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Metastable states

Characteristics of metastable states:

– different from the equilibrium state corresponding to the parameters of
the system (temperature, pressure, volume, ... );

– the life–time of the state is large (infinite): the system exits the
metastable state only in presence of external perturbations;

– once the system exits the metastable state and reaches the stable state
it will never return back to the metastable state.
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The van der Waals theory [1910]

Isotherm of one mole of real gas: (P + a/V 2)(V − b) = RT

Oxygen: a = 1.36 `2 atm mol−2 and b = 0.0319 ` mol−1 at T = 140oK
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Red: super–heated liquid. Blue: super–saturated vapor.

Rigorous mathematical description? The pathwise approach proposed in
[Cassandro, Galves, Olivieri, Vares JSP 1984].
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Nearest Neighbor Probabilistic Cellular Automata

q qqq 0

I

• Λ = finite square with periodic boundary conditions

• σ(i) ∈ {−1,+1} state variable associated with site i

• Ω = {−1,+1}Λ state space, σ ∈ Ω state

• I the set of the nearest neighbors of the origin

• Θi : Ω→ Ω shifts a configuration so that the site i is mapped to the
origin 0

• Markov chain σ0, σ1, . . . , σt , . . . on Ω with transition matrix

p(σ, η) =
∏
i∈Λ

fΘiσ(η(i)) ∀σ, η ∈ Ω

where

fσ(s) =
1

2

{
1 + s tanh

[ 1

T

(∑
j∈I

σ(j) + h
)]}

for all s ∈ {−1,+1}

where T > 0 and h ∈ R are called temperature and magnetic field.
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Main features

• Parallel and local character of the evolution: all sites updated at
time t looking at the state at time t − 1;

• reversibility:
p(σ, η)e−G(σ)/T = e−G(η)/Tp(η, σ)

where

G (σ) = −h
∑
i∈Λ

σ(i)− T
∑
i∈Λ

log cosh
[ 1

T

( ∑
j∈i+I

σ(j) + h
)]

• define the energy cost

∆(σ, η) = − lim
T→0

T log p(σ, η)

then the Wentzel–Friedlin condition is satisfied

e−[∆(σ,η)−γ(T )]/T ≤ p(σ, η) ≤ e−[∆(σ,η)+γ(T )]/T

with γ(T )→ 0 as T → 0.
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Main features

• Define the energy
H(σ) = lim

T→0
G (σ)

and from the detailed balance condition get

H(σ) + ∆(σ, η) = H(η) + ∆(η, σ)

• some possible situations:

6
?

∆(σ,η)

σ

η

6

?

∆(η,σ)

σ

η

∆(σ,η)=0

∆(η,σ)=H(σ)−H(η)

• the following notation is compatible with the Metropolis case with:

∆(σ, η) =

{
H(η)− H(σ) if H(η) > H(σ)
0 if H(η) < H(σ)
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Metastable state definition
[Manzo, Nardi, Olivieri, Scoppola JSP 2004, C., Nardi JSP 2003]

Height of a path ω = ω1, . . . , ωn

Φω= max
i=1,...,n−1

[H(ωi ) + ∆(ωi , ωi+1)]

q
ω1

q
ω2

q
ω3 q

ω4 q
ω5

6

Φω − H(ω1)

?

Communication height Φ(A,A′) between A,A′ ⊂ Ω

Φ(A,A′) = min
ω:A→A′

Φω

Stability level of σ ∈ Ω

Vσ = Φ(σ, {states at energy smaller than σ})− H(σ)
6
?
Vσ

σ

Part 2 Nearest neighbor Probabilistic Cellular Automata Definition of metastable states page 9/34



Metastable state definition

Let Ωs be the set of the absolute minima of the Hamiltonian.

Define the maximal stability level Γm = max
σ∈Ω\Ωs

Vσ > 0

The set of metastable states is Ωm = {η ∈ Ω \ Ωs : Vη = Γm}.

The set of critical droplets Pc is the set of configurations necessarily
visited by the optimal paths and where the optimal paths from Ωm to Ωs

attain the maximal height.

6

?

Γm

Pc

Ωm

Ωs
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Some properties of the metastable states
[Cassandro, Galves, Olivieri, Vares JSP 1984, Olivieri, Scoppola JSP 1995,

Olivieri, Vares Cambridge University Press 2005, Bovier, den Hollander Springer 2016, ?]

Let σ ∈ Ωm

• for any ε > 0 we have lim
T→0

Pσ(e(Γm−ε)/T < τΩs < e(Γm+ε)/T ) = 1

• lim
T→0

T log Eσ(τΩs) = Γm

• lim
T→0

Pσ(τPc < τΩs) = 1

Under suitable hypothesis on the structure of the set Ωm ∪ Ωs you can
compute the constant k > 0 such that

Eσ(τΩs) =
1

k
eΓm/T [1 + o(1)]

Note that k is somehow related to the cardinality of the set of critical
droplets (entropy effect).
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Comments

• Not sharp estimates on exit time have been proven first in the case
of Metropolis dynamics and more recently generalized also to not
reversible dynamics [C., Nardi, Sohier JSP 2015].

• General results on sharp estimates on exit time are valid under
hypotheses that exclude cases when multiple metastable states are
present. But the case we were interested to was

Ωm

Ωm

Ωs

[C., Nardi, Spitoni EPJST 2017, Bet, Jacquier, Nardi JSP 2021].
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The nearest neighbor PCA [C., Nardi JSP 2003]

q qqq 0

I

Consider the nearest neighbor PCA model with a positive and
small magnetic field h > 0.

Result: flip–flopping metastable state
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`c=b 2

h c+1

and

Γ = H(q) + ∆(q,p)− H(d)
h→0∼ 8

h
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Monte Carlo simulation [?]

Picture: 2× 2 tile, white = d, gray = c, black = u, Λ = 512× 512,
h = 0.3, 1/T = 0.9, t = 3.0, 3.6, 6.0, 7.6, 9.6× 103 MCS

Picture: Λ = 512× 512, h = 0.3, 1/T = 0.85, 0.90, 0.95, 1.00
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Cross PCA [?, C., Nardi, Spitoni JSP 2008]

qq qqq 0

I

Consider the cross PCA model with positive and small mag-
netic field h > 0.

Result:

+ + + + +
+ + + + +
+ + + + +
+ + + + +
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and

Γ = H(q) + ∆(q,p)− H(d)
h→0∼ 16

h
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Tuning the self–interaction [C., Nardi, Spitoni PRE 2008]

PCA nearest neighbor model

q qqq 0

I κ = 0

PCA with tuned interaction

q qqq q0
κ ∈ (0, 1)

Let I be the set of the four nearest neighbors of the origin. Let

fσ(s) =
1

2

{
1 + s tanh

[ 1

T

(
κσ(0) +

∑
j∈I

σ(j) + h
)]}

for σ ∈ Ω, s ∈ {−1,+1} e κ ∈ (0, 1).

The parameter κ tunes the self–interaction: for κ = 0, 1 we get the
nearest neighbor and the cross PCA models.

Heuristics: reach metastable behavior analogous to that of the
Blume–Capel model.
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Blume–Capel model

Λ q r rσ(i)

• Λ = finite square with periodic boundary conditions

• σ(i)∈{−1, 0,+1} spin variable associated with site i

• h ∈ R magnetic field and λ ∈ R chemical potential

• H(σ) =
∑
〈i j〉

[σ(i)− σ(j)]2 − λ
∑
i

[σ(i)]2 − h
∑
i

σ(i)

Cost of interfaces: 0 〈00〉,〈+1+1〉,〈−1−1〉; 1 〈+10〉,〈−10〉; 4 〈+1−1〉

Ground states: H(u) = −(h + λ)|Λ|, H(0) = 0, and H(d) = (h − λ)|Λ|

-
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λ>h>0

not interesting

d

0

u

h>|λ|
interesting

• the candidates d and 0 are metastable states? Can they coexist?

• suppose d is metastable, does 0 have a role in the path from d to u?
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Metropolis dynamics

Let σt the configuration at time t:

• chose at random with uniform probability 1/|Λ| a lattice site and call
it i ;

• chose with probability 1/2 one of the two values in

{−1, 0,+1} \ {σt(i)}

and call it s;

• flip the spin σt(i) to s with probability 1 if the energy decreases and
with probability

exp{−∆H/T}

if the energy increases (∆H > 0).
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Monte Carlo sequences: • = −1 • = 0 • = +1

Parameters: Λ = 100× 100, h = 0.1, λ = 0.2, T = 1.25

Parameters: Λ = 100× 100, h = 0.1, λ = 0.02, T = 0.909

In both cases d is the unique metastable state: the transition 0→ u is
much faster than the transition d→ 0.
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Rigorous results [C., Olivieri JSP 1996]

-

6
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h h=λ

h=2λ

•

• Simulations done for h < λ, but similar behavior

• Ωm = {d}

• Pc = u
0 d

with `c = 2−h+λ
h

• Γm = H(Pc)− H(d) ∼ 8
h (does not depend on λ)

• Energy landscape: d
0

u
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Rigorous results [C., Olivieri JSP 1996]
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h h=λ

h=2λ

•

• Simulations done for h > λ

• Ωm = {d}

• Pc = 0
d

with `c = 2
h−λ

• Γm = H(Pc)− H(d) ∼ 4
h−λ

• Energy landscape: d
0

u
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Zero chemical potential Blume–Capel model

Hamiltonian H(σ) =
∑
〈ij〉[σ(i)− σ(j)]2 − h

∑
i σ(i)

Ground states:

-

6

λ

h
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u

d

0
H(u) = −h|Λ|, H(0) = 0, H(d) = h|Λ|

Guess:
d

0

u

2λ>h>λ>0

d
0

u

h>2λ>0

d

0

u

h>λ=0

Critical droplet: `c = b2/hc+ 1

Γm = H( 0d d

d

d

)− H(d) = H( u0 0

0

0

)− H(0) ∼ 4
h
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Monte Carlo sequences • = −1 • = 0 • = +1

Parameters: Λ = 100× 100, h = 0.1, λ = 0.02, T = 0.909

Parameters: Λ = 100× 100, h = 0.1, λ = 0, T = 0.909

Result to be proven: d and 0 are both metastable: the transitions 0→ u
and d→ 0 take approximatively the same time.
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Rigorous results [C., Nardi JSP 2013]

We prove the model dependent results:

1. Ωs = {u}

2. Γm = maxσ∈Ω\Ωs Vσ = H( 0d d

d

d

)− H(d) ≡ Γ

3. Ωm = {η ∈ Ω \ Ωs : Vη = Γm} = {d, 0}
4. Pc = 0 d (critical droplet between d and 0)

5. Qc = u 0 (critical droplet between 0 and u)

Then we get that for any σ ∈ Ωm

• for any ε > 0 we have lim
T→0

Pσ(e(Γ−ε)/T < τu < e(Γ+ε)/T ) = 1

• lim
T→0

T log Eσ(τu) = Γ

• lim
T→0

Pd(τPc
< τu) = 1 and lim

T→0
P0(τQc

< τu) = 1
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Proof of some of the model dependent ingredients

To prove the model dependent inputs

Γm = maxσ∈Ω\Ωs Vσ = H( 0d d

d

d

)− H(d) ≡ Γ

and

Ωm = {η ∈ Ω \ Ωs : Vη = Γm} = {d, 0}

we have to prove the following:

• Φ(d,u)− H(d) = Γ

• Φ(0,u)− H(0) = Γ

• Φ(σ,u)− H(σ) < Γ for all σ ∈ Ω \ {d, 0,u} (recurrence)

Recurrence is not very difficult but terribly boring. In the sequel I sketch
the proof of the first of the three conditions listed above. The second one
is similar.
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Minmax: upper bound

Find a path connecting d to u attaining
its highest energy level at Pc

}
⇒ Φ(d,u) ≤ H(Pc)

d q���
�
q0
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�
�
q00
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�
q00

0 q
0 0
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�
�
q00
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�

−h

q
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�
q q q q
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�
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q Pc

q q q
`c
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�
�
�
�
q

2−h
−h

Then the path goes down to 0 and the from 0 to u in a similar fashion a
plus droplet is nucleated inside the sea of zeros.
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Minmax: lower bound

Prove that all the paths connecting d to u
attain an energy level greater than
or equal to H(Pc)

}
⇒ Φ(d,u) ≥ H(Pc)

Strategy (serial dynamics): if there exists Ω̄ ⊂ Ω
such that

• Pc ∈ Ω̄

• all the paths connecting d to u necessarily
pass through Ω̄

• min
σ∈Ω̄

H(σ) = H(Pc)

Ω

us
dsΩ̄

s
Pc

It than follows that all the paths connecting d to u attain an energy level
greater than or equal to H(Pc).

Remark: with this strategy you do not get the model dependent input 4,
namely, you do not prove that the maximum along the path is necessarily
attained at Pc. To prove that a deeper investigation is needed.
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Sharp estimate

Consider the Ising model with h > 0 small [?]:

d

u

Pc = u
d

lim
T→0

Ed(τu)

eΓm/T
=

3

4(2`c − 1)|Λ|

For the Blume–Capel model with λ = 0 we expect (same critical
droplets):

d

0

u

lim
T→0

Ed(τ{u,0})

eΓm/T
= lim

T→0

E0(τu)

eΓm/T
=

3

4(2`c − 1)|Λ|

What can be said about Ed(τu)?
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Sharp estimate [?, C., Nardi, Spitoni EPJST 2017,

C., Nardi, Spitoni Lect. Notes Comp. Sc. 2016, Bet, Jacquier, Nardi JSP 2021]

Since it can be proven that

lim
T→0

Pd[τu < τ0] = 0

We expect that the time for the transition d→ u is the sum of the time
for the transitions d→ 0 and 0→ u.

Indeed,

lim
T→0

E0(τu)

eΓm/T
=

3

4(2`c − 1)|Λ|
and lim

T→0

Ed(τu)

eΓm/T
= 2× 3

4(2`c − 1)|Λ|
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Sharp estimate: numerical check

Prefactor = (averaged exit time from d to u)/ exp{Γm/T}

Parameters: Λ = 60× 60, h = 0.8, T = 0.4

Colors for λ: • 0, • 0.001, • 0.01, • 0.02, • 0.04, • 0.06,

Part 3 Metastable states in the Blume–Capel model Sharp estimates on the exit time page 31/34



Sharp estimate: numerical check

Prefactor = (averaged exit time from d to u)/ exp{Γm/T}

Parameters: Λ = 60× 60, h = 0.8, T = 0.27027

Colors for λ: • 0, • 0.01, • 0.02
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Conclusions and next steps

Description of the pathwise approach to metastability valid for
Probabilistic Cellular Automata and Statistical Mechanics spin systems.

Results for particular models: nearest neighbors PCA and cross PCA.
Effect of the self–interaction.

Metastable behavior of the Blume–Capel model: connection with PCA.

Future steps:

– studying the effect of different (not periodic) boundary conditions;

– Blume–Capel model with conserved (Kawasaki) dynamics.

Part 4 Conclusions and next steps page 33/34



Bibliography

[Cassandro, Galves, Olivieri, Vares JSP 1984] Metastable behavior of stochastic dynamics: A
pathwise approach

[Olivieri, Scoppola JSP 1995] Markov chains with exponentially small transition probabilities ...

[C., Olivieri JSP 1996] Metastability and nucleation for the Blume-Capel model. ...

[C., Nardi JSP 2003] Metastability for the Ising model with a parallel dynamics

[Manzo, Nardi, Olivieri, Scoppola JSP 2004] On the essential features of metastability: ...

[C., Nardi, Spitoni PRE 2008] Competitive nucleation in reversible PCA

[C., Nardi, Spitoni JSP 2008] Metastability for reversible PCA with self–interaction

[C., Nardi JSP 2013] Relaxation height in energy landscapes: ...

[C., Nardi, Sohier JSP 2015] Metastability for general dynamics with rare transitions: ....

[C., Nardi, Spitoni Lect. Notes Comp. Sc. 2016] Sum of exit times in a series of two metastable
states in Probabilistic Cellular Automata

[C., Nardi, Spitoni EPJST 2017] Sum of exit times in a series of two metastable states

[Bet, Jacquier, Nardi JSP 2021] Effect of Energy Degeneracy on the Transition Time ...

[Olivieri, Vares Cambridge University Press 2005] Large Deviations and Metastability

[Bovier, den Hollander Springer 2016] Metastability: A Potential-Theoretic Approach


	Introduction
	Nearest neighbor Probabilistic Cellular Automata
	Definition of the model
	Definition of metastable states
	Some properties of the metastable states
	Results

	Metastable states in the Blume–Capel model
	The Blume–Capel model
	Metastability in presence of a single metastable state
	Metastability in presence of multiple metastable states
	Sharp estimates on the exit time 

	Conclusions and next steps

