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The Generalized Random Energy Model (GREM)

Given a natural number N and p ∈ (0, 1) let us define

N1 = bpNc and N2 := N − N1.

Consider in VN := {−1, 1}N , a vector σ = σ1σ2, where

σ1 ∈ VN1 := {−1, 1}N1 and σ2 ∈ VN2 := {−1, 1}N2 .
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The Generalized Random Energy Model (GREM)

Given a ∈ (0, 1) and σ = σ1σ2 ∈ VN , let us consider the Gaussian
random variable

Xσ :=
√
aX (1)

σ1
+
√
1− aX (2)

σ1σ2
,

where {X (1)
σ1 ,X

(2)
σ1σ2 : σ ∈ VN} is a family of independent standard

Gaussian random variables.
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Random Hopping Dynamics

We consider a Markov jump process {σN(t), t ≥ 0} that evolves in
VN with transition rates given by

e−β
√
NXσ

N
1
σ

1∼σ′
+

e−β
√

(1−a)NX
(2)
σ

N
1
σ

2∼σ′

where, for i = 1, 2, we say that σ i∼ σ′ iff σ ∼ σ′ and σi ∼ σ′i .
Here, σ ∼ σ′ indicates that σ and σ′ differs in exactly one
coordinate.
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Previously studied by L.R.Fontes and V. Gayrard

The case a > p was studied by Luiz Renato Fontes and Veronique
Gayrard in 2019 ([FG]).
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Change of representation

For each N, we relabel the indices σ = (σ1, σ2) ∈ VN as
{σ(1), . . . , σ(2N)} such that

Xσ(1) > Xσ(2) > · · · > Xσ(2N).

Let us define the function φN : VN → Z+ as

φ(σ) = φ(σ1σ2) := min{i = 1, . . . , 2N : σ1(i) = σ1} ,

and the process XN as

XN(t) := φ(σN(t)) , for all t ≥ 0 .
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Comments
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Fine Tuning heuristics

Let #1 be the number of visits by σN to a first level low energy
configuration σ1 before leaving it. This is a geometric random
variable with mean

1 +
N2

N1
eβ
√
aNX

(1)
σ1
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Fine Tuning heuristics

Let #2 be the number of jumps until σN finds a second level low
energy configuration; it is know that (see Thm 1.6 in [BG])

E[#2] ∼ 2N2
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Fine Tuning heuristics

E[#1]

E[#2]
∼ eβ

√
aNX

(1)
σ1

2(1−p)N
= eβ

√
aNX

(1)
σ1 −(1−p)N log 2.
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Let us call P = {ξi , i ≥ 1} the Poisson Point Process on R with
intensity measure e−xdx , such that

ξi > ξi+1 for all i ≥ 1
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Also let us consider the scaling function for the maximum of 2N

i.i.d. standard Gaussians.

uN(x) =
x

β∗
√
N

+ β∗
√
N − logN + κ

2β∗
√
N

,

for κ = log log 2 + log 4π and β∗ =
√
2 log 2.
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Some enviroment result

Theorem 1

For a < p we have that for every k ≥ 1(
u−1
N (Xσ(1)),X

(1)
σ1(1)

−
√
aNβ∗; . . . ; u

−1
N (Xσ(k)),X

(1)
σ1(k)

−
√
aNβ∗

)
converges in distribution to (ξ1,W1; . . . ; ξk ,Wk), where
W1, · · · ,Wk are independent Gaussian variables with mean zero
and variance 1− a; which are also independent of the process P.
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Back to Fine Tuning heuristics

By Theorem 1 we have

E[#1]

E[#2]
∼ e

β
√
aN

(
X

(1)
σ1 −β∗

√
aN

)
+β∗(βa− 1−p

2 β∗)N .

Then taking βFT := (1−p)β∗
2a we have three different scenarios:
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Some comments about the proof for Theorem 1

Asymptotic Behavior of a Low -Temperature of Non-Cascading 2-GREM Dynamics at Extreme Time Scales



The GREM model. Random Hopping Dynamics The enviroment behaivor. Dynamics results. References

Some notation

Let us denote
γi = e

β
β∗
ξi

and given L ∈ R set

NL = {i ≥ 1 : Wi > L} and πL` =
γ`∑

i∈NL
γi

for ` ∈ NL.
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Theorem 2

For β∗ < β < βFT , t > 0, ` ∈ NL and

cN = e
β
(
β∗N− log N+κ

2β∗

)
e−β(β∗aN+

√
aNL),

we have that

lim
N→∞

1
cNt

∫ cN t

0
1{XN(s)=`}ds = πL` (in prob).
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Some comments about the scale cN
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Comments on the proof for Theorem 2

Proposition 1

Given M ≥ 1 such that ` ∈ IM , we have for all t > 0 that

lim
N→∞

1
cNt

∫ cN t

0
1{XN

M(s)=`}ds =
γ(`)∑M

m=1 γ(im)
, in probability.

Proposition 2

Given t > 0, let TN,out
M (t) be the time spent by XN outside

IM ∪ JM up to time t. Then for any λ > 0 we have

lim
M→∞

lim sup
N→∞

P
[ 1
cNt

TN,out
M (cNt) > λ

]
= 0 .
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Theorem 3

For β = βFT we have that {XN(cNt), t ≥ 0} converges in
distribution as N →∞ to a K-process on N0 ∪ {∞} starting from
∞.

Theorem 4

Let us define
c̄N = 2−N2eβ(β∗N−

log N+κ
2β∗

)
.

Then for β > βFT we have that {XN(c̄Nt), t ≥ 0} converges in
distribution as N →∞ to a K-process on N ∪ {∞} starting from
∞.
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Thanks!
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