markov chain,

» How to estimate the order d?
» How to estimate the transition probabilities p(a|x_q:.-1)7

» Can we provide confidence intervals for p(al|x_g4.—1)7?

Focus on the high-dimensional setting: d = d,, and p(a|x_g4.—1) = pn(a|x_d,:—1)-

One challenge is the curse of dimensionality: Dimpc(d) = |A|9(|A] — 1) grows
exponentially with d.

Typically, in the high-dimensional setting Dimpc(d,) > n. Need to seek for low
dimensional (sparse) Markov chains!
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Minimal Markov Models (MMM) are Markov chains of order d such that there exist a
partition C, . ..,Cx of Al=%~1} with the property that

p(alx_g.—1) = p(aly_q:.—1) if and only if x_g._ 1,y g.-1 € Ci.

The dimension of an MMM is Dimpmm(d) = K(JA| — 1). Typically, K < |A]9.
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Yet, in the high-dimensional setting, the model parameters (e.g. the transition
probabilities) can be estimated only if d, < Clog(n) for some constant C > 0.

To see this, recall that the estimator of p(a|x_q4.—1) computed from Xi., is defined as

[3 (3|X J ) _ Nn(X—d:—laa) _ Nn(X_d:_]_’a)
n —d:—1 ZbeA Nn(X_d;_l,b) Nn(de;,l) ,

where Np(x_g.—1,b) = {d+1<t<n:Xi_gr1=x_qg.-1,Xt = b}|.

For the estimator p,(a|X_g._1) to have any meaning, we need that N,(x_g._1) > 1.

By ergodicity, Np(x_g.—1) &= nP(X1.q = Xx_g:—1). If the transition probabilities are
bounded below from zero, then 3 ¢ > 0 such that P(Xy.g = x_g._1) < e,

In this case, it follows that we need 1 < ne~°? implying that d < Clog n with C =1/c.
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What if d,, = 8n for some 3 € (0,1)?
Why d, = Bn is important? Many natural phenomena have very long memory!

In this talk: focus on another class of sparse Markov chains, called Mixture Transition
Distribution (MTD) models.

MTD models have been introduced by A. Raftery ('85). For applications see A.
Berchtold & Raftery ('02).
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Markov chains of order d such that

-1
p(alx_q:-1) = dopo(a) + Y _ Ajpi(alx),
j=—d
where:

> po(-),pj(+, b),j € {—d,...,—1}, b € A are probability measures on A.
> Ao, A1,..., A €[0,1] such that 9 ;A =1.

For each lag j € {—d,...,—1}, let §; = A\j maxp, cca drv(p;(-|b), pi(-|c)).
Denote A = {j € {—d,...,—1} : §; > 0} (set of relevant lags).

Note that p(alx 4. 1) = p(alxn) and Dimrp(d) = [AJAI(JA] — 1) + (JA] — 1).
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> to present an efficient estimator of the set of relevant lags A, based on a sample
Xi.n of a MTD model with order d.

> to provide some theoretical guarantees in the high-dimensional regime A = A, and
d = d, = n for some 3 € (0,1).

To estimate A, we propose to use the Forward Stepwise and Cut (FSC) estimator.
For a sample Xi.,, integer m<n, S C{—d,...,—1}, xs € AS and a € A, let

M, if Nm,n(XS) >0,

B — Nim,n(xs)
Pm,n\d|Xs) = )
mn(als) {1/|A|, otherwise

In the definition of pm n(alxs) the countings are over X 1.p.



FSC estimator

The FSC estimator is defined as follows.

Step 1 (FS). From Xi.n,, build a random set S, such that A C 5, with high probability.
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The FSC estimator is defined as follows.

Step 1 (FS). From Xi.n,, build a random set S, such that A C 5, with high probability.

Step 2 (CUT). For each j € 5, remove j from 5, only if

dTV(/Smm(“X_Agm)’f)m,n(' )/f;m)) < tm,n(Xgm,)@m)a

for all x5 ,ys € ASn s t. xx = yx for all k € Sm \ {j}
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For SC{—d,...,—1}, xs € A, we take tmn(Xs,Ys) = Sm.n(Xs) + Sm,n(¥s), where
a(l+¢) oAl
sm,n(XS) = \/ mn a XS
2/Vm n(X5 ; 6Nm n XS)
with a,e >0, p € (0,3) s.t. u > () =e* —1— p and
i o
Vm,n(a, xs) = ————— Pm,n(alxs) —|— - .
1= (p) Nim,n(xs) (e — ¥ (1))

The choice of sy, 5(xs) is based on a Martingale concentration inequality.
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How do we build S,,?

For SC{—d,...,—1}and j ¢ S, let i; s = E[|Covx,(Xo, Xj)|] -

Notice that maxjesc ;s =0 if AC S.

From now on, we focus on the case A= {0, 1}.

Assumption 1. P(Xs = xs) > 0 forall S C {—d,...,—1} and x5 € {0,1}°.

Proposition 1. Under Assumption 1 there exists x > 0 such that the following
property holds: for all S C {—d,...,—1} with A Z S, it holds that

maxvjs > max vjs > K

Jjese JEMNS



Denote i, j s the empirical estimate of ©; s computed from Xi.p,.

To build Sm, we do as follows. Fix 0 < /¢ < d.
1. Set S, = 0.
2. While lgm\ < ¢, compute j € argmax, s 7, 5 and include j in Sm.



Denote i, j s the empirical estimate of ©; s computed from Xi.p,.

To build Sm, we do as follows. Fix 0 < /¢ < d.
1. Set S, = 0.
2. While ]ém\ < ¢, compute j € argmax, s 7, 5 and include j in Sm.

Theorem 1. (Consistency) Take m = n/2 and assume d = 3m for some 8 € (0,1).
Suppose Assumption 1 holds and let k > 0 given by Proposition 1. Let A, be the FSC
estimator computed with £ = 2572 and a = (1 + 1) log(n) for some 7 > 0. Under
some other mild assumptions and if £ < (1 — v)/2log,(n) for some v € (0,1), then
there exits a constant C > 0 such that P(A, # A) — 0 as n — oo, as long as

i log(n)
2
T 2 Ce




Simulations: FSC estimator
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Simulations: FSC estimator
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Simulations: transition probability estimation

MTD model used: p(alx_q.—1) = Aopo(alxo) + Aipi(alxi) + Ajpj(alx;) where Ao = 0.2,
A = A = 04, pi(0]0) = pi(1[1) = p;(0[0) = py(1]1) = 0.7.

For each choice of i, j,d, and n we simulated 100 realizations. For each realization, we
estimated the transition probability p(0]09).

Model parameter Method Sample size (n)

i j d | | 256 512 1024 2048 4096 8192
1 5 5 FSC(2) | 0.0774 0.0682 0.0506 0.0286 0.0174 0.0133
1 5 5 FSC(5) | 0.0745 0.0835 0.0602 0.0426 0.0222 0.0129
1 5 5 PCP 0.0965 0.0786 0.0577 0.0432 0.0242 0.0131
1 5 5 Naive | 0.1518 0.0033 00624 0.0455 0.0340 0.0252
1 5 10 FSC(5) | 0.0836 0.0842 00650 0.0425 0.0228 0.0141
1 10 15 FSC(5) | 0.0864 0.0781 0.0641 0.0438 0.0249 0.0151
1 15 20 FSC(5) | 0.0682 0.0802 00778 0.0534 0.0285 0.0138
11 100 120 |Fsc(s) |- - 0.0838 0.0647 0.0312 0.0169
1 10 n/8 |Fsc(s) |0.0563 0.0543 0.0780 0.0698 0.0504 0.0105




Further theoretical guarantees of FSC estimator

Theorem 2. Take m = n/2 and assume d = 3m for § € (0,1). Suppose |A| < L with
L known and the MTD model satisfies some weak dependence conditions. Let A, be
the FSC estimator constructed with parameters ¢ = L and o = (1 +17) log(n) for n > 0.
Under some other mild assumptions, there exits a positive constant C > 0 such that

P(A, # A) = 0 as n — oo,

as long as

I
min 52 > C—— og(n )
JeNn n

If |A| = L and the MTD satisfies the weak dependence conditions, then we estimate A
by S,,. In this case, we neither need the CUT step not to split the data into two pieces!



Simulations: FSC without CUT
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Final comments

If in Theorem 1 we suppose also that the Inward weak condition holds, then

2 .
_ T1pimin minjen 9;

2N

The lag selection is possible (in the minimax sense) only if

[
min 5J2 > C——= og(n)
JjeNn n

What about multivariate MTD models?



