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Small ball probabilities: definition
Let (X , ∥ · ∥) be a Banach space (f.e. C[0, 1] or L2[0, 1]).

Definition
An X -valued random vector X is a measurable mapping

X : (Ω,P) → X (1)

We will consider centered process, that is EX = 0.

Definition
Small ball probability problem consists in finding the asymptotics

P (∥X∥ < ε) as ε→ 0 (2)

Actually, it can be formulated as a problem in measure theory. Let P denote
the distribution of X, that is a measure in X , given by P (A) = P(X ∈ A),
and let U := {x ∈ X : ∥x∥ ⩽ 1} be the unit ball in X , then we want to
study the measure of the small balls:

P (εU), as ε→ 0.
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Gaussian random vectors
Gaussian random vector extends the notion of a normally distributed
random variable.

Definition
We call a random vector X, taking value in a linear topological space X ,
Gaussian, if for every continuous linear functional g ∈ X ∗ the random
variable g(X) has a normal distribution.

The distribution of a Gaussian vector is uniquely determined by:
means of {g(X) : g ∈ X ∗};
covariances of {g(X) : g ∈ X ∗}.

Main example

Wiener process W (t) — a random element in C[0, 1] or in L2[0, 1]:
EW (t) ≡ 0;
cov(W (s),W (t)) = min(s, t).
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Example
Typical answer:

P (∥X∥ < ε)∼ D · εC · exp
(
−Bε−A

)
, ε→ 0

A, B — logarithmic asymptotics; A, B, C, D — exact asymptotics

Example: X = C[0, 1], X =W (t) — Wiener process

P
(

sup
0⩽t⩽1

|W (t)| < ε

)
∼ 4

π
exp
(
−π

2

8
ε−2
)
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P (∥X∥ < ε)∼ D · εC · exp
(
−Bε−A

)
, ε→ 0

A, B — logarithmic asymptotics; A, B, C, D — exact asymptotics

Example: X = C[0, 1], X = B(t) — Brownian bridge

P
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sup
0⩽t⩽1
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√
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Methods

“...there is no royal road to small ball probabilities...” M.A. Lifshits

Exist various methods, among others:

1 spectral method:
works for X being a Hilbert space
allows to get exact asymptotics
St Petersburg school:
started by I. Ibragimov, M. Lifshits, Ya. Nikitin, A. Nazarov, and
followed by R. Pusev, A. Karol, N. Rastegaev, Yu. Petrova, etc

2 via metric entropy:
works for general classes of processes
allows to get only logarithmic asymptotics
J. Kuelbs, W. Li, W. Linde, T. Dunker, F. Gao, M. Lifshits, F. Aurzada,
T. Kuhn, E. Belinsky, R. Blei, W. Salkeld etc
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Gaussian processes in Hilbert space

Karhunen-Loeve expansion (KL-expansion):
(K. Karhunen’1947, M. Loève’1948)
Let X be a separable Hilbert space with orthonormal basis (ej). Then any
Gaussian process X can be represented as

X(t)
d
=

∞∑
k=1

ek ξk,

for ξk, k ∈ N, independent and N (0, σ2k)-distributed.

Main idea
All information about the process is in the variances σ2k
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Hilbert structure =⇒ spectral problem
Karhunen-Loeve expansion (KL-expansion):
(K. Karhunen’1947, M. Loève’1948) Let X = L2[0, 1]. Then

X(t)
d
=

∞∑
k=1

uk(t)
√
µk ξk

ξk, k ∈ N, — iid standard normal rv
uk(t), µk — orthonormal eigenfunctions and positive eigenvalues of
covariance operator GX :

µkuk = GXuk ⇐⇒ µk uk(t) =

∫ 1

0
GX(s, t)uk(s) ds.

Small ball probability problem (ε→ 0):

P(∥X∥2 < ε) = P

( ∞∑
k=1

µkξ
2
k < ε2

)
.

Main idea
All information about the process is in spectrum of the covariance operator.
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What is already known?
1974 — G. Sytaya: implicit solution in terms of Laplace transform of the

sum
∑
µkξ

2
k

from
1974

— V.M. Zolotarev, J. Hoffmann-Jorgensen , L. Shepp, R. Dudley,
I. A. Ibragimov, M. A. Lifshits,. . . :
simplification of the formula under different assumptions

1998 — T. Dunker, M. A. Lifshits, W. Linde (DLL):
rather simple formulas for

P
(∑

µkξ
2
k < ε2

)
when

µk — decays, logarithmically convex
µk = k−d, d > 0, — polynomial decay
µk = A−k, A > 0, — exponential decay
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Useful fact: Wenbo Li principle
Let µ̂k ≈ µk — some approximation.
Question: How the following probabilities are connected

P
(∑

µkξ
2
k < ε2

)
and P

(∑
µ̂kξ

2
k < ε2

)
?

Theorem (Wenbo Li principle 1992, Gao et al. 2003)
Let µk, µ̂k — two summable sequences. If

0 <
∞∏
k=1

µ̂k
µk

<∞, (3)

then as ε→ 0

P

( ∞∑
k=1

µkξ
2
k < ε2

)
∼ P

( ∞∑
k=1

µ̂kξ
2
k < ε2

)
·
(∏ µ̂k

µk

)1/2
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General scheme

We are looking for small ball probabilities:

1 Consider a spectral problem for the covariance operator GX

µkuk = GXuk ⇐⇒ µk uk(t) =

∫ 1

0
GX(s, t)uk(s) ds.

2 Find rather «good» approximation µ̂k of eigenvalues such that

∞∏
k=1

µ̂k
µk

<∞,

3 Use DLL theorem for µ̂k and Wenbo Li principle
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Example of a general theorem (Nazarov, Nikitin’ 2004)

If eigenvalues µk have the asymptotics

µk = (ϑ(k + δ +O(k−1)))−d,

then for the small deviation probabilities

P(∥X∥2 < ε) ∼ DεC exp(BεA), ε→ 0,

where A = A(d), B = B(d, ϑ), C = C(d, ϑ, δ), D = D({µk}):

A = − 2

d− 1
, B = −d− 1

2

(
π/d

ϑ sin(π/d)

) d
d−1

, C =
2− d− 2δd

2(d− 1)
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Problem statement in my PhD
X0(t) — Gaussian process:

EX0(t) ≡ 0

G0(s, t) = EX0(s)X0(t)
P (∥X0∥2 < ε) is known

X(t) — finite-dimensional perturbation of X0(t) of rank m :

EX(t) ≡ 0

G(s, t) = EX(s)X(t) G(s, t) = G0(s, t) + ψ⃗ T (s) · D · ψ⃗(t)

Parameters of perturbation:

ψ⃗(t) = (ψ1(t), . . . , ψm(t))T

D ∈Mm×m — symmetrical

Question:
How P (∥X0∥2 < ε) and P (∥X∥2 < ε) are related to each other?
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Problem statement for Durbin processes

important in statistics
appear as limiting processes when building goodness-of-fit tests of
ω2-type when parameters are estimated by the sample

Take the sample x1, . . . , xn ∼ F (x, θ).
θ = (θ1, . . . , θm) — distribution parameters.

parameters are known
(θ = θ0 fixed)

⇓
limiting process —

Brownian bridge B(t)

parameters are not known
(estimated from sample)

⇓
limiting process —

perturbation of B(t) of rank m

Problem:
Find exact small ball probability asymptotics for Durbin processes
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1-dimensional perturbations: first observation

GX(s, t) = G0(s, t) +Dψ(s)ψ(t), D ∈ R

D = 0 — non-perturbated operator
ψ(t) — eigenfunction of an integral operator G0

What will happen if we change D?

Reducing D ↓

Asymptotically
µ0k = µk, k → ∞

Аналогичный эффект возникает и в более общей ситуации (когда ψ(t)
необязательно собственная функция)
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1-dimensional perturbations: first observation

GX(s, t) = G0(s, t) +Dψ(s)ψ(t), D ∈ R

D = 0 — non-perturbated operator
ψ(t) — eigenfunction of an integral operator G0

What will happen if we change D?

D — critical

Asymptotically
µ0k = µk−1, k → ∞

The analogous effect appears in a general situation (when ψ(t) is not
necessarily an eigenfunction)
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1-dimensional perturbations (A.I. Nazarov’2009)

Let Q := ⟨G−1
0 ψ,ψ⟩ <∞ ⇔ ψ ∈ Im(G1/2

0 ).

There exists a critical value Dcrit = −1/Q such that:

Non critical case
If D > Dcrit = −1/Q,
then

∞∏
k=1

µk
µ0k

<∞

Critical case

If D = Dcrit, ψ ∈ Im(G0) ,
then

∞∏
k=2

µk−1

µ0k
<∞

In critical case there is an extra assumption ψ ∈ Im(G0)

The analogous statement is true for finite-dimensional perturbations
(Yu. Petrova’2018)
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1-dimensional perturbations (A.I. Nazarov’2009)
Let Q := ⟨G−1

0 ψ,ψ⟩ <∞ ⇔ ψ ∈ Im(G1/2
0 ).

There exists a critical value Dcrit = −1/Q such that:

Non-critical case
If D > Dcrit = −1/Q,
then as ε→ 0

P (∥X∥2 < ε) ∼
P (∥X0∥2 < ε)

|1 +QD|

Critical case

If D = Dcrit, ψ ∈ Im(G0) ,
then as ε→ 0

P (∥X∥2 < ε) ∼
√
Q

∥φ∥2
·
√

2

π
·

·
∫ ε2

0

d

dt
P(∥X0∥2 < t) · dt√

ε2 − t2

In critical case there is an extra assumption ψ ∈ Im(G0)

The analogous statement is true for finite-dimensional perturbations
(Yu. Petrova’2018)
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Example: Durbin process for Gumbel distribution

Theorem (Yu. Petrova ’2017)
For Durbin process X(t) for Gumbel distribution,

G(s, t) = min(s, t)− st− ψ(t)ψ(s), ψ(t) = C t ln(t) · ln(− ln(t))

eigenvalue asymptotics is as follows

µ
−1/2
k = πk +

π

2
+ (−1)k · 2 arctg

( 1

ln(ln(k)) + 1

)
− 1

ln(k) ln(ln(k))
+

+O
( 1

ln(k)(ln(ln(k)))2

)
.

Small ball probability asymptotics

P
{
∥X∥2 < ε

}
∼ C · ln−1(ln(ε−1)) · ε−1 · exp

(
− 1

8ε2
)



Introduction Spectral method About my results Metric entropy Summary

All results:
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Summing up the fist part

Small ball probability problem consists in finding the asymptotics

P (∥X∥ < ε) as ε→ 0.

Hilbert space =⇒ spectral problem

the whole sequence of eigenvalues µk is important (in contrast to large
deviations where only the first eigenvalue is sufficient to know)
very precise asymptotics can be obtained
... but it is quite sensitive to any perturbation of the process

Questions? Comments?



Introduction Spectral method About my results Metric entropy Summary

Summing up the fist part

Small ball probability problem consists in finding the asymptotics

P (∥X∥ < ε) as ε→ 0.

Hilbert space =⇒ spectral problem
the whole sequence of eigenvalues µk is important (in contrast to large
deviations where only the first eigenvalue is sufficient to know)

very precise asymptotics can be obtained
... but it is quite sensitive to any perturbation of the process

Questions? Comments?



Introduction Spectral method About my results Metric entropy Summary

Summing up the fist part

Small ball probability problem consists in finding the asymptotics

P (∥X∥ < ε) as ε→ 0.

Hilbert space =⇒ spectral problem
the whole sequence of eigenvalues µk is important (in contrast to large
deviations where only the first eigenvalue is sufficient to know)
very precise asymptotics can be obtained
... but it is quite sensitive to any perturbation of the process

Questions? Comments?



Introduction Spectral method About my results Metric entropy Summary

Linear operator

Consider an operator L : H → X acting between normed spaces.

H

BH := {h : ∥h∥H ⩽ 1}

X

L(BH)

L

How to measure the “size” of the operator?
The norm ∥L∥ (half-diameter of L(BH)) alone is not enough!
We can use metric entropy
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Covering numbers and entropy
One way to measure the compactness of operator L : H → X is using
metric entropy.

L(BH)

Covering numbers:

NL(ε) = inf
{
n : ∃{xj}j⩽n, {Lh : ∥h∥H ⩽ 1} ⊂ ∪n

j=1Bε(xj)
}

Metric entropy: lnNL(ε)
Dyadic entropy numbers:

en(L) = inf {ε > 0 : NL(ε) ⩽ 2n}

The main problem in operator language
Find the behavior of covering numbers NL(ε), as ε→ 0.
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An example: integration operator
1 Let H = L2[0, 1] and X = C[0, 1], and let L : L2[0, 1] → C[0, 1] be an

integration operator:

L(f)(t) :=

t∫
0

f(s) ds, f ∈ L2[0, 1].

Then en(L) ≈ n−1.
2 Let α > 1/2. Consider Riemann-Liouville fractional integration

operator L : L2[0, 1] → C[0, 1], defined by

Lα(f)(t) :=
1

Γ(α)

t∫
0

(t− s)α−1 f(s) ds, f ∈ L2[0, 1].

Then en(L) ≈ n−α.
Note that for α = 1 this is the simple integration operator. Also there
is a semigroup property: Lα ◦ Lβ = Lα+β .
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An open problem
Consider multivariate integration operator on Rd

+.
For t ∈ Rd

+ define a rectangle [0, t] = {s : 0 ≤ sj ≤ tj , 1 ≤ j ≤ d}.

Let the integration operator L: L2([0, 1]
d) → C([0, 1]d) be defined by

L(f)(t) :=

∫
[0,t]

f(s) ds.

Problem:
Find the asymptotics for en(L), as n→ ∞.

It is only known that
en(L) ≈ n−1, for d = 1;
en(L) ≈ n−1(lnn)3/2, for d = 2;
c1n

−1(lnn)d−1 ≤ en(L) ≤ c2n
−1(lnn)d−1/2, for general d.
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Merging two stories: operators and processes

Any centered Gaussian vector in a separable Banach space X admits
expansion

X =
∑
j

ξjL(ej), almost surely,

where ξj are iid standard normal rv, and L : H → X an appropriate linear
operator acting to a X from a Hilbert space H with basis (ej).

Definition
Then the Gaussian vector X and operator L are associated.

Note: the distribution of X doesn’t depend on the basis (ej),
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Example of a random vector and an associated operator
Let X = C[0, 1], X =W — a Wiener process, H = L2[0, 1].

It turns out
that an operator L : L2[0, 1] → C[0, 1] that is associated to Wiener process
is just an integration operator.

L(f)(t) =

∫ t

0
f(s) ds, f ∈ L2[0, 1].

Let us consider the cosine basis in L2[0, 1], given by e0(s) := 1 and

ej(s) :=
√
2 cos(πjs), j ⩾ 1.

Integration yields Le0(t) = t and

Lej(t) =
√
2
sin(πjt)

πj
, j ⩾ 1.

So we arrive at the expansion

W (t) = ξ0t+
√
2

∞∑
j=1

ξj
sin(πjt)

πj
.
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Metric entropy and Gaussian small deviations
Let’s concentrate on logarithmic small ball probabilities and define small
deviation function by:

φ(ε) := − lnP(∥X∥ < ε)

Relation between lnNL(ε) and φ(ε):
1 polynomial growth:

Let β ∈ (0, 2). Then

lnNL(ε) ≈ ε−β ⇐⇒ φ(ε) ≈ ε
− 2β

2−β , as ε→ 0.

Example: L — integration operator, W — Wiener process, β = 1.
L — fractional integration operator, X — Riemann-Liouville process.

2 logarithmic growth:
Let β > 0, γ ∈ R. Then

lnNL(ε) ≈ | ln ε|β ln | ln ε|γ ⇐⇒ φ(ε) ≈ | ln ε|β ln | ln ε|γ , ε→ 0.
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General principles

The following properties are related:
the small deviation probabilities P(∥X∥ ⩽ ε) are not too small when
ε→ 0;

small deviation function φ(ε) := − lnP(∥X∥ ⩽ ε) is growing slowly
when ε→ 0;
sample paths of a process are rather smooth;
X has good finite-rank approximations:

X ≈
n∑

j=1

ξjL(ej), n→ ∞.
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How the connection occurs?
We start with an operator L : H → X . Fix some R, ε. Take the image of
the R-ball

L(BR) = {Lh : ∥h∥H < R}

and construct a pairwise distant points: h1, h2, . . . such that ∥hi∥ < R and
∥Lhi − Lhj∥ > ε for i ̸= j.

L(BR)
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How the connection occurs?
We start with an operator L : H → X . Fix some R, ε. Take the image of
the R-ball

L(BR) = {Lh : ∥h∥H < R}

and construct a pairwise distant points: h1, h2, . . . such that ∥hi∥ < R and
∥Lhi − Lhj∥ > ε for i ̸= j.

L(BR)

Clearly, we can collect at least NL(BR)(ε) points and

NL(BR)(ε) = NL(B1)(ε/R) = NL(ε/R).
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How the connection occurs? Continued
We have a picture from a former slide

L(BR)

The green balls are Lhj + ε
2U where U is the unit ball in X .

Christer Borell shift inequality: for every symmetric set B ⊂ X and every
associated centered Gaussian vector X and operator L, and every h ∈ H

P(X ∈ B + Lh) ⩾ P(X ∈ B) exp(−∥h∥2H/2).

It follows that

1 ⩾ P
(
X ∈ ∪j{Lhj +

ε

2
U}
)

=
∑
j

P(X ∈ {Lhj +
ε

2
U})

⩾ NL(ε/R)P(X ∈ ε

2
U)e−R2/2 = NL(ε/R)P(∥X∥ < ε

2
)e−R2/2

This reads as P(∥X∥ < ε
2) ⩽ eR

2/2NL(ε/R)
−1. Optimize the RHS in R!
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associated centered Gaussian vector X and operator L, and every h ∈ H

P(X ∈ B + Lh) ⩾ P(X ∈ B) exp(−∥h∥2H/2).

It follows that

1 ⩾ P
(
X ∈ ∪j{Lhj +

ε

2
U}
)
=
∑
j

P(X ∈ {Lhj +
ε

2
U})

⩾ NL(ε/R)P(X ∈ ε

2
U)e−R2/2

= NL(ε/R)P(∥X∥ < ε

2
)e−R2/2

This reads as P(∥X∥ < ε
2) ⩽ eR

2/2NL(ε/R)
−1. Optimize the RHS in R!
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Muito obrigada pela sua atenção!

L(BR)

Questions? Comments?

For any questions: https://yulia-petrova.github.io/

https://yulia-petrova.github.io/
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Asymptotics of oscillation integrals with slowly varying amplitudes
Let F (t) be a slowly varying function at zero, that means F is of constant
sign in the vicinity of 0 and

lim
x→0

F (λx)

F (x)
= 1, ∀λ > 0

Let F (1/2) = 0 and
Fn+1(x) = xF ′

n(x) be also slowly-varying functions.

Theorem (A. Nazarov, Yu. Petrova’2016)
The following asymptotic expansion is valid as ω → ∞:

1
2∫

0

F (t) cos(ωt) dt =
1

ω

N∑
k=1

ckFk

( 1
ω

)
+RN , (4)

where ck = −
∞∫
0

sinx

x

lnk−1 x

(k − 1)!
dx; |RN | ≤ C(F,N) ·

∣∣FN+1(
1
ω )
∣∣

ω
.
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Finite-dimensional perturbations (Yu. Petrova’2018)
GX(s, t) = G0(s, t) + ψ⃗ T (s) · D · ψ⃗(t),

ψ⃗(t) = (ψ1(t), . . . , ψm(t))T , D ∈Mm×m

Let φj(t) = G−1
0 ψj(t), and

Q := ⟨G0φ⃗, φ⃗
T ⟩ <∞ ⇔ ψj ∈ Im(G1/2

0 )

Non-critical case
If (Q TD + Em) > 0, then

∞∏
k=1

µ0k
µk

< +∞

.

Critical case

Если ψj ∈ Im(G0) и

rank(Q TD + Em) = m− s,
then

∞∏
k=s+1

µ0k
µk−s

< +∞.

In critical case there is an extra assumption ψ ∈ Im(G0)
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Finite-dimensional perturbations (Yu. Petrova’2018)

Теорема (Yu. P. Petrova ’2018)

1. (Non-critical case) If (Q TD + Em) > 0, then ε→ 0

P (∥X∥2 < ε) ∼
P (∥X0∥2 < ε)

det(QTD + Em)
.

2. (Critical case) If (Q TD + Em) ≡ 0, ψj ∈ Im(G0) ,
then as r → 0

P
(
∥X∥2 <

√
r
)
∼
√

det (Q)

det
(∫ 1

0 φ⃗(t) φ⃗
T (t) dt

) ·(√ 2

π

)m

·

·
∫ r

0

∫ r1

0
. . .

∫ rm−1

0

dm

drmm
P(∥X0∥2 < rm)

drm . . . dr1√
(r − r1) · . . . · (rm−1 − rm)

.

There exist also partially critical perturbations.
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