The GREM model . 00	Random Hopping Dynamics	The enviroment beha

Asymptotic Behavior of a Low-Temperature of Non-Cascading 2-GREM Hopping Dynamics at Extreme Time Scales

Leonel Zuaznábar Universidade de São Paulo joint work with Luiz Renato Fontes (USP) and Susana Frómeta (UFRGS).

The Generalized Random Energy Model (GREM)

Given a natural number N and $p \in (0,1)$ let us define

$$N_1 = \lfloor pN \rfloor$$
 and $N_2 := N - N_1$.

Consider in $\mathcal{V}_{N} := \{-1, 1\}^{N}$, a vector $\sigma = \sigma_{1}\sigma_{2}$, where

 $\sigma_1 \in \mathcal{V}_{N_1} := \{-1, 1\}^{N_1} \text{ and } \sigma_2 \in \mathcal{V}_{N_2} := \{-1, 1\}^{N_2}.$

The Generalized Random Energy Model (GREM)

Given $a \in (0,1)$ and $\sigma = \sigma_1 \sigma_2 \in \mathcal{V}_N$, let us consider the Gaussian random variable

$$X_{\sigma} := \sqrt{a} X_{\sigma_1}^{(1)} + \sqrt{1 - a} X_{\sigma_1 \sigma_2}^{(2)},$$

where $\{X_{\sigma_1}^{(1)}, X_{\sigma_1\sigma_2}^{(2)} : \sigma \in \mathcal{V}_N\}$ is a family of independent standard Gaussian random variables.

The GREM model.	Random Hopping Dynamics	The enviroment behaivor.	Dynamics results.	
	000000			

Random Hopping Dynamics

We consider a Markov jump process $\{\sigma^N(t), t \ge 0\}$ that evolves in \mathcal{V}_N with transition rates given by

$$\frac{e^{-\beta\sqrt{N}X_{\sigma}}}{N}\mathbb{1}_{\sigma\sim\sigma'} + \frac{e^{-\beta\sqrt{(1-a)N}X_{\sigma}^{(2)}}}{N}\mathbb{1}_{\sigma\sim\sigma'}$$

where, for i = 1, 2, we say that $\sigma \sim \sigma'$ iff $\sigma \sim \sigma'$ and $\sigma_i \sim \sigma'_i$. Here, $\sigma \sim \sigma'$ indicates that σ and σ' differs in exactly one coordinate.

The enviroment behaivor 00000

Previously studied by L.R.Fontes and V. Gayrard

The case a > p was studied by Luiz Renato Fontes and Veronique Gayrard in 2019 ([FG]).

The GREM model .	Random Hopping Dynamics	The enviroment behaivor.	Dynamics results .	
00	00●0000	00000	00000	

Change of representation

For each N, we relabel the indices $\sigma = (\sigma_1, \sigma_2) \in \mathcal{V}_N$ as $\{\sigma(1), \ldots, \sigma(2^N)\}$ such that

$$X_{\sigma(1)} > X_{\sigma(2)} > \cdots > X_{\sigma(2^N)}.$$

The GREM model .	Random Hopping Dynamics	The enviroment behaivor.	Dynamics results .	
00	00●0000	00000	00000	

Change of representation

For each *N*, we relabel the indices $\sigma = (\sigma_1, \sigma_2) \in \mathcal{V}_N$ as $\{\sigma(1), \ldots, \sigma(2^N)\}$ such that

$$X_{\sigma(1)} > X_{\sigma(2)} > \cdots > X_{\sigma(2^N)}$$

Let us define the function $\phi^N : \mathcal{V}_N \to \mathbb{Z}_+$ as

$$\phi(\sigma) = \phi(\sigma_1 \sigma_2) := \min\{i = 1, \ldots, 2^N : \sigma_1(i) = \sigma_1\},\$$

and the process X^N as

$$X^{m{N}}(t):=\phi(\sigma^{m{N}}(t))\,,\,\, ext{for all}\,\,t\geq0\,.$$

The GREM model . 00	Random Hopping Dynamics	The enviroment behaivor. 00000	Dynamics results. 00000	

Comments

The GREM model . 00	Random Hopping Dynamics	The enviroment behaivor. 00000	Dynamics results. 00000	

Fine Tuning heuristics

Let $\#_1$ be the number of visits by σ^N to a first level low energy configuration σ_1 before leaving it. This is a geometric random variable with mean

$$1+rac{N_2}{N_1}e^{eta\sqrt{aN}X^{(1)}_{\sigma_1}}$$

The GREM model .	Random Hopping Dynamics	The enviroment behaivor.	Dynamics results.	
00	00000●0	00000	00000	

Fine Tuning heuristics

Let $\#_2$ be the number of jumps until σ^N finds a second level low energy configuration; it is know that (see Thm 1.6 in [BG])

 $\mathbb{E}[\#_2]\sim 2^{N_2}$

The GREM model.	Random Hopping Dynamics	The enviroment behaivor.	Dynamics results.	References
	000000			

Fine Tuning heuristics

$$\frac{\mathbb{E}[\#_1]}{\mathbb{E}[\#_2]} \sim \frac{e^{\beta \sqrt{aN} X_{\sigma_1}^{(1)}}}{2^{(1-\rho)N}} = e^{\beta \sqrt{aN} X_{\sigma_1}^{(1)} - (1-\rho)N \log 2}$$

The GREM model . 00	Random Hopping Dynamics	The enviroment behaivor. ●0000	Dynamics results. 00000	

Let us call $\mathcal{P} = \{\xi_i, i \ge 1\}$ the Poisson Point Process on \mathbb{R} with intensity measure $e^{-x}dx$, such that

 $\xi_i > \xi_{i+1}$ for all $i \ge 1$

The GREM model . 00	Random Hopping Dynamics	The enviroment behaivor. 0000	Dynamics results. 00000	

Also let us consider the scaling function for the maximum of 2^N i.i.d. standard Gaussians.

$$u_N(x) = rac{x}{eta_*\sqrt{N}} + eta_*\sqrt{N} - rac{\log N + \kappa}{2eta_*\sqrt{N}},$$

for $\kappa = \log \log 2 + \log 4\pi$ and $\beta_* = \sqrt{2 \log 2}$.

Asymptotic Behavior of a Low -Temperature of Non-Cascading 2-GREM Dynamics at Extreme Time Scales

◆□ > ◆□ > ◆豆 > ◆豆 > □ = ○ ○ ○ ○

The GREM model.	Random Hopping Dynamics	The enviroment behaivor.	Dynamics results.	References
		00000		

Some enviroment result

Theorem 1

For a < p we have that for every $k \ge 1$

$$\left(u_{N}^{-1}(X_{\sigma(1)}), X_{\sigma_{1}(1)}^{(1)} - \sqrt{aN}\beta_{*}; \ldots; u_{N}^{-1}(X_{\sigma(k)}), X_{\sigma_{1}(k)}^{(1)} - \sqrt{aN}\beta_{*}\right)$$

converges in distribution to $(\xi_1, W_1; \ldots; \xi_k, W_k)$, where W_1, \cdots, W_k are independent Gaussian variables with mean zero and variance 1 - a; which are also independent of the process \mathcal{P} .

00 000000 00000 00000 00	The GREM model.	Random Hopping Dynamics	The enviroment behaivor.	Dynamics results.	References
			00000		

Back to Fine Tuning heuristics

By Theorem 1 we have

$$\frac{\mathbb{E}[\#_1]}{\mathbb{E}[\#_2]} \sim e^{\beta \sqrt{aN} \left(X_{\sigma_1}^{(1)} - \beta_* \sqrt{aN} \right) + \beta_* \left(\beta a - \frac{1-p}{2} \beta_* \right) N}.$$

Back to Fine Tuning heuristics

By Theorem 1 we have

$$\frac{\mathbb{E}[\#_1]}{\mathbb{E}[\#_2]} \sim e^{\beta \sqrt{aN} \left(X_{\sigma_1}^{(1)} - \beta_* \sqrt{aN} \right) + \beta_* \left(\beta a - \frac{1-p}{2} \beta_* \right) N}.$$

Then taking $\beta_{FT} := \frac{(1-p)\beta_*}{2a}$ we have three different scenarios:

Some comments about the proof for Theorem 1

The GREM model . 00	Random Hopping Dynamics	The enviroment behaivor. 00000	Dynamics results. ●0000	

Some notation

Let us denote

$$\gamma_i = e^{\frac{\beta}{\beta_*}\xi_i}$$

and given $L \in \mathbb{R}$ set

$$\mathbb{N}_L = \{i \ge 1 : W_i > L\} \text{ and } \pi_\ell^L = \frac{\gamma_\ell}{\sum_{i \in N_L} \gamma_i} \text{ for } \ell \in \mathbb{N}_L.$$

・ ▲日 > ▲国 > ▲国 > ▲国 > ▲日 >

The GREM model . 00	Random Hopping Dynamics	The enviroment behaivor. 00000	Dynamics results. 0●000	

Theorem 2

For $\beta_* < \beta < \beta_{FT}$, $t > 0, \ell \in \mathbb{N}_L$ and

$$c_{N} = e^{\beta \left(\beta_{*}N - rac{\log N + \kappa}{2\beta_{*}}\right)} e^{-\beta \left(\beta_{*}aN + \sqrt{aNL}\right)},$$

we have that

$$\lim_{N\to\infty}\frac{1}{c_Nt}\int_0^{c_Nt}\mathbb{1}_{\{X^N(s)=\ell\}}ds=\pi_\ell^L \ (\text{in prob}).$$

◆□ ▶ ◆□ ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへで

Some comments about the scale c_N

Comments on the proof for Theorem 2

Proposition 1

Given $M \ge 1$ such that $\ell \in I_M$, we have for all t > 0 that

$$\lim_{N\to\infty}\frac{1}{c_N t}\int_0^{c_N t}\mathbbm{1}_{\{X_M^N(s)=\ell\}}ds=\frac{\gamma(\ell)}{\sum_{m=1}^M\gamma(i_m)}\,, \text{ in probability}.$$

Proposition 2

Given t > 0, let $T_M^{N,out}(t)$ be the time spent by X^N outside $I_M \cup J_M$ up to time t. Then for any $\lambda > 0$ we have

$$\lim_{M\to\infty}\limsup_{N\to\infty}\mathbb{P}\Big[\frac{1}{c_N t}T_M^{N,out}(c_N t)>\lambda\Big]=0.$$

The GREM model . 00	Random Hopping Dynamics	The enviroment behaivor. 00000	Dynamics results. 0000●	

Theorem 3

For $\beta = \beta_{FT}$ we have that $\{X^N(c_N t), t \ge 0\}$ converges in distribution as $N \to \infty$ to a K-process on $\mathbb{N}_0 \cup \{\infty\}$ starting from ∞ .

Theorem 4

Let us define

$$ar{c}_N=2^{-N_2}e^{eta(eta_*N-rac{\log N+\kappa}{2eta_*})}.$$

Then for $\beta > \beta_{FT}$ we have that $\{X^N(\bar{c}_N t), t \ge 0\}$ converges in distribution as $N \to \infty$ to a K-process on $\mathbb{N} \cup \{\infty\}$ starting from ∞ .

The GREM model . 00	Random Hopping Dynamics	The enviroment behaivor. 00000	Dynamics results . 00000	References ●○
References				

- BG Ben Arous, Gérard; Gayrard, Véronique. *Elementary potential theory on the hypercube*. Electronic Journal of Probability 13 (2008): 1726-1807.
- BK Bovier, Anton; Irina Kurkova. Derrida's Generalised Random Energy models 1: models with finitely many hierarchies.
 Annales de l'Institut Henri Poincare (B) Probability and Statistics. Vol. 40. No. 4. 2004.
- FG Fontes, Luiz Renato; Véronique Gayrard. Asymptotic behavior and aging of a low temperature cascading 2-GREM dynamics at extreme time scales. Electronic Journal of Probability 24 (2019): 1-50.

The GREM model .	Random Hopping Dynamics	The enviroment behaivor.	Dynamics results.	References
00		00000	00000	○●

Thanks!

