Gibbs states and gradient Gibbs states on trees in strong coupling regimes

Christof Külske, Ruhr-University Bochum, Germany joint work with Florian Henning

2022-April-25, UFRJ Rio de Janeiro

Outline

Setup and background.

 $\mathbb Z$ -valued gradient models and transfer operators Q on trees

Results.

Existence of localized Gibbs measures (GM) for strong coupling, Theorem 1 Existence of delocalized gradient Gibbs measures (GGM), Theorem 2 Existence of spatially inhomogeneous GGM, Theorem 3 + 4

Methods.

Tree-indexed Markov chains, boundary laws, two-layer systems, fixed points, stability analysis for dynamical systems

Related problems.

Gibbs specifications γ on trees

(V, E) infinite regular tree of degree d (i.e. d + 1 nearest neighbors) V site space Ω_0 local state space $\Omega_0 = \{1, \dots, q\}$ finite alphabet $\Omega_0 = \mathbb{Z}$ $\Omega = \Omega_0^V$ infinite volume configurations

Specification γ , on general graphs, for general interactions: a candidate system for conditional probabilities of an infinite-volume Gibbs measure μ (probability measure on Ω) to be defined by **DLR equations**

 $\mu(\gamma_{\Lambda}(f|\cdot)) = \mu(f)$ for all finite volumes $\Lambda \subset V$

Specification described by transfer operator Q

 $\gamma_{\Lambda}(\omega_{\Lambda} \mid \underline{\omega}_{\Lambda^{c}}) = Z_{\Lambda}(\underline{\omega}_{\partial\Lambda})^{-1} \prod_{\substack{\{x,y\} \cap \Lambda \neq \emptyset \\ nearest neighbors}} Q(\underline{\omega}_{x}, \underline{\omega}_{y}).$

Nearest neighbor specification, spatial Markovianness

Background tree-indexed Markov chains μ - Georgii book Chapter 12

The probability measure μ on $\Omega = \Omega_0^V$ is a **tree-indexed Markov chain** (which is tree-automorphism invariant) iff it allows the iterative construction

- 1. Sample σ_0 at (arbitrary) root 0 according to single-site marginal of μ
- 2. Sample σ_w via transition matrix $P(\omega_v, \omega_w)$ from inside to outside

Abstract definition of tree-indexed MC:

 $\mu(\sigma_{\mathsf{w}}=\cdot|\mathcal{F}_{\mathsf{past of }(\mathsf{v},\mathsf{w})})=\mu(\sigma_{\mathsf{w}}=\cdot|\mathcal{F}_{\mathsf{v}}) \text{ holds for all oriented edges }(\mathsf{v},\mathsf{w})$

Background Theorem A. μ extremal Gibbs measure $\Rightarrow \mu$ tree-indexed MC

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Gradient models and transfer operators Q

(V, E) infinite regular tree of degree d (i.e. d + 1 nearest neighbors) V site space

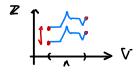
- $\ensuremath{\mathbb{Z}}$ local state space, height variables
- $\Omega = \mathbb{Z}^V$ infinite volume configurations

Gradient specification described by transfer operator $Q : \mathbb{Z} \mapsto (0, \infty)$ depending only on height-differences

$$\gamma_{\Lambda}(\omega_{\Lambda} \mid \omega_{\Lambda^{c}}) = Z_{\Lambda}(\omega_{\partial \Lambda})^{-1} \prod_{\substack{\{x,y\} \cap \Lambda \neq \emptyset \\ \text{nearest neighbors neighbors}}} Q(\omega_{x} - \omega_{y}).$$

Note: The kernels γ_{Λ} are invariant under joint shifts in height-direction

うつつ 川 ヘボマ ヘボマ 予ママ



Gibbs measures (GM) vs. Gradient Gibbs measures (GGM)

Assume in the following transfer operator $Q : \mathbb{Z} \mapsto (0, \infty)$ strictly positive Often $Q(i) = e^{-\beta U(|i|)}$ comes in terms of gradient interaction potential U, with inverse temperature $\beta \in (0, \infty)$

Examples: U(|i|) = |i| SOS model, $U(|i|) = |i|^2$ discrete Gaussian $U(|i|) = |i|^p$, but in general no monotonicity or convexity is needed for us

Aim: Infinite-volume measures which are consistent with $\gamma,$ i.e. $\mu\gamma_{\rm A}=\mu$

GM: Gibbs measures, probability measures on $\Omega = \mathbb{Z}^V$ of solute height

GGM: Gradient Gibbs measures, only probability measures on Ω/\mathbb{Z} where Ω/\mathbb{Z} are height configurations modulo a joint height-shift)

Not all GGMs come from GMs (compare two-sided random walk) Existence not abstractly given, as state-space Ω is non-compact

Purpose of the talk: Outline constructions of

- 1) Spatially homogeneous measures, localized states
- 2) (some) spatially inhomogeneous measures (compare Dobrushin-states)

GMs and GGMs on lattices and trees, background

On lattices: \mathbb{Z} or \mathbb{R} -valued:

Deuschel, Giacomin, Ioffe, Funaki, Spohn, Sheffield, Kotecky, Luckhaus, Biskup, Lammers-Ott, Dario-Harel-Peled;

Bovier, Orlandi, van Enter, Cotar, K

On trees: Le Ny, Rozikov, Schriever, Henning, K

Background for talk:

1) Henning-K: Coexistence of localized Gibbs measures and delocalized gradient Gibbs measures on trees, AAP 2021

2) Henning-K: Existence of gradient Gibbs measures on regular trees which are not translation invariant, arXiv:2102.11899

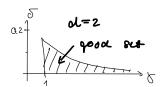
3) Henning, K, Le Ny, Rozikov: Gradient Gibbs measures for the SOS model with countable values on a Cayley tree, EJP 2019

Preparations for our existence theorem for localized GMs

Definition. For any of the spaces $S = \mathbb{Z}, \quad \mathbb{Z} \setminus \{0\}, \quad \mathbb{Z}_q = \{0, 1, \dots, q-1\} \text{ or } \mathbb{Z}_q \setminus \{0\},$ for any exponent $1 \le p < \infty$ consider the Banach space

$$I_p(S) := \{x \in \mathbb{R}^S \mid ||x||_{p,S} := \big(\sum_{j \in S} |x(j)|^p\big)^{\frac{1}{p}} < \infty \}.$$

Lemma. If $||Q||_{\frac{d+1}{2},\mathbb{Z}} < \infty$ then the Gibbsian specification kernels γ_{Λ} are well-defined (i.e. have finite partition functions).



(日) (同) (三) (三) (三) (○) (○)

Definition. For any integer $d \ge 2$ define the **good set for interactions**

 $G_d := \{(\gamma, \delta) \in (1, \infty) \times (0, \infty) \mid \text{there exists an } \varepsilon > 0 \text{ such that}$ $\delta + \gamma \varepsilon^d \leq \varepsilon \quad \text{and} \quad 2d\gamma \varepsilon^{d-1} + 2d\delta \varepsilon^d < 1\}.$ Invariance and contractivity

Existence of localized Gibbs measures - gradient models

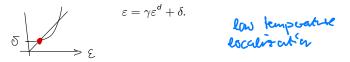
Theorem 1, Henning-K 2021. Fix any degree of the tree $d \ge 2$. For any strictly positive transfer operator Q with Q(0) = 1set $\gamma := \|Q\|_{\frac{d+1}{2},\mathbb{Z}}$ and $\delta := \|Q\|_{d+1,\mathbb{Z}\setminus\{0\}}$.

If $(\gamma, \delta) \in G_d$ then there exists a family of distinct tree-automorphism invariant Gibbs measures $(\mu_i)_{i \in \mathbb{Z}}$ which are equivalent under joint translation of the local spin spaces.

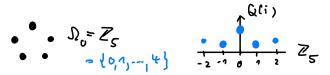
Moreover, the single-site marginal of each μ_i satisfies the following localization bounds

$$\left(\delta \frac{1-\delta\varepsilon(\gamma,\delta)^d}{1+\gamma\varepsilon(\gamma,\delta)^{d-1}}\right)^{d+1} \leq \frac{\mu_i(\sigma_0\neq i)}{\mu_i(\sigma_0=i)} \leq \left(\delta \frac{1+\delta\varepsilon(\gamma,\delta)^d}{1-\gamma\varepsilon(\gamma,\delta)^{d-1}}\right)^{d+1}$$

where $\varepsilon(\gamma, \delta)$ denotes the smallest positive solution to the equation



Existence of localized Gibbs measures - clock models



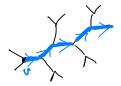
The theorem stays true if the local state space \mathbb{Z} is replaced by the ring $\mathbb{Z}_q = \{0, 1, \dots, q-1\}$ and the transfer operator Q is an even function on \mathbb{Z}_q . Such models are called **clock models** or **discrete rotator models** and the theorem delivers the existence of ordered phases in this case low temperature regimes

Specific examples: Potts model $Q(i) = e^{\beta 1_{i=0}}$ discrete Heisenberg model, ...

$$Q^{(i)} = e^{-\beta \cdot \mathbf{i} \cdot \mathbf{i}}$$

Theorem 2. (Henning, K, 2021). Fix any degree of the tree $d \ge 2$. Let $Q \in I_1(\mathbb{Z})$ be any strictly positive transfer operator with Q(0) = 1. If $(||Q||_{1,\mathbb{Z}}, ||Q||_{1,\mathbb{Z}\setminus\{0\}}) \in G_d$ then for any $q \ge 2$ there exist tree automorphism invariant GGMs coming from q-periodic boundary law solutions which are not equal to the free state.

i.i.d. increments ~ $\frac{Q(i)}{\|Q\|}$ be explained Delocalization: $\nu(W_n = k) \xrightarrow{n \to \infty} 0$ along any path of length *n* and any $k \in \mathbb{Z}$.



Zachary's Theorem (AoP 1983)

Background Theorem B. There is a one-to-one relation between

• Gibbs measures $\mu \in \mathcal{M}_1(\Omega_0^V)$ which are also tree-indexed Markov chains and

• normalizable **boundary laws** $(\lambda_{xy})_{(x,y)\in \vec{L}}$, where \vec{L} denote oriented edges, where each $\lambda_{xy} \in (0,\infty)^{\Omega_0}/(0,\infty)$ is a positive measure on local state space (modulo constants) satisfying *consistency* and *normalizability*

The Gibbs measure is described via finite-volume marginals

$$\mu(\omega_{\Lambda\cup\partial\Lambda})=(Z_{\Lambda})^{-1}\prod_{y\in\partial\Lambda}\lambda_{yy_{\Lambda}}(\omega_{y})\prod_{b\cap\Lambda\neq\emptyset}Q(\omega_{b}),$$

The Markov chain transition operator is

$$P_{xy}(\omega_x,\omega_y) = \frac{Q(\omega_x,\omega_y)\lambda_{yx}(\omega_y)}{\sum_j Q(\omega_x,j)\lambda_{yx}(j)}$$

Boundary Laws - consistency and normalizability

Definition. (Normalizable) boundary laws $(\lambda_{xy})_{(x,y)\in \vec{L}} \in (0,\infty)^{\vec{L}}$ where $\lambda_{xy} \in (0,\infty)^{\Omega_0}/(0,\infty)$ local state space must satisfy the two **defining properties**

Homogeneous localized boundary law solutions - fixed point method in I^{d+1}

Since a tree-automorphism invariant boundary law $\lambda = (\lambda(i))_{i \in \mathbb{Z}}$ is normalizable if and only if $\lambda \in I_{\frac{d+1}{d}}(\mathbb{Z})$, the family x pointwisely given by $x(i) := \lambda(i)^{\frac{1}{d}}$ corresponds to a normalizable boundary law if and only if $x \in I_{d+1}(\mathbb{Z})$.

Homogeneous boundary laws can be described as fixed points to the operator

$$T: I_{d+1}(\mathbb{Z} \setminus \{0\}) \rightarrow I_{d+1}(\mathbb{Z} \setminus \{0\})$$

with

$${T}({ extsf{x}})(i) := rac{Q(i) + \sum_{j \in \mathbb{Z} \setminus \{0\}} Q(i-j) \, |{ extsf{x}}(j)|^d}{1 + \sum_{j \in \mathbb{Z} \setminus \{0\}} Q(j) \, |{ extsf{x}}(j)|^d}$$

Important tool: Young convolution inequality in $I_{\rho}(\mathbb{Z})$

$$||u * v||_r \le ||u||_p ||v||_q, \quad 1 + \frac{1}{r} = \frac{1}{p} + \frac{1}{q}$$

which gives e.g.

$$\|T(x)\|_{d+1,\mathbb{Z}\setminus\{0\}} \leq \|Q\|_{d+1,\mathbb{Z}\setminus\{0\}} + \|Q\|_{\frac{d+1}{2},\mathbb{Z}} \|x\|_{d+1,\mathbb{Z}\setminus\{0\}}^d.$$

invariance and also contractivity of T on a suitable d + 1 ball

! ≤ ε

From *q*-spin GMs to \mathbb{Z} -valued GGMs

Fix height-period $q \in \{2, 3, 4, ...\}$. Given the transfer-operator $Q \in l^1(\mathbb{Z})$ form the associated **Fuzzy transfer operator** $Q^q(i) := \sum_{j \in i+q\mathbb{Z}} Q(i)$ where $i \in \mathbb{Z}_q = \{0, 1, ..., q - 1\}$

Background Theorem C. (Henning, K, 2021). Consider any Gibbs measure (possibly nonhomogeneous) μ on $(\mathbb{Z}_q)^V$ for Q^q .

Then there is an associated GGM ν on $\mathbb{Z}^{V}/\mathbb{Z}$ which is obtained as a hidden Markov model via edge-wise independent resampling:

In this case, we call the (minimal) q the (height-) period of the GGM u

くして 前 ふかく 山下 ふぼう ふしゃ

Non-homogeneous gradient states and dynamical systems

Theorem 3. (Henning, K, 2021). Consider the gradient specification for the transfer operator $Q \in l^1(\mathbb{Z})$, Q(i) = Q(-i) > 0 for all $i \in \mathbb{Z}$, on the regular tree with d + 1 nearest neighbors.

Then there exists a finite height period $q_0(Q, d)$ such that for all $q \ge q_0(Q, d)$ there are gradient Gibbs measures ν of period q which are not invariant under translations on the tree.

Delocalization, as in homogeneous case: $\nu(W_n = k) \xrightarrow{n \to \infty} 0$ along any path of length n and any $k \in \mathbb{Z}$.

Proof idea.

1) Construct non-homogeneous GMs μ on the state space $(\mathbb{Z}_q)^V$ for fuzzy transfer operator Q^q

Find spatially non-homogeneous solutions to Zachary's equation (AoP 1983)

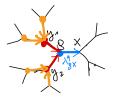
2) Define the gradient state ν via edge-wise resampling of Theorem C Show that $\mu \mapsto \nu \in \mathcal{M}_1(\mathbb{Z}^V/\mathbb{Z})$ preserves spatial inhomogeneity

Inhomogeneous Boundary law equation on the simplex

Boundary law equation, no symmetries

$$\lambda_{xy}^{q}(i) = \frac{\prod_{z \in \partial\{x\} \setminus y} \sum_{j \in \mathbb{Z}_{q}} Q_{xz}^{q}(i-j)\lambda_{zx}^{q}(j)}{\|\prod_{z \in \partial\{x\} \setminus y} \sum_{j \in \mathbb{Z}_{q}} Q_{xz}^{q}(\cdot-j)\lambda_{zx}^{q}(j)\|_{1}}, \quad i \in \mathbb{Z}_{q}.$$

at any edge $(xy) \in \vec{L}$.



Boundary law equation for solutions with radial symmetry leads to

$$\lambda_{\rho x}^{q} = H_{q}(\lambda_{y \rho}^{q})$$

for an operator

$$H_q:\Delta^q\to\Delta^q$$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

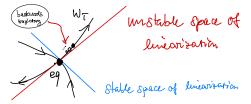
The maps H_q

• For any transfer operator $Q \in l^1(\mathbb{Z})$, for any height-period q, the equidistribution $eq = \frac{1}{q}(1, \ldots, 1)$ is a fixed point of H_q

• Idea: construct non-constant infinite backwards-trajectories for H_q to obtain non-homogeneous boundary law solutions.

Chose starting points close to the fixed point eq, but not equal to eq.

• Perform stability analysis around eq:



Problem: non-hyperbolicity (neutral eigenvalues of linearization) at some exceptional parameter values for families of transfer operator Q

Solution via application of τ -unstable manifold theorem (Chaperon 2002) of points which escape from eq at least with rate τ^n with $\tau > 1$.

Existence of nonhomogeneous GGMs via Fourier transform \hat{Q}

Theorem 4. Fix any degree $d \ge 2$ of the tree, any height period $q \ge 2$. Suppose that there is a level $\tau > 1$ for which the Fourier transform of the transfer operator

$$\hat{Q}: [-\pi,\pi) o \mathbb{R}; \quad \hat{Q}(k) = \sum_{n \in \mathbb{Z}} Q(n) \cos(nk)$$

satisfies

- i) $|\hat{Q}(2\pi rac{j}{q})|
 eq rac{ au}{d} \hat{Q}(0)$ for all indices $j \in \{1,\ldots,q-1\}$ and
- ii) the strict inequality $|\hat{Q}(2\pi \frac{j}{q})| > \frac{\tau}{d}\hat{Q}(0)$ holds for some index $j \in \{1, \dots, q-1\}.$

Then there are gradient Gibbs measures ν of period q which are not spatially homogeneous on the tree.

These states ν are constructed from non-homogeneous radially symmetric boundary law solutions obtained from backwards iteration on the local τ -unstable manifold W_{τ} around the equidistribution.

Nonhomogeneity of ν is provable for initial values in small neighborhoods

Nonhomogeneous GGMs via \hat{Q} : two examples of models

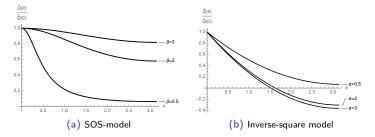


Figure: Graphs of the function $\hat{Q}(\cdot)/\hat{Q}(0)$ for two models at different parameters.

(日)、

э

SOS-model: $Q(i) = e^{-\beta |i|}$ Inverse-square model $Q(i) = 1_{i=0} + \frac{a}{i^2} 1_{i\neq 0}$

Open problems for Gradient models on trees

• Are there homogeneous low temperature GMs μ_A concentrated on finite subsets $A \subset \mathbb{Z}$, which are not convex combinations of μ_i ?

1A1=3

This is suggested by analogy to the Potts model on the tree (Khakimov-K-Rozikov JSP 2014, K-Rozikov RSA 2017), and the degenerate zero-temperature case $Q = 1_0$

• Extremality of infinite volume states? Decomposition of states μ^{λ} ?

$$\mu^{\lambda} = \int_{\text{ex } \mathcal{G}(\gamma)} w^{\lambda} (d\nu) \nu$$

GandolfoMaesRuizShlosman JSP 2020, Glassy states: the free Ising model

• Are there spatially inhomogeneous GMs for gradient models of new types?

• Disordered gradient models? $H(\omega) = \sum_{x \to y} U(\omega_x - \omega_y) = \sum_x \gamma_x \omega_x$ γ_x *ind* DarioHarelPeled arXiv2021: Random Field Random Surfaces (on lattices, continuous fields and discrete Gaussian)

Cotar-K AAP2012, PTRF2015: gradient models on lattices, continuous fields

Randonness in geonetry AND/OR interaction

Related problems: Time-evolved models on trees, two layer systems

Time-evolved spin models $\mu_t = \mu^{\lambda} P_t$ on trees show dynamical Gibbs-non Gibbs transitions

where μ_t non-Gibbs means $\omega \mapsto \mu_t(\mathcal{A}|\mathcal{F}_{\Lambda^c})(\omega)$ discontinuous , A cyliners event

Enter-Fernandez-dHollander-Redig CMP02: Lattice-Ising under spin-flip Iacobelli-Ermolaev-vEnter-K AIHP2012: Tree-Ising under independent spin-flip Bergmann-Kissel-K, accepted in AIHP: Dynamical Tree-Widom-Rowlinson

Relation to models with quenched disorder on trees

Analysis via two-layer systems for $(\sigma(0), \sigma(t))$: understanding time-zero system conditional on time-*t* system, via boundary solutions for spatially inhomogeneous equations

and stability analysis for perturbed maps

model - independent theary ?. time-evolved gradient model ?