Spectral method

About my results

Metric entropy

Summary 000000

Small ball probabilities for Gaussian processes

Yulia Petrova¹

¹ IMPA, Instituto de Matematica Pura e Aplicada, Rio de Janeiro, Brazil ² St Petersburg State University, Chebyshev Lab, St Petersburg, Russia

https://yulia-petrova.github.io/

11 July 2022 Probability Seminar - IM-UFRJ

This talk is a small overview, for more details see M. Lifshits "Lectures on Gaussian processes", 2012, Springer

Spectral method

About my results

Metric entropy

Summary

I would like to thank people who introduced me this topic

Alexander Nazarov

Yakov Nikitin

Mikhail Lifshits

• Alexander I. Nazarov "Variety of fractional Laplacians" ICM 2022 speaker: tomorrow — Tuesday, July 12, 14:15 - 15:00

Spectral method

About my results

Metric entropy

Summary 000000

Small ball probabilities: definition Let $(\mathcal{X}, \|\cdot\|)$ be a Banach space (f.e. C[0, 1] or $L^2[0, 1]$).

Spectral method

About my results

Metric entropy

Summary

(1)

Small ball probabilities: definition Let $(\mathcal{X}, \|\cdot\|)$ be a Banach space (f.e. C[0, 1] or $L^2[0, 1]$).

Definition

An \mathcal{X} -valued random vector X is a measurable mapping

$$X: \ (\Omega, \mathbb{P}) \to \mathcal{X}$$

Spectral method

About my results

Metric entropy

Summary

(1)

Small ball probabilities: definition

Let $(\mathcal{X}, \|\cdot\|)$ be a Banach space (f.e. C[0,1] or $L^2[0,1]$).

Definition

An \mathcal{X} -valued random vector X is a measurable mapping $X: \ (\Omega, \mathbb{P}) \to \mathcal{X}$

We will consider centered process, that is $\mathbb{E}X = 0$.

Spectral method

About my results

Metric entropy

Summary

(1)

Small ball probabilities: definition

Let $(\mathcal{X}, \|\cdot\|)$ be a Banach space (f.e. C[0,1] or $L^2[0,1]$).

Definition

An \mathcal{X} -valued random vector X is a measurable mapping

$$X: (\Omega, \mathbb{P}) \to \mathcal{X}$$

We will consider centered process, that is $\mathbb{E}X = 0$.

Definition

Small ball probability problem consists in finding the asymptotics

 $\mathbb{P}\left(\|X\| < \varepsilon\right) \quad \text{as} \quad \varepsilon \to 0 \tag{2}$

Spectral method

About my results

Metric entropy

Summary

(1)

Small ball probabilities: definition

Let $(\mathcal{X}, \|\cdot\|)$ be a Banach space (f.e. C[0,1] or $L^2[0,1]$).

Definition

An \mathcal{X} -valued random vector X is a measurable mapping

$$X: (\Omega, \mathbb{P}) \to \mathcal{X}$$

We will consider centered process, that is $\mathbb{E}X = 0$.

Definition

Small ball probability problem consists in finding the asymptotics

 $\mathbb{P}\left(\|X\| < \varepsilon\right) \qquad \text{as} \quad \varepsilon \to 0 \tag{2}$

Actually, it can be formulated as a problem in measure theory.

Spectral method

About my results

Metric entropy

Summary

Small ball probabilities: definition

Let $(\mathcal{X}, \|\cdot\|)$ be a Banach space (f.e. C[0, 1] or $L^2[0, 1]$).

Definition

An \mathcal{X} -valued random vector X is a measurable mapping

$$X: (\Omega, \mathbb{P}) \to \mathcal{X}$$

(1)

We will consider centered process, that is $\mathbb{E}X = 0$.

Definition

Small ball probability problem consists in finding the asymptotics

$$\mathbb{P}\left(\|X\| < \varepsilon\right) \quad \text{as} \quad \varepsilon \to 0 \tag{2}$$

Actually, it can be formulated as a problem in measure theory. Let P denote the distribution of X, that is a measure in \mathcal{X} , given by $P(A) = \mathbb{P}(X \in A)$, and let $U := \{x \in \mathcal{X} : ||x|| \leq 1\}$ be the unit ball in \mathcal{X} , then we want to study the measure of the small balls:

 $P(\varepsilon U)$, as $\varepsilon \to 0$.

Spectral method

About my results

Metric entropy

Summary 000000

Gaussian random vectors

Gaussian random vector extends the notion of a normally distributed random variable.

Spectral metho

About my results

Metric entropy

Summary 000000

Gaussian random vectors

Gaussian random vector extends the notion of a normally distributed random variable.

Definition

We call a random vector X, taking value in a linear topological space \mathcal{X} , Gaussian, if for every continuous linear functional $g \in \mathcal{X}^*$ the random variable g(X) has a normal distribution.

Spectral metho

About my results

Metric entropy

Summary 000000

Gaussian random vectors

Gaussian random vector extends the notion of a normally distributed random variable.

Definition

We call a random vector X, taking value in a linear topological space \mathcal{X} , Gaussian, if for every continuous linear functional $g \in \mathcal{X}^*$ the random variable g(X) has a normal distribution.

The distribution of a Gaussian vector is uniquely determined by:

- means of $\{g(X): g \in \mathcal{X}^*\};$
- covariances of $\{g(X): g \in \mathcal{X}^*\}$.

Spectral metho

About my results

Metric entropy

Summary 000000

Gaussian random vectors

Gaussian random vector extends the notion of a normally distributed random variable.

Definition

We call a random vector X, taking value in a linear topological space \mathcal{X} , Gaussian, if for every continuous linear functional $g \in \mathcal{X}^*$ the random variable g(X) has a normal distribution.

The distribution of a Gaussian vector is uniquely determined by:

- means of $\{g(X): g \in \mathcal{X}^*\};$
- covariances of $\{g(X) : g \in \mathcal{X}^*\}$.

Main example

Wiener process W(t) — a random element in C[0,1] or in $L^2[0,1]$:

- $\mathbb{E}W(t) \equiv 0;$
- $\operatorname{cov}(W(s), W(t)) = \min(s, t).$

Typical answer:

 $\mathbb{P}\left(\|X\| < \varepsilon\right) \sim D \cdot \varepsilon^C \cdot \exp\left(-B\varepsilon^{-A}\right), \qquad \varepsilon \to 0$

A, B - logarithmic asymptotics; A, B, C, D - exact asymptotics

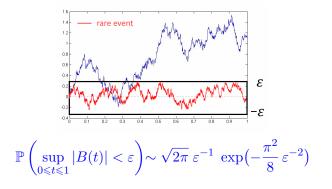
Example: $\mathcal{X} = C[0, 1]$, X = W(t) — Wiener process



Typical answer:

 $\mathbb{P}(||X|| < \varepsilon) \sim D \cdot \varepsilon^C \cdot \exp(-B\varepsilon^{-A}), \qquad \varepsilon \to 0$ A, B - logarithmic asymptotics; A, B, C, D - exact asymptotics

Example: $\mathcal{X} = C[0, 1]$, X = B(t) — Brownian bridge



Spectral method

About my results

Metric entropy

Summary 000000

Methods

"...there is no royal road to small ball probabilities ... " M.A. Lifshits

Spectral method

About my results

Metric entropy

Summary 000000

Methods

"...there is no royal road to small ball probabilities ... " M.A. Lifshits

Exist various methods, among others:

spectral method:

- \bullet works for ${\mathcal X}$ being a Hilbert space
- allows to get exact asymptotics
- St Petersburg school: started by I. Ibragimov, M. Lifshits, Ya. Nikitin, A. Nazarov, and followed by R. Pusev, A. Karol, N. Rastegaev, Yu. Petrova, etc

via metric entropy:

- works for general classes of processes
- allows to get only logarithmic asymptotics
- J. Kuelbs, W. Li, W. Linde, T. Dunker, F. Gao, M. Lifshits, F. Aurzada, T. Kuhn, E. Belinsky, R. Blei, W. Salkeld etc

Spectral method •00000 About my results

Metric entropy

Summary 000000

Gaussian processes in Hilbert space

Karhunen-Loeve expansion (KL-expansion):

(K. Karhunen'1947, M. Loève'1948)

Let \mathcal{X} be a separable Hilbert space with orthonormal basis (e_j) . Then any Gaussian process X can be represented as

$$X(t) \stackrel{d}{=} \sum_{k=1}^{\infty} e_k \, \xi_k,$$

for ξ_k , $k \in \mathbb{N}$, independent and $\mathcal{N}(0, \sigma_k^2)$ -distributed.

Spectral method •00000 About my results

Metric entropy

Summary 000000

Gaussian processes in Hilbert space

Karhunen-Loeve expansion (KL-expansion):

(K. Karhunen'1947, M. Loève'1948)

Let \mathcal{X} be a separable Hilbert space with orthonormal basis (e_j) . Then any Gaussian process X can be represented as

$$X(t) \stackrel{d}{=} \sum_{k=1}^{\infty} e_k \,\xi_k,$$

for ξ_k , $k \in \mathbb{N}$, independent and $\mathcal{N}(0, \sigma_k^2)$ -distributed.

Main idea

All information about the process is in the variances σ_k^2

Spectral method

About my results

Metric entropy

Summary

Hilbert structure \implies spectral problem Karhunen-Loeve expansion (KL-expansion):

(K. Karhunen'1947, M. Loève'1948) Let $\mathcal{X}=L^2[0,1].$ Then $X(t)\stackrel{d}{=}\sum_{k=1}^\infty u_k(t)\,\sqrt{\mu_k}\,\xi_k$

• ξ_k , $k \in \mathbb{N}$, — iid standard normal rv

u_k(t), μ_k — orthonormal eigenfunctions and positive eigenvalues of covariance operator G_X:

$$\mu_k u_k = \mathbb{G}_X u_k \qquad \Longleftrightarrow \qquad \mu_k u_k(t) = \int_0^1 G_X(s,t) u_k(s) \, ds.$$

Small ball probability problem ($\varepsilon \to 0$):

$$\mathbb{P}(\|X\|_2 < \varepsilon) = \mathbb{P}\left(\sum_{k=1}^{\infty} \mu_k \xi_k^2 < \varepsilon^2\right).$$

Spectral method

About my results

Metric entropy

Summary

Hilbert structure \implies spectral problem Karhunen-Loeve expansion (KL-expansion):

(K. Karhunen'1947, M. Loève'1948) Let $\mathcal{X}=L^2[0,1].$ Then $X(t)\stackrel{d}{=}\sum_{k=1}^\infty u_k(t)\,\sqrt{\mu_k}\,\xi_k$

• ξ_k , $k \in \mathbb{N}$, — iid standard normal rv

u_k(t), μ_k — orthonormal eigenfunctions and positive eigenvalues of covariance operator G_X:

$$\mu_k u_k = \mathbb{G}_X u_k \qquad \Longleftrightarrow \qquad \mu_k u_k(t) = \int_0^1 G_X(s,t) u_k(s) \, ds.$$

Small ball probability problem ($\varepsilon \rightarrow 0$):

$$\mathbb{P}(\|X\|_2 < \varepsilon) = \mathbb{P}\left(\sum_{k=1}^{\infty} \mu_k \xi_k^2 < \varepsilon^2\right).$$

Main idea

All information about the process is in spectrum of the covariance operator.

Spectral method

About my results

Metric entropy

Summary 000000

What is already known?

1974 — G. Sytaya: implicit solution in terms of Laplace transform of the sum $\sum \mu_k \xi_k^2$

Spectral method

About my results

Metric entropy

Summary 000000

What is already known?

- 1974 G. Sytaya: implicit solution in terms of Laplace transform of the sum $\sum \mu_k \xi_k^2$
- from V.M. Zolotarev, J. Hoffmann-Jorgensen , L. Shepp, R. Dudley, 1974 I. A. Ibragimov, M. A. Lifshits,...: simplification of the formula under different assumptions

Spectral method

About my results

Metric entropy

Summary 000000

What is already known?

- 1974 G. Sytaya: implicit solution in terms of Laplace transform of the sum $\sum \mu_k \xi_k^2$
- from V.M. Zolotarev, J. Hoffmann-Jorgensen , L. Shepp, R. Dudley, 1974 I. A. Ibragimov, M. A. Lifshits,...: simplification of the formula under different assumptions
- 1998 T. Dunker, M. A. Lifshits, W. Linde (DLL): rather simple formulas for

$$\mathbb{P}\left(\sum \mu_k \xi_k^2 < arepsilon^2
ight)$$
 when

- μ_k decays, logarithmically convex • $\mu_k = k^{-d}$, d > 0, — polynomial decay • $\mu_k = A^{-k}$, d > 0, — polynomial decay
- $\mu_k = A^{-k}$, A > 0, exponential decay

Spectral method

About my results

Metric entropy

Summary 000000

Useful fact: Wenbo Li principle

Let $\hat{\mu}_k \approx \mu_k$ — some approximation. *Question:* How the following probabilities are connected

 $\mathbb{P}\left(\sum \mu_k \xi_k^2 < \varepsilon^2\right) \quad \text{and} \quad \mathbb{P}\left(\sum \widehat{\mu}_k \xi_k^2 < \varepsilon^2\right)?$

th

Spectral method 000000

About my results

Metric entropy

Summary

Useful fact: Wenbo Li principle

Let $\hat{\mu}_k \approx \mu_k$ — some approximation. Question: How the following probabilities are connected

$$\mathbb{P}\left(\sum \mu_k \xi_k^2 < \varepsilon^2\right) \quad \text{and} \quad \mathbb{P}\left(\sum \widehat{\mu}_k \xi_k^2 < \varepsilon^2\right)?$$
Theorem (Wenbo Li principle 1992, Gao et al. 2003)
Let μ_k , $\widehat{\mu}_k$ — two summable sequences. If
$$0 < \prod_{k=1}^{\infty} \frac{\widehat{\mu}_k}{\mu_k} < \infty, \qquad (3)$$
then as $\varepsilon \to 0$

$$\mathbb{P}\left(\sum_{k=1}^{\infty} \mu_k \xi_k^2 < \varepsilon^2\right) \sim \mathbb{P}\left(\sum_{k=1}^{\infty} \widehat{\mu}_k \xi_k^2 < \varepsilon^2\right) \cdot \left(\prod \frac{\widehat{\mu}_k}{\mu_k}\right)^{1/2}$$

Spectral method 0000●0 About my results

Metric entropy

Summary 000000

General scheme

We are looking for small ball probabilities:

Spectral method

About my results

Metric entropy

Summary 000000

General scheme

We are looking for small ball probabilities:

() Consider a spectral problem for the covariance operator \mathbb{G}_X

$$\mu_k u_k = \mathbb{G}_X u_k \qquad \Longleftrightarrow \qquad \mu_k u_k(t) = \int_0^1 G_X(s,t) u_k(s) \, ds.$$

Spectral method

About my results

Metric entropy

Summary

General scheme

We are looking for small ball probabilities:

 $\begin{tabular}{ll} \begin{tabular}{ll} \hline \end{tabular} \end{tabular} \begin{tabular}{ll} \end{tabular} \end{tabular} \begin{tabular}{ll} \end{tabular} \end{tabular} \begin{tabular}{ll} \end{tabular} \end{tabular} \end{tabular} \begin{tabular}{ll} \end{tabular} \end{tabular} \end{tabular} \begin{tabular}{ll} \end{tabular} \end{tabular} \end{tabular} \end{tabular} \end{tabular} \end{tabular} \begin{tabular}{ll} \end{tabular} \end{$

$$\mu_k u_k = \mathbb{G}_X u_k \qquad \Longleftrightarrow \qquad \mu_k \, u_k(t) = \int_0^1 \, G_X(s,t) \, u_k(s) \, ds.$$

2 Find rather «good» approximation $\widehat{\mu}_k$ of eigenvalues such that

$$\prod_{k=1}^{\infty} \frac{\widehat{\mu}_k}{\mu_k} < \infty,$$

Spectral method

About my results

Metric entropy

Summary 000000

General scheme

We are looking for small ball probabilities:

 $\begin{tabular}{ll} \begin{tabular}{ll} \hline \end{tabular} \end{tabular} \begin{tabular}{ll} \end{tabular} \end{tabular} \begin{tabular}{ll} \end{tabular} \end{tabular} \begin{tabular}{ll} \end{tabular} \end{tabular} \end{tabular} \begin{tabular}{ll} \end{tabular} \end{tabular} \end{tabular} \begin{tabular}{ll} \end{tabular} \end{tabular} \end{tabular} \end{tabular} \end{tabular} \end{tabular} \begin{tabular}{ll} \end{tabular} \end{tabular} \end{tabular} \end{tabular} \begin{tabular}{ll} \end{tabular} \end{tabular}$

$$\mu_k u_k = \mathbb{G}_X u_k \qquad \Longleftrightarrow \qquad \mu_k \, u_k(t) = \int_0^1 \, G_X(s,t) \, u_k(s) \, ds.$$

2 Find rather «good» approximation $\widehat{\mu}_k$ of eigenvalues such that

$$\prod_{k=1}^{\infty} \frac{\widehat{\mu}_k}{\mu_k} < \infty,$$

③ Use DLL theorem for $\hat{\mu}_k$ and Wenbo Li principle

Spectral method

About my results

Metric entropy

Summary 000000

Example of a general theorem (Nazarov, Nikitin' 2004)

If eigenvalues μ_k have the asymptotics

$$\mu_k = (\vartheta(k + \delta + O(k^{-1})))^{-d},$$

then for the small deviation probabilities

$$\mathbb{P}(\|X\|_2 < \varepsilon) \sim D\varepsilon^C \exp(B\varepsilon^A), \qquad \varepsilon \to 0,$$

where A = A(d), $B = B(d, \vartheta)$, $C = C(d, \vartheta, \delta)$, $D = D(\{\mu_k\})$:

$$A = -\frac{2}{d-1}, \quad B = -\frac{d-1}{2} \left(\frac{\pi/d}{\vartheta \sin(\pi/d)}\right)^{\frac{d}{d-1}}, \quad C = \frac{2-d-2\delta d}{2(d-1)}$$

Spectral method

About my results

Metric entropy

Summary

Problem statement in my PhD

$X_0(t)$ — Gaussian process:

- $\mathbb{E}X_0(t) \equiv 0$
- $G_0(s,t) = \mathbb{E}X_0(s)X_0(t)$

 $\mathbb{P}(||X_0||_2 < \varepsilon)$ is known

X(t) — finite-dimensional perturbation of $X_0(t)$ of rank m :

•
$$\mathbb{E}X(t) \equiv 0$$

• $G(s,t) = \mathbb{E}X(s)X(t)$ $G(s,t) = G_0(s,t) + \vec{\psi}^T(s) \cdot D \cdot \vec{\psi}(t)$

Parameters of perturbation:

•
$$\vec{\psi}(t) = (\psi_1(t), \dots, \psi_m(t))^T$$

• $D \in M_{m \times m}$ — symmetrical

Question:

 $\mathsf{How} \quad \mathbb{P}\left(\|X_0\|_2 < \varepsilon\right) \quad \mathsf{and} \quad \mathbb{P}\left(\|X\|_2 < \varepsilon\right) \quad \mathsf{are \ related \ to \ each \ other}?$

Spectral metho

About my results

Metric entropy

Summary 000000

Problem statement for Durbin processes

- important in statistics
- appear as limiting processes when building goodness-of-fit tests of $\omega^2\text{-type}$ when parameters are estimated by the sample

Take the sample $x_1, \ldots, x_n \sim F(x, \theta)$. $\theta = (\theta_1, \ldots, \theta_m)$ — distribution parameters.

parameters are <i>known</i>			
$(heta= heta^0 ext{ fixed})$			
\Downarrow			
limiting process —			
Brownian bridge $B(t)$			

parameters are not known (estimated from sample) \downarrow limiting process perturbation of B(t) of rank m

Problem:

Find exact small ball probability asymptotics for Durbin processes

Spectral method

About my results

Metric entropy

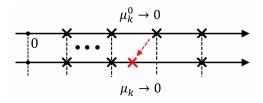
Summary

1-dimensional perturbations: first observation

$$G_X(s,t) = G_0(s,t) + D\psi(s)\psi(t), \qquad D \in \mathbb{R}$$

- D = 0 non-perturbated operator
- $\psi(t)$ eigenfunction of an integral operator \mathbb{G}_0

What will happen if we change D?



Reducing $D \downarrow$

Asymptotically $\mu_k^0 = \mu_k, \ k \to \infty$

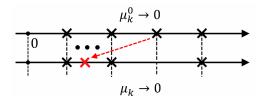
oduction	Spectral method	About my results	Metric entropy
0000	000000	00000000	000000000

1-dimensional perturbations: first observation

$$G_X(s,t) = G_0(s,t) + D\psi(s)\psi(t), \qquad D \in \mathbb{R}$$

- D = 0 non-perturbated operator
- $\psi(t)$ eigenfunction of an integral operator \mathbb{G}_0

What will happen if we change D?



Reducing $D \downarrow$

Summarv

Asymptotically $\mu_k^0 = \mu_k, \ k \to \infty$

Spectral method

About my results

Metric entropy

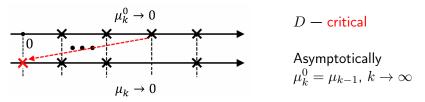
Summary

1-dimensional perturbations: first observation

$$G_X(s,t) = G_0(s,t) + D\psi(s)\psi(t), \qquad D \in \mathbb{R}$$

- D = 0 non-perturbated operator
- $\psi(t)$ eigenfunction of an integral operator \mathbb{G}_0

What will happen if we change D?



The analogous effect appears in a general situation (when $\psi(t)$ is not necessarily an eigenfunction)

Spectral method

About my results

Metric entropy

Summary 000000

1-dimensional perturbations (A.I. Nazarov'2009)

 ${\rm Let} \qquad Q:=\langle \mathbb{G}_0^{-1}\psi,\psi\rangle<\infty \quad \Leftrightarrow \quad \psi\in {\rm Im}(\mathbb{G}_0^{1/2}).$

There exists a critical value $D_{crit} = -1/Q$ such that:

Non critical case	Critical case
If $D > D_{crit} = -1/Q$, then $\prod_{k=1}^{\infty} \frac{\mu_k}{\mu_k^0} < \infty$	If $D = D_{crit}$, $\psi \in \operatorname{Im}(\mathbb{G}_0)$, then $\prod_{k=2}^{\infty} \frac{\mu_{k-1}}{\mu_k^0} < \infty$

- In critical case there is an extra assumption $\psi \in \mathrm{Im}(\mathbb{G}_0)$
- The analogous statement is true for finite-dimensional perturbations (Yu. Petrova'2018)

Spectral method

About my results

Metric entropy

Summary 000000

1-dimensional perturbations (A.I. Nazarov'2009)

Let $Q := \langle \mathbb{G}_0^{-1} \psi, \psi \rangle < \infty \quad \Leftrightarrow \quad \psi \in \operatorname{Im}(\mathbb{G}_0^{1/2}).$ There exists a critical value $D_{crit} = -1/Q$ such that:

Non-critical caseCritical caseIf $D > D_{crit} = -1/Q$,
then as $\varepsilon \to 0$ If $D = D_{crit}$, $[\psi \in Im(\mathbb{G}_0)]$,
then as $\varepsilon \to 0$ $\mathbb{P}(||X||_2 < \varepsilon) \sim \frac{\mathbb{P}(||X_0||_2 < \varepsilon)}{|1 + QD|}$ $\mathbb{P}(||X||_2 < \varepsilon) \sim \frac{\sqrt{Q}}{||\varphi||_2} \cdot \sqrt{\frac{2}{\pi}}$.
 $\cdot \int_0^{\varepsilon^2} \frac{d}{dt} \mathbb{P}(||X_0||_2 < t) \cdot \frac{dt}{\sqrt{\varepsilon^2 - t^2}}$

- In critical case there is an extra assumption $\psi \in \operatorname{Im}(\mathbb{G}_0)$
- The analogous statement is true for finite-dimensional perturbations (Yu. Petrova'2018)

Spectral method

About my results

Metric entropy

Summary 000000

Example: Durbin process for Gumbel distribution

Theorem (Yu. Petrova '2017)

For Durbin process X(t) for Gumbel distribution,

 $G(s,t) = \min(s,t) - st - \psi(t)\psi(s), \qquad \psi(t) = C t \ln(t) \cdot \ln(-\ln(t))$

eigenvalue asymptotics is as follows

$$\mu_k^{-1/2} = \pi k + \frac{\pi}{2} + (-1)^k \cdot 2 \operatorname{arctg}\left(\frac{1}{\ln(\ln(k)) + 1}\right) - \frac{1}{\ln(k)\ln(\ln(k))} + O\left(\frac{1}{\ln(k)(\ln(\ln(k)))^2}\right).$$

Small ball probability asymptotics

$$\mathbb{P}\Big\{\|X\|_2 < \varepsilon\Big\} \sim C \cdot \ln^{-1}(\ln(\varepsilon^{-1})) \cdot \varepsilon^{-1} \cdot \exp\left(-\frac{1}{8\varepsilon^2}\right)$$

Introduction 000000	Spectral method	About my results	Metric entropy 0000000000	Summary

All results:

Non-critical	Critical perturbation				
perturbation	« good »	not « good » (Durbin processes '2015, '20			.5,'2017)
		LOG 2	$\frac{4\sqrt{3}}{3\sqrt{2}}$	$\frac{1}{\tau^{3/2}} \cdot \varepsilon^{-1} \exp\left(-\frac{1}{8\varepsilon^2}\right)$	P. '17
1-dimens	LOG 3	$\frac{4\sqrt{15(3)}}{3\pi^3}$	$\frac{3+\pi^2)}{\pi^2} \cdot \varepsilon^{-3} \exp\left(-\frac{1}{8\varepsilon^2}\right)$	P. '17	
A.I. Nazarov'2009		NOR 1	$C \cdot \varepsilon^{-1}$	$\cdot \ln^{\frac{1}{2}} \left(\frac{1}{\varepsilon} \right) \cdot \exp \left(-\frac{1}{8\varepsilon^2} \right)$	N.& P.'15
		NOR 2	$\frac{2\sqrt{\pi^3}}{\pi^3}$	$\frac{\sqrt{2}}{\sqrt{2}} \varepsilon^{-1} \exp\left(-\frac{1}{8\varepsilon^2}\right)$	N.& P.'15
		GUM 1	$\frac{4}{\pi^3}$	$\frac{1}{2} \cdot \varepsilon^{-1} \exp\left(-\frac{1}{8\varepsilon^2}\right)$	P. '17
finite-dimen		GUM 2	$C \cdot \ln^{-1}($	$\ln(\varepsilon^{-1})) \cdot \varepsilon^{-1} \exp\left(-\frac{1}{8\varepsilon^2}\right)$) P.'17
Yu. Petrova'2018		GAM 1	$\frac{4\alpha_0^1}{\pi^3}$	$\frac{1}{2} \cdot \varepsilon^{-1} \exp\left(-\frac{1}{8\varepsilon^2}\right)$	P. '17
		GAM 2	$\frac{4da}{\pi^3}$	$\frac{x_0}{2} \cdot \varepsilon^{-1} \exp\left(-\frac{1}{8\varepsilon^2}\right)$	P.'17

Spectral method

About my results

Metric entropy

Summary 000000

Summing up the fist part

Small ball probability problem consists in finding the asymptotics

 $\mathbb{P}\left(\|X\|<\varepsilon\right) \qquad \text{as} \quad \varepsilon\to 0.$

• Hilbert space \implies spectral problem

Spectral metho

About my results

Metric entropy

Summary 000000

Summing up the fist part

Small ball probability problem consists in finding the asymptotics

 $\mathbb{P}\left(\|X\| < \varepsilon\right) \quad \text{ as } \quad \varepsilon \to 0.$

- Hilbert space \implies spectral problem
- the whole sequence of eigenvalues μ_k is important (in contrast to large deviations where only the first eigenvalue is sufficient to know)

Spectral metho

About my results

Metric entropy

Summary 000000

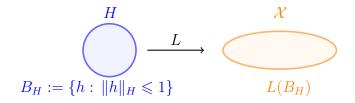
Summing up the fist part

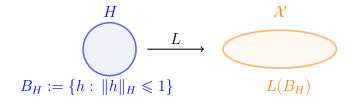
Small ball probability problem consists in finding the asymptotics

 $\mathbb{P}\left(\|X\|<\varepsilon\right) \qquad \text{as} \quad \varepsilon\to 0.$

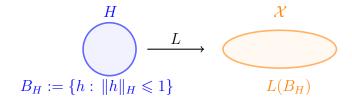
- Hilbert space \implies spectral problem
- the whole sequence of eigenvalues μ_k is important (in contrast to large deviations where only the first eigenvalue is sufficient to know)
- very precise asymptotics can be obtained
 ... but it is quite sensitive to any perturbation of the process

Questions? Comments?



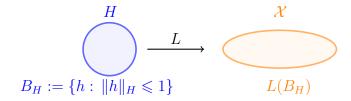


How to measure the "size" of the operator?



How to measure the "size" of the operator?

• The norm ||L|| (half-diameter of $L(B_H)$) alone is not enough!



How to measure the "size" of the operator?

- The norm ||L|| (half-diameter of $L(B_H)$) alone is not enough!
- We can use metric entropy

Spectral method

About my results

Metric entropy

Summary 000000

Covering numbers and entropy

One way to measure the compactness of operator $L:\ H\to \mathcal{X}$ is using metric entropy.

Spectral method

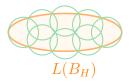
About my results

Metric entropy

Summary 000000

Covering numbers and entropy

One way to measure the compactness of operator $L: H \to \mathcal{X}$ is using metric entropy.



Covering numbers:

 $N_L(\varepsilon) = \inf \left\{ n : \exists \{x_j\}_{j \leqslant n}, \{Lh : \|h\|_H \leqslant 1\} \subset \cup_{j=1}^n B_{\varepsilon}(x_j) \right\}$

Spectral method

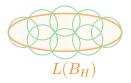
About my results

Metric entropy

Summary 000000

Covering numbers and entropy

One way to measure the compactness of operator $L: H \to \mathcal{X}$ is using metric entropy.



Covering numbers:

 $N_L(\varepsilon) = \inf \left\{ n : \exists \{x_j\}_{j \leqslant n}, \{Lh : \|h\|_H \leqslant 1\} \subset \cup_{j=1}^n B_{\varepsilon}(x_j) \right\}$ Metric entropy: $\ln N_L(\varepsilon)$

Spectral method

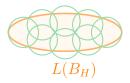
About my results

Metric entropy

Summary 000000

Covering numbers and entropy

One way to measure the compactness of operator $L: H \to \mathcal{X}$ is using metric entropy.



Covering numbers:

$$N_L(\varepsilon) = \inf \left\{ n : \exists \{x_j\}_{j \le n}, \{Lh : \|h\|_H \le 1\} \subset \bigcup_{j=1}^n B_{\varepsilon}(x_j) \right\}$$

Metric entropy: $\ln N_L(\varepsilon)$ Dyadic entropy numbers:

$$e_n(L) = \inf \{ \varepsilon > 0 : N_L(\varepsilon) \leq 2^n \}$$

Spectral metho

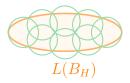
About my results

Metric entropy

Summary 000000

Covering numbers and entropy

One way to measure the compactness of operator $L: H \to \mathcal{X}$ is using metric entropy.



Covering numbers:

$$N_L(\varepsilon) = \inf \left\{ n : \exists \{x_j\}_{j \leqslant n}, \{Lh : \|h\|_H \leqslant 1\} \subset \cup_{j=1}^n B_{\varepsilon}(x_j) \right\}$$

Metric entropy: $\ln N_L(\varepsilon)$ Dyadic entropy numbers:

$$e_n(L) = \inf \{ \varepsilon > 0 : N_L(\varepsilon) \leq 2^n \}$$

The main problem in operator language

Find the behavior of covering numbers $N_L(\varepsilon)$, as $\varepsilon \to 0$.

Spectral method

About my results

Metric entropy

Summary

An example: integration operator

• Let $H = L^2[0,1]$ and $\mathcal{X} = C[0,1]$, and let $L : L^2[0,1] \to C[0,1]$ be an integration operator:

$$L(f)(t) := \int_{0}^{t} f(s) \, ds, \qquad f \in L^{2}[0, 1].$$

Spectral method

About my results

Metric entropy

Summary

An example: integration operator

• Let $H = L^2[0,1]$ and $\mathcal{X} = C[0,1]$, and let $L : L^2[0,1] \to C[0,1]$ be an integration operator:

$$L(f)(t) := \int_{0}^{t} f(s) \, ds, \qquad f \in L^{2}[0, 1].$$

Then $e_n(L) \approx n^{-1}$.

Spectral method

About my results

Metric entropy

Summary

An example: integration operator

• Let $H = L^2[0, 1]$ and $\mathcal{X} = C[0, 1]$, and let $L : L^2[0, 1] \to C[0, 1]$ be an integration operator:

$$L(f)(t) := \int_{0}^{t} f(s) \, ds, \qquad f \in L^{2}[0, 1].$$

Then $e_n(L) \approx n^{-1}$.

② Let $\alpha > 1/2$. Consider Riemann-Liouville fractional integration operator $L : L^2[0,1] \rightarrow C[0,1]$, defined by

$$L^{\alpha}(f)(t) := \frac{1}{\Gamma(\alpha)} \int_{0}^{t} (t-s)^{\alpha-1} f(s) \, ds, \qquad f \in L^{2}[0,1].$$

Spectral method

About my results

Metric entropy

Summary 000000

An example: integration operator

• Let $H = L^2[0, 1]$ and $\mathcal{X} = C[0, 1]$, and let $L : L^2[0, 1] \to C[0, 1]$ be an integration operator:

$$L(f)(t) := \int_{0}^{t} f(s) \, ds, \qquad f \in L^{2}[0, 1].$$

Then $e_n(L) \approx n^{-1}$.

② Let $\alpha > 1/2$. Consider Riemann-Liouville fractional integration operator $L : L^2[0,1] \rightarrow C[0,1]$, defined by

$$L^{\alpha}(f)(t) := \frac{1}{\Gamma(\alpha)} \int_{0}^{t} (t-s)^{\alpha-1} f(s) \, ds, \qquad f \in L^{2}[0,1].$$

Then $e_n(L) \approx n^{-\alpha}$.

Spectral method

About my results

Metric entropy

Summary

An example: integration operator

• Let $H = L^2[0, 1]$ and $\mathcal{X} = C[0, 1]$, and let $L : L^2[0, 1] \to C[0, 1]$ be an integration operator:

$$L(f)(t) := \int_{0}^{t} f(s) \, ds, \qquad f \in L^{2}[0, 1].$$

Then $e_n(L) \approx n^{-1}$.

② Let $\alpha > 1/2$. Consider Riemann-Liouville fractional integration operator $L : L^2[0,1] \rightarrow C[0,1]$, defined by

$$L^{\alpha}(f)(t) := \frac{1}{\Gamma(\alpha)} \int_{0}^{t} (t-s)^{\alpha-1} f(s) \, ds, \qquad f \in L^{2}[0,1].$$

Then $e_n(L) \approx n^{-\alpha}$.

Note that for $\alpha = 1$ this is the simple integration operator. Also there is a semigroup property: $L^{\alpha} \circ L^{\beta} = L^{\alpha+\beta}$.

Spectral metho

About my results

Metric entropy

Summary

An open problem

Consider multivariate integration operator on \mathbb{R}^d_+ . For $t \in \mathbb{R}^d_+$ define a rectangle $[0, t] = \{s : 0 \le s_j \le t_j, 1 \le j \le d\}$.

Let the integration operator $L: L_2([0,1]^d) \to \mathbb{C}([0,1]^d)$ be defined by

 $L(f)(t) := \int_{[0,t]} f(s) \, ds.$

Problem:

Find the asymptotics for $e_n(L)$, as $n \to \infty$.

It is only known that

•
$$e_n(L) \approx n^{-1}$$
, for $d = 1$;

•
$$e_n(L) \approx n^{-1} (\ln n)^{3/2}$$
, for $d = 2$;

• $c_1 n^{-1} (\ln n)^{d-1} \le e_n(L) \le c_2 n^{-1} (\ln n)^{d-1/2}$, for general d.

Spectral method 000000

About my results

Metric entropy

Summary

Merging two stories: operators and processes

Any centered Gaussian vector in a separable Banach space $\ensuremath{\mathcal{X}}$ admits expansion

$$X = \sum_{j} \xi_j L(e_j),$$
 almost surely,

where ξ_j are iid standard normal rv, and $L: H \to \mathcal{X}$ an appropriate linear operator acting to a \mathcal{X} from a Hilbert space H with basis (e_j) .

Spectral method 000000

About my results

Metric entropy

Summary 000000

Merging two stories: operators and processes

Any centered Gaussian vector in a separable Banach space $\ensuremath{\mathcal{X}}$ admits expansion

$$X = \sum_{j} \xi_j L(e_j),$$
 almost surely,

where ξ_j are iid standard normal rv, and $L: H \to \mathcal{X}$ an appropriate linear operator acting to a \mathcal{X} from a Hilbert space H with basis (e_j) .

Definition

Then the Gaussian vector X and operator L are associated.

Summary 000000

Merging two stories: operators and processes

Any centered Gaussian vector in a separable Banach space $\ensuremath{\mathcal{X}}$ admits expansion

$$X = \sum_{j} \xi_j L(e_j),$$
 almost surely,

where ξ_j are iid standard normal rv, and $L: H \to \mathcal{X}$ an appropriate linear operator acting to a \mathcal{X} from a Hilbert space H with basis (e_j) .

Definition

Then the Gaussian vector X and operator L are associated.

Note: the distribution of X doesn't depend on the basis (e_j) ,

Spectral method

About my results

Metric entropy

Summary 000000

Example of a random vector and an associated operator Let $\mathcal{X} = C[0, 1]$, X = W — a Wiener process, $H = L^2[0, 1]$.

Spectral method

About my results

Metric entropy

Summary

Example of a random vector and an associated operator Let $\mathcal{X} = C[0,1]$, X = W — a Wiener process, $H = L^2[0,1]$. It turns out that an operator $L : L^2[0,1] \to C[0,1]$ that is associated to Wiener process is just an integration operator.

$$L(f)(t) = \int_0^t f(s) \, ds, \qquad f \in L^2[0, 1].$$

Spectral method

About my results

Metric entropy

Summary 000000

Example of a random vector and an associated operator Let $\mathcal{X} = C[0, 1]$, X = W — a Wiener process, $H = L^2[0, 1]$. It turns out that an operator $L : L^2[0, 1] \rightarrow C[0, 1]$ that is associated to Wiener process is just an integration operator.

$$L(f)(t) = \int_0^t f(s) \, ds, \qquad f \in L^2[0, 1].$$

Let us consider the cosine basis in $L^2[0,1]$, given by $e_0(s) := 1$ and

$$e_j(s) := \sqrt{2}\cos(\pi j s), \quad j \ge 1.$$

Spectral method

About my results

Metric entropy

Summary

Example of a random vector and an associated operator Let $\mathcal{X} = C[0, 1]$, X = W — a Wiener process, $H = L^2[0, 1]$. It turns out that an operator $L : L^2[0, 1] \rightarrow C[0, 1]$ that is associated to Wiener process is just an integration operator.

$$L(f)(t) = \int_0^t f(s) \, ds, \qquad f \in L^2[0,1].$$

Let us consider the cosine basis in $L^2[0,1]$, given by $e_0(s) := 1$ and

$$e_j(s) := \sqrt{2}\cos(\pi j s), \quad j \ge 1.$$

Integration yields $Le_0(t) = t$ and

$$Le_j(t) = \sqrt{2} \frac{\sin(\pi jt)}{\pi j}, \quad j \ge 1$$

Spectral method

About my results

Metric entropy

Summary

Example of a random vector and an associated operator Let $\mathcal{X} = C[0, 1]$, X = W — a Wiener process, $H = L^2[0, 1]$. It turns out that an operator $L : L^2[0, 1] \rightarrow C[0, 1]$ that is associated to Wiener process is just an integration operator.

$$L(f)(t) = \int_0^t f(s) \, ds, \qquad f \in L^2[0,1].$$

Let us consider the cosine basis in $L^2[0,1]$, given by $e_0(s) := 1$ and

$$e_j(s) := \sqrt{2}\cos(\pi j s), \quad j \ge 1.$$

Integration yields $Le_0(t) = t$ and

$$Le_j(t) = \sqrt{2} \frac{\sin(\pi j t)}{\pi j}, \quad j \ge 1.$$

So we arrive at the expansion

$$W(t) = \xi_0 t + \sqrt{2} \sum_{j=1}^{\infty} \xi_j \; \frac{\sin(\pi j t)}{\pi j}.$$

Spectral method

About my results

Metric entropy

Summary 000000

Metric entropy and Gaussian small deviations Let's concentrate on logarithmic small ball probabilities and define small deviation function by:

 $\varphi(\varepsilon) := -\ln \mathbb{P}(\|X\| < \varepsilon)$

Spectral method

About my results

Metric entropy

Summary 000000

Metric entropy and Gaussian small deviations

Let's concentrate on logarithmic small ball probabilities and define small deviation function by:

 $\varphi(\varepsilon) := -\ln \mathbb{P}(\|X\| < \varepsilon)$

Relation between $\ln N_L(\varepsilon)$ and $\varphi(\varepsilon)$:

1 polynomial growth: Let $\beta \in (0, 2)$. Then

 $\ln N_L(\varepsilon) \approx \varepsilon^{-\beta} \quad \Longleftrightarrow \quad \varphi(\varepsilon) \approx \varepsilon^{-\frac{2\beta}{2-\beta}}, \qquad \text{as } \varepsilon \to 0.$

Spectral method

About my results

Metric entropy

Summary

Metric entropy and Gaussian small deviations

Let's concentrate on logarithmic small ball probabilities and define small deviation function by:

 $\varphi(\varepsilon) := -\ln \mathbb{P}(\|X\| < \varepsilon)$

Relation between $\ln N_L(\varepsilon)$ and $\varphi(\varepsilon)$:

• polynomial growth: Let $\beta \in (0,2)$. Then

 $\ln N_L(\varepsilon) \approx \varepsilon^{-\beta} \quad \Longleftrightarrow \quad \varphi(\varepsilon) \approx \varepsilon^{-\frac{2\beta}{2-\beta}}, \qquad \text{as } \varepsilon \to 0.$

Example: L — integration operator, W — Wiener process, $\beta = 1$. L — fractional integration operator, X — Riemann-Liouville process.

Spectral method

About my results

Metric entropy

Summary

Metric entropy and Gaussian small deviations

Let's concentrate on logarithmic small ball probabilities and define small deviation function by:

 $\varphi(\varepsilon) := -\ln \mathbb{P}(\|X\| < \varepsilon)$

Relation between $\ln N_L(\varepsilon)$ and $\varphi(\varepsilon)$:

• polynomial growth: Let $\beta \in (0, 2)$. Then

 $\ln N_L(\varepsilon) \approx \varepsilon^{-\beta} \quad \Longleftrightarrow \quad \varphi(\varepsilon) \approx \varepsilon^{-\frac{2\beta}{2-\beta}}, \qquad \text{as } \varepsilon \to 0.$

Example: L — integration operator, W — Wiener process, $\beta = 1$. L — fractional integration operator, X — Riemann-Liouville process. **2** logarithmic growth:

Let $\beta > 0$, $\gamma \in \mathbb{R}$. Then

 $\ln N_L(\varepsilon) \approx |\ln \varepsilon|^\beta \ln |\ln \varepsilon|^\gamma \quad \Longleftrightarrow \quad \varphi(\varepsilon) \approx |\ln \varepsilon|^\beta \ln |\ln \varepsilon|^\gamma, \quad \varepsilon \to 0.$

Spectral method

About my results

Metric entropy

Summary 000000

General principles

The following properties are related:

• the small deviation probabilities $\mathbb{P}(\|X\|\leqslant\varepsilon)$ are not too small when $\varepsilon\to 0;$

Spectral method

About my results

Metric entropy

Summary 000000

General principles

The following properties are related:

- the small deviation probabilities $\mathbb{P}(\|X\|\leqslant\varepsilon)$ are not too small when $\varepsilon\to 0;$
- small deviation function $\varphi(\varepsilon) := -\ln \mathbb{P}(\|X\| \leq \varepsilon)$ is growing slowly when $\varepsilon \to 0$;

Spectral method

About my results

Metric entropy

Summary 000000

General principles

The following properties are related:

- the small deviation probabilities $\mathbb{P}(\|X\|\leqslant\varepsilon)$ are not too small when $\varepsilon\to 0;$
- small deviation function $\varphi(\varepsilon) := -\ln \mathbb{P}(\|X\| \leq \varepsilon)$ is growing slowly when $\varepsilon \to 0$;
- sample paths of a process are rather smooth;

Spectral method

About my results

Metric entropy

Summary 000000

General principles

The following properties are related:

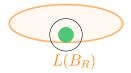
- the small deviation probabilities $\mathbb{P}(\|X\|\leqslant\varepsilon)$ are not too small when $\varepsilon\to 0;$
- small deviation function $\varphi(\varepsilon) := -\ln \mathbb{P}(\|X\| \leq \varepsilon)$ is growing slowly when $\varepsilon \to 0$;
- sample paths of a process are rather smooth;
- X has good finite-rank approximations:

$$X \approx \sum_{j=1}^{n} \xi_j L(e_j), \qquad n \to \infty.$$

How the connection occurs?

We start with an operator $L: H \to \mathcal{X}$. Fix some R, ε . Take the image of the R-ball

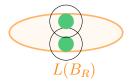
 $L(B_R) = \{Lh : ||h||_H < R\}$



How the connection occurs?

We start with an operator $L: H \to \mathcal{X}$. Fix some R, ε . Take the image of the R-ball

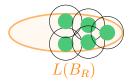
 $L(B_R) = \{Lh : ||h||_H < R\}$



How the connection occurs?

We start with an operator $L:H\to \mathcal{X}.$ Fix some $R,\varepsilon.$ Take the image of the R-ball

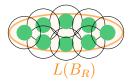
 $L(B_R) = \{Lh : ||h||_H < R\}$



How the connection occurs?

We start with an operator $L: H \to \mathcal{X}$. Fix some R, ε . Take the image of the R-ball

 $L(B_R) = \{Lh : ||h||_H < R\}$



 Spectral method
 About my results
 Metric entropy
 Summary

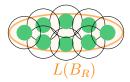
 000000
 0000000000
 0000000000
 000000000
 000000000

How the connection occurs?

We start with an operator $L: H \to \mathcal{X}$. Fix some R, ε . Take the image of the R-ball

$$L(B_R) = \{Lh : ||h||_H < R\}$$

and construct a pairwise distant points: h_1, h_2, \ldots such that $||h_i|| < R$ and $||Lh_i - Lh_j|| > \varepsilon$ for $i \neq j$.



Clearly, we can collect at least $N_{L(B_R)}(\varepsilon)$ points and

$$N_{L(B_R)}(\varepsilon) = N_{L(B_1)}(\varepsilon/R) = N_L(\varepsilon/R).$$

Spectral method

About my results

Metric entropy

Summary 000000

How the connection occurs? Continued

We have a picture from a former slide

Spectral method

About my results

Metric entropy

Summary 000000

How the connection occurs? Continued

We have a picture from a former slide

The green balls are $Lh_j + \frac{\varepsilon}{2}U$ where U is the unit ball in \mathcal{X} .

Spectral metho

About my results

Metric entropy

Summary 000000

How the connection occurs? Continued

We have a picture from a former slide

The green balls are $Lh_j + \frac{\varepsilon}{2}U$ where U is the unit ball in \mathcal{X} .

Christer Borell shift inequality: for every symmetric set $B \subset \mathcal{X}$ and every associated centered Gaussian vector X and operator L, and every $h \in H$

 $\mathbb{P}(X \in B + Lh) \ge \mathbb{P}(X \in B) \exp(-\|h\|_{H}^{2}/2).$

Spectral metho

About my results

Metric entropy

Summary 000000

How the connection occurs? Continued

We have a picture from a former slide

The green balls are $Lh_j + \frac{\varepsilon}{2}U$ where U is the unit ball in \mathcal{X} .

Christer Borell shift inequality: for every symmetric set $B \subset \mathcal{X}$ and every associated centered Gaussian vector X and operator L, and every $h \in H$

$$\mathbb{P}(X \in B + Lh) \ge \mathbb{P}(X \in B) \exp(-\|h\|_{H}^{2}/2).$$

$$1 \ge \mathbb{P}\left(X \in \bigcup_j \{Lh_j + \frac{\varepsilon}{2}U\}\right)$$

Spectral metho

About my results

Metric entropy

Summary 000000

How the connection occurs? Continued

We have a picture from a former slide

The green balls are $Lh_j + \frac{\varepsilon}{2}U$ where U is the unit ball in \mathcal{X} .

Christer Borell shift inequality: for every symmetric set $B \subset \mathcal{X}$ and every associated centered Gaussian vector X and operator L, and every $h \in H$

$$\mathbb{P}(X \in B + Lh) \ge \mathbb{P}(X \in B) \exp(-\|h\|_{H}^{2}/2).$$

$$1 \ge \mathbb{P}\left(X \in \bigcup_j \{Lh_j + \frac{\varepsilon}{2}U\}\right) = \sum_j \mathbb{P}(X \in \{Lh_j + \frac{\varepsilon}{2}U\})$$

Spectral metho

About my results

Metric entropy

Summary 000000

How the connection occurs? Continued

We have a picture from a former slide

The green balls are $Lh_j + \frac{\varepsilon}{2}U$ where U is the unit ball in \mathcal{X} .

Christer Borell shift inequality: for every symmetric set $B \subset \mathcal{X}$ and every associated centered Gaussian vector X and operator L, and every $h \in H$

$$\mathbb{P}(X \in B + Lh) \ge \mathbb{P}(X \in B) \exp(-\|h\|_{H}^{2}/2).$$

$$1 \ge \mathbb{P}\left(X \in \bigcup_{j} \{Lh_{j} + \frac{\varepsilon}{2}U\}\right) = \sum_{j} \mathbb{P}(X \in \{Lh_{j} + \frac{\varepsilon}{2}U\})$$
$$\ge N_{L}(\varepsilon/R)\mathbb{P}\left(X \in \frac{\varepsilon}{2}U\right)e^{-R^{2}/2}$$

Spectral metho

About my results

Metric entropy

Summary 000000

How the connection occurs? Continued

We have a picture from a former slide

The green balls are $Lh_j + \frac{\varepsilon}{2}U$ where U is the unit ball in \mathcal{X} .

Christer Borell shift inequality: for every symmetric set $B \subset \mathcal{X}$ and every associated centered Gaussian vector X and operator L, and every $h \in H$

$$\mathbb{P}(X \in B + Lh) \ge \mathbb{P}(X \in B) \exp(-\|h\|_{H}^{2}/2).$$

$$1 \ge \mathbb{P}\left(X \in \bigcup_{j} \{Lh_{j} + \frac{\varepsilon}{2}U\}\right) = \sum_{j} \mathbb{P}\left(X \in \{Lh_{j} + \frac{\varepsilon}{2}U\}\right)$$
$$\ge N_{L}(\varepsilon/R)\mathbb{P}\left(X \in \frac{\varepsilon}{2}U\right)e^{-R^{2}/2} = N_{L}(\varepsilon/R)\mathbb{P}\left(\|X\| < \frac{\varepsilon}{2}\right)e^{-R^{2}/2}$$

Spectral metho

About my results

Metric entropy

Summary 000000

How the connection occurs? Continued

We have a picture from a former slide

The green balls are $Lh_j + \frac{\varepsilon}{2}U$ where U is the unit ball in \mathcal{X} .

Christer Borell shift inequality: for every symmetric set $B \subset \mathcal{X}$ and every associated centered Gaussian vector X and operator L, and every $h \in H$

$$\mathbb{P}(X \in B + Lh) \ge \mathbb{P}(X \in B) \exp(-\|h\|_{H}^{2}/2).$$

It follows that

$$1 \ge \mathbb{P}\left(X \in \bigcup_{j} \{Lh_{j} + \frac{\varepsilon}{2}U\}\right) = \sum_{j} \mathbb{P}\left(X \in \{Lh_{j} + \frac{\varepsilon}{2}U\}\right)$$
$$\ge N_{L}(\varepsilon/R)\mathbb{P}\left(X \in \frac{\varepsilon}{2}U\right)e^{-R^{2}/2} = N_{L}(\varepsilon/R)\mathbb{P}\left(\|X\| < \frac{\varepsilon}{2}\right)e^{-R^{2}/2}$$

This reads as $\mathbb{P}(||X|| < \frac{\varepsilon}{2}) \leqslant e^{R^2/2} N_L(\varepsilon/R)^{-1}$. Optimize the RHS in R!

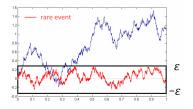
Spectral method

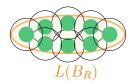
About my results

Metric entropy

Summary

Muito obrigada pela sua atenção!





Questions? Comments?

For any questions: https://yulia-petrova.github.io/

Introduction 000000	Spectral method	About my results	Metric entropy	Summary ○●○○○○			
Literature							

Own works:

- Nazarov, A. I., Petrova, Yu. P. (2016). The Small Ball Asymptotics in Hilbert Norm for the Kac-Kiefer-Wolfowitz Processes. Theory of Probability & Its Applications, 60(3), 460-480.
- Petrova, Yu. P. (2017). Exact L₂-small ball asymptotics for some Durbin processes. Zapiski Nauchnykh Seminarov POMI, 466, 211-233.
- Petrova, Yu. P. (2021). L₂-small ball asymptotics for a family of finite-dimensional perturbations of Gaussian functions. Zapiski Nauchnykh Seminarov POMI, Nikitin's memorial volume, 501, 236-258.

Overview papers / books :

- Site with all bibliography around small ball probabilities (collected by M. Lifshits): https://airtable.com/shrMG0nNxl9SiGxII/tbl7Xj1mZW2VuYurm
- Li W. V., Shao Q. M. Gaussian processes: inequalities, small ball probabilities and applications. Stochastic Processes: Theory and Methods. North-Holland: Amsterdam, 2001, p. 533-597.
- Lifshits, M. (2012). Lectures on Gaussian processes. Springer, Berlin, Heidelberg.

Other works:

- Sytaya G. N. On some asymptotic representations of the Gaussian measure in a Hilbert space. Theory of Stochastic Processes, 1974, v. 2, p. 93-104, Kiev (Russian)
- Li. W. V. Comparison results for the lower tail of Gaussian seminorms. J. Theoret. Probab., 1992, v. 5, No 1, p. 1-31.
- Dunker T., Lifshits M. A., Linde W. Small deviation probabilities of sums of independent random variables. Progr. Probab., 1998, v. 43, p. 59-74.
- Gao F., Hanning J., Torcaso F. Comparison theorems for small deviations of random series. Electron. J. Probab., 2003, v. 8, No 21, p. 1-17.
- Nazarov A. I., Nikitin Ya.Yu. Exact L₂-small ball behavior of integrated Gaussian processes and spectral asymptotics of boundary value problems. Prob. Theory Related Fields, 2004, v. 129, No 4, p. 469-494.
- Durbin J. Weak convergence of the sample distribution function when parameters are estimated. Ann. Statist., 1973, v. 1, No 2, p. 279-290.

Introduction	Spectral method	About my results	Metric entropy	Summary
000000	000000	000000000	000000000	000000

Asymptotics of oscillation integrals with slowly varying amplitudes Let F(t) be a slowly varying function at zero, that means F is of constant sign in the vicinity of 0 and

$$\lim_{x \to 0} \frac{F(\lambda x)}{F(x)} = 1, \qquad \forall \lambda > 0$$

Let F(1/2) = 0 and

• $F_{n+1}(x) = xF'_n(x)$ be also slowly-varying functions.

Theorem (A. Nazarov, Yu. Petrova'2016)

The following asymptotic expansion is valid as $\omega \to \infty$:

$$\int_{0}^{\frac{1}{2}} F(t) \cos(\omega t) dt = \frac{1}{\omega} \sum_{k=1}^{N} c_k F_k \left(\frac{1}{\omega}\right) + R_N, \qquad (4)$$
where $c_k = -\int_{0}^{\infty} \frac{\sin x}{x} \frac{\ln^{k-1} x}{(k-1)!} dx; \qquad |R_N| \le C(F, N) \cdot \frac{|F_{N+1}(\frac{1}{\omega})|}{\omega}.$

Spectral method

About my results

Metric entropy

Summary

Finite-dimensional perturbations (Yu. Petrova'2018) $G_X(s,t) = G_0(s,t) + \vec{\psi}^T(s) \cdot D \cdot \vec{\psi}(t),$ $\vec{\psi}(t) = (\psi_1(t), \dots, \psi_m(t))^T, \quad D \in M_{m \times m}$

Let $\varphi_j(t) = \mathbb{G}_0^{-1} \psi_j(t)$, and

$$Q := \langle \mathbb{G}_0 \vec{\varphi}, \vec{\varphi}^T \rangle < \infty \quad \Leftrightarrow \quad \psi_j \in \operatorname{Im}(\mathbb{G}_0^{1/2})$$

Non-critical case If $(Q^T D + E_m) > 0$, then $\prod_{k=1}^{\infty} \frac{\mu_k^0}{\mu_k} < +\infty$ rank(then then

Critical case

Если
$$\psi_j \in \operatorname{Im}(\mathbb{G}_0)$$
 и
 $\operatorname{rank}(Q^T D + E_m) = m - s,$
then

$$\prod_{k=s+1}^{\infty} \frac{\mu_k^0}{\mu_{k-s}} < +\infty.$$

• In critical case there is an extra assumption $\psi \in \operatorname{Im}(\mathbb{G}_0)$

ntroduction	Spectral method	About my results	Metric entropy	Summary
000000	000000	000000000	000000000	000000

Finite-dimensional perturbations (Yu. Petrova'2018)

Теорема (Yu. P. Petrova '2018)

1. (Non-critical case) If $(Q^T D + E_m) > 0$, then $\varepsilon \to 0$

$$\mathbb{P}\left(\|X\|_2 < \varepsilon\right) \sim \frac{\mathbb{P}\left(\|X_0\|_2 < \varepsilon\right)}{\det(Q^T D + E_m)}.$$

2. (Critical case) If
$$(Q^T D + E_m) \equiv 0$$
, $\psi_j \in \text{Im}(\mathbb{G}_0)$,
then as $r \to 0$

$$\mathbb{P}\left(\|X\|_{2} < \sqrt{r}\right) \sim \sqrt{\frac{\det\left(Q\right)}{\det\left(\int_{0}^{1} \vec{\varphi}(t) \ \vec{\varphi}^{T}(t) \ dt\right)}} \cdot \left(\sqrt{\frac{2}{\pi}}\right)^{m} \cdot \int_{0}^{r} \int_{0}^{r_{1}} \dots \int_{0}^{r_{m-1}} \frac{d^{m}}{dr_{m}^{m}} \mathbb{P}(\|X_{0}\|_{2} < r_{m}) \frac{dr_{m} \dots dr_{1}}{\sqrt{(r-r_{1}) \cdot \dots \cdot (r_{m-1}-r_{m})}}.$$

• There exist also partially critical perturbations.