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Existence of localized Gibbs measures (GM) for strong coupling, Theorem 1

Existence of delocalized gradient Gibbs measures (GGM), Theorem 2

Existence of spatially inhomogeneous GGM, Theorem 3 + 4
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Gibbs specifications � on trees

(V ,E) infinite regular tree of degree d (i.e. d + 1 nearest neighbors)

V site space

⌦0 local state space

⌦0 = {1, . . . , q} finite alphabet ⌦0 = Z
⌦ = ⌦V

0 infinite volume configurations

Specification �, on general graphs, for general interactions: a candidate
system for conditional probabilities of an infinite-volume Gibbs measure µ
(probability measure on ⌦) to be defined by DLR equations

µ(�⇤(f |·)) = µ(f ) for all finite volumes ⇤ ⇢ V

Specification described by transfer operator Q

�⇤(!⇤ | !⇤c ) = Z⇤(!@⇤)
�1

Y

{x,y}\⇤ 6=;
nearest neighbors

Q(!x ,!y ).

Nearest neighbor specification, spatial Markovianness
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Background tree-indexed Markov chains µ - Georgii book Chapter 12
The probability measure µ on ⌦ = ⌦V

0 is a tree-indexed Markov chain

(which is tree-automorphism invariant) i↵ it allows the iterative construction

1. Sample �0 at (arbitrary) root 0 according to single-site marginal of µ

2. Sample �w via transition matrix P(!v ,!w ) from inside to outside

Abstract definition of tree-indexed MC:

µ(�w = ·|Fpast of (v,w)) = µ(�w = ·|Fv ) holds for all oriented edges (v ,w)

Background Theorem A. µ extremal Gibbs measure ) µ tree-indexed MC
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Gradient models and transfer operators Q

(V ,E) infinite regular tree of degree d (i.e. d + 1 nearest neighbors)

V site space

Z local state space, height variables

⌦ = ZV infinite volume configurations

Gradient specification described by transfer operator Q : Z 7! (0,1)

depending only on height-di↵erences

�⇤(!⇤ | !⇤c ) = Z⇤(!@⇤)
�1

Y

{x,y}\⇤ 6=;
nearest neighbors

Q(!x � !y ).

Note: The kernels �⇤ are invariant under joint shifts in height-direction

¥ •
on

•ÄH.

^

¥

2 \

n.MY
↓
•
du
'
n

i Ü



Gibbs measures (GM) vs. Gradient Gibbs measures (GGM)

Assume in the following transfer operator Q : Z 7! (0,1) strictly positive

Often Q(i) = e
��U(|i|) comes in terms of

gradient interaction potential U, with inverse temperature � 2 (0,1)

Examples: U(|i |) = |i | SOS model, U(|i |) = |i |2 discrete Gaussian

U(|i |) = |i |p, but in general no monotonicity or convexity is needed for us

Aim: Infinite-volume measures which are consistent with �, i.e. µ�⇤ = µ

GM: Gibbs measures, probability measures on ⌦ = ZV

GGM: Gradient Gibbs measures, only probability measures on ⌦/Z
(where ⌦/Z are height configurations modulo a joint height-shift)

Not all GGMs come from GMs (compare two-sided random walk)

Existence not abstractly given, as state-space ⌦ is non-compact

Purpose of the talk: Outline constructions of

1) Spatially homogeneous measures, localized states

2) (some) spatially inhomogeneous measures (compare Dobrushin-states)
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GMs and GGMs on lattices and trees, background

On lattices: Z or R-valued:
Deuschel, Giacomin, Io↵e, Funaki, Spohn, She�eld, Kotecky, Luckhaus,
Biskup, Lammers-Ott, Dario-Harel-Peled;

Bovier, Orlandi, van Enter, Cotar, K

On trees: Le Ny, Rozikov, Schriever, Henning, K

Background for talk:

1) Henning-K: Coexistence of localized Gibbs measures and delocalized
gradient Gibbs measures on trees, AAP 2021

2) Henning-K: Existence of gradient Gibbs measures on regular trees which are
not translation invariant, arXiv:2102.11899

3) Henning, K, Le Ny, Rozikov: Gradient Gibbs measures for the SOS model
with countable values on a Cayley tree, EJP 2019



Preparations for our existence theorem for localized GMs

Definition. For any of the spaces

S = Z, Z \ {0}, Zq = {0, 1, . . . , q � 1} or Zq \ {0},
for any exponent 1  p < 1 consider the Banach space

lp(S) :=
�
x 2 RS | kxkp,S :=

�X

j2S

|x(j)|p
� 1

p < 1
 
.

Lemma. If kQk d+1

2
,Z < 1 then the Gibbsian specification kernels �⇤ are

well-defined (i.e. have finite partition functions).

Definition. For any integer d � 2 define the good set for interactions

Gd := {(�, �) 2 (1,1)⇥ (0,1) | there exists an " > 0 such that

� + �"d  " and 2d�"d�1 + 2d�"d < 1}.

Invariance and contractivity
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Existence of localized Gibbs measures - gradient models

Theorem 1, Henning-K 2021. Fix any degree of the tree d � 2.

For any strictly positive transfer operator Q with Q(0) = 1

set � := kQk d+1

2
,Z and � := kQkd+1,Z\{0}.

If (�, �) 2 Gd then there exists a family of distinct tree-automorphism invariant
Gibbs measures (µi )i2Z which are equivalent under joint translation of the local
spin spaces.

Moreover, the single-site marginal of each µi satisfies the following localization
bounds

✓
�

1� �"(�, �)d

1 + �"(�, �)d�1

◆d+1

 µi (�0 6= i)
µi (�0 = i)


✓
�

1 + �"(�, �)d

1� �"(�, �)d�1

◆d+1

where "(�, �) denotes the smallest positive solution to the equation

" = �"d + �.
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Existence of localized Gibbs measures - clock models

The theorem stays true if the local state space Z is replaced by the ring

Zq = {0, 1, . . . , q � 1} and the transfer operator Q is an even function on Zq.

Such models are called clock models or discrete rotator models

and the theorem delivers the existence of ordered phases in this case

low temperature regimes

Specific examples: Potts model Q(i) = e
�1i=0 , discrete Heisenberg model, . . .
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Existence of delocalized gradient Gibbs measures for l1-interactions

Theorem 2. (Henning, K, 2021). Fix any degree of the tree d � 2.

Let Q 2 l1(Z) be any strictly positive transfer operator with Q(0) = 1.

If (kQk1,Z, kQk1,Z\{0}) 2 Gd then for any q � 2 there exist tree automorphism

invariant GGMs coming from q-periodic boundary law solutions which are

not equal to the free state.

Delocalization: ⌫(Wn = k)
n!1! 0 along any path of length n and any k 2 Z.
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Zachary’s Theorem (AoP 1983)

Background Theorem B. There is a one-to-one relation between

• Gibbs measures µ 2 M1(⌦V
0 ) which are also tree-indexed Markov chains and

• normalizable boundary laws (�xy )(x,y)2~L, where ~L denote oriented edges,

where each �xy 2 (0,1)⌦0/(0,1) is a positive measure on local state space

(modulo constants) satisfying consistency and normalizability

The Gibbs measure is described via finite-volume marginals

µ(!⇤[@⇤) = (Z⇤)
�1

Y

y2@⇤

�yy⇤(!y )
Y

b\⇤ 6=;

Q(!b),

The Markov chain transition operator is

Pxy (!x ,!y ) =
Q(!x ,!y )�yx(!y )P

j Q(!x , j)�yx(j)
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Boundary Laws - consistency and normalizability

Definition. (Normalizable) boundary laws (�xy )(x,y)2~L 2 (0,1)
~L

where �xy 2 (0,1)⌦0/(0,1) local state space

must satisfy the two defining properties

�xy (i) = cxy

Y

z2@{x}\y

X

j

Q(i , j)�zx(j) at any oriented edge (xy)

X

i

Y

z2@{x}

X

j

Q(i , j)�zx(j) < 1 at any site x
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Homogeneous localized boundary law solutions - fixed point method in l
d+1

Since a tree-automorphism invariant boundary law � = (�(i))i2Z is normalizable

if and only if � 2 l d+1

d
(Z), the family x pointwisely given by x(i) := �(i)

1

d

corresponds to a normalizable boundary law if and only if x 2 ld+1(Z).

Homogeneous boundary laws can be described as fixed points to the operator

T : ld+1(Z \ {0}) ! ld+1(Z \ {0})

with

T (x)(i) :=
Q(i) +

P
j2Z\{0} Q(i � j) |x(j)|d

1 +
P

j2Z\{0} Q(j) |x(j)|d

Important tool: Young convolution inequality in lp(Z)

ku ⇤ vkr  kukp kvkq, 1 +
1
r
=

1
p
+

1
q

which gives e.g.

kT (x)kd+1,Z\{0}  kQkd+1,Z\{0} + kQk d+1

2
,Z kxk

d
d+1,Z\{0}.

invariance and also contractivity of T on a suitable d + 1 ball
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From q-spin GMs to Z-valued GGMs

Fix height-period q 2 {2, 3, 4, . . . }.
Given the transfer-operator Q 2 l

1(Z) form the associated

Fuzzy transfer operator Qq(i) :=
P

j2i+qZ Q(i)

where i 2 Zq = {0, 1, . . . , q � 1}

Background Theorem C. (Henning, K, 2021). Consider any Gibbs measure
(possibly nonhomogeneous) µ on (Zq)

V for Qq.

Then there is an associated GGM ⌫ on ZV /Z which is obtained as a hidden
Markov model via edge-wise independent resampling:

⌫(⇣⇤) =
X

!̄⇤2Z⇤
q

µ(!̄⇤)
Y

(x,y), x,y2⇤

⇢q(⇣(x,y) | !̄y � !̄x)

where

⇢q(j | s̄) = 1j2s̄
Q(j)
Qq(s̄)

,

In this case, we call the (minimal) q the (height-) period of the GGM ⌫
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Non-homogeneous gradient states and dynamical systems

Theorem 3. (Henning, K, 2021). Consider the gradient specification for the
transfer operator Q 2 l

1(Z), Q(i) = Q(�i) > 0 for all i 2 Z, on the regular
tree with d + 1 nearest neighbors.

Then there exists a finite height period q0(Q, d) such that for all q � q0(Q, d)
there are gradient Gibbs measures ⌫ of period q which are not invariant under
translations on the tree.

Delocalization, as in homogeneous case: ⌫(Wn = k)
n!1! 0 along any path of

length n and any k 2 Z.

Proof idea.

1) Construct non-homogeneous GMs µ on the state space (Zq)V

for fuzzy transfer operator Qq

Find spatially non-homogeneous solutions to Zachary’s equation (AoP 1983)

2) Define the gradient state ⌫ via edge-wise resampling of Theorem C

Show that µ 7! ⌫ 2 M1(ZV /Z) preserves spatial inhomogeneity



Inhomogeneous Boundary law equation on the simplex

Boundary law equation, no symmetries

�q
xy (i) =

Q
z2@{x}\y

P
j2Zq

Q
q
xz(i � j)�q

zx(j)

k
Q

z2@{x}\y
P

j2Zq
Q

q
xz(·� j)�q

zx(j)k1
, i 2 Zq.

at any edge (xy) 2 ~L.

Boundary law equation for solutions with radial symmetry leads to

�q
⇢x = Hq(�

q
y⇢)

for an operator
Hq : �q ! �q

⑧
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The maps Hq

• For any transfer operator Q 2 l
1(Z), for any height-period q, the

equidistribution eq = 1

q (1, . . . , 1) is a fixed point of Hq

• Idea: construct non-constant infinite backwards-trajectories for Hq to obtain
non-homogeneous boundary law solutions.

Chose starting points close to the fixed point eq, but not equal to eq.

• Perform stability analysis around eq:

Problem: non-hyperbolicity (neutral eigenvalues of linearization) at some
exceptional parameter values for families of transfer operator Q

Solution via application of ⌧ -unstable manifold theorem (Chaperon 2002) of
points which escape from eq at least with rate ⌧ n with ⌧ > 1.

backwods W
, unstable Space of
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Existence of nonhomogeneous GGMs via Fourier transform Q̂

Theorem 4. Fix any degree d � 2 of the tree, any height period q � 2.

Suppose that there is a level ⌧ > 1 for which the Fourier transform of the
transfer operator

Q̂ : [�⇡,⇡) ! R ; Q̂(k) =
X

n2Z
Q(n) cos(nk)

satisfies

i) |Q̂(2⇡ j
q )| 6=

⌧
d Q̂(0) for all indices j 2 {1, . . . , q � 1} and

ii) the strict inequality |Q̂(2⇡ j
q )| >

⌧
d Q̂(0) holds for some index

j 2 {1, . . . , q � 1}.
Then there are gradient Gibbs measures ⌫ of period q which are not spatially
homogeneous on the tree.

These states ⌫ are constructed from non-homogeneous radially symmetric
boundary law solutions obtained from backwards iteration on the local
⌧ -unstable manifold W⌧ around the equidistribution.

Nonhomogeneity of ⌫ is provable for initial values in small neighborhoods



Nonhomogeneous GGMs via Q̂: two examples of models

�=0.5

�=2

�=3
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(a) SOS-model
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Q� (k)

Q� (0)

(b) Inverse-square model

Figure: Graphs of the function Q̂(·)/Q̂(0) for two models at di↵erent parameters.

SOS-model: Q(i) = e
��|i| Inverse-square model Q(i) = 1i=0 + a

i2
1i 6=0



Open problems for Gradient models on trees

• Are there homogeneous low temperature GMs µA concentrated on finite
subsets A ⇢ Z, which are not convex combinations of µi?

This is suggested by analogy to the Potts model on the tree

(Khakimov-K-Rozikov JSP 2014, K-Rozikov RSA 2017),

and the degenerate zero-temperature case Q = 10

• Extremality of infinite volume states? Decomposition of states µ� ?

µ� =

Z

ex G(�)

w
�(d⌫)⌫

GandolfoMaesRuizShlosman JSP 2020, Glassy states: the free Ising model

• Are there spatially inhomogeneous GMs for gradient models of new types?

• Disordered gradient models?

DarioHarelPeled arXiv2021: Random Field Random Surfaces (on lattices,
continuous fields and discrete Gaussian)

Cotar-K AAP2012, PTRF2015: gradient models on lattices, continuous fields
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Related problems: Time-evolved models on trees, two layer systems

Time-evolved spin models µt = µ�
Pt on trees show

dynamical Gibbs-non Gibbs transitions

where µt non-Gibbs means ! 7! µt(A|F⇤c )(!) discontinuous

Enter-Fernandez-dHollander-Redig CMP02: Lattice-Ising under spin-flip

Iacobelli-Ermolaev-vEnter-K AIHP2012: Tree-Ising under independent spin-flip

Bergmann-Kissel-K, accepted in AIHP: Dynamical Tree-Widom-Rowlinson

Relation to models with quenched disorder on trees

Analysis via two-layer systems for (�(0),�(t)):

understanding time-zero system conditional on time-t system,

via boundary solutions for spatially inhomogeneous equations

and stability analysis for perturbed maps
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