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Intro Setup Fundamental Quantum Gas Convergence

Basic definition

Canonical form

I Power expansion of the logarithm of the (grand-canonical)
partition function.

I Expansion variables = “fugacities” (effective parameters)

I Interaction: gas of objects subject to pure hard-core
exclusions.

Cluster-expansion technology: Rewrite your expansion so it
takes the above form:

I High-temperature expansion

I Low-temperature (contour) expansion

I General perturbative methods (right choice of variables)
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iIsues and consequences

Main issues

I Determine small-fugacity (poly)disk of convergence, hence
analyticity.

I Through differentiation, full control of (reduced)
correlation functions

I Through linear combinations, full control of expectations of
more general observables.

Consequences:

I Lack of phase transition in the strongest sense.

I Full control of
I Expectations
I Finite volume corrections
I Sensitivity to boundary conditions
I etc.
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iIsues and consequences

Mathematical aspects

The focus is on partition functions ΞΛ. Two steps:

(A1) Gas expansion = ΞΛ written as hard-core gas
I “Molecules” can be very general (e.g. subsets of lattice)
I Hard-core = incompatibility relation, also very general

(A2) Cluster expansion = formal series of log ΞΛ =
I Well known combinatoric expression
I Several approaches available to determine convergence
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Alternative techniques

Competing methods

Methods that avoid explicit consideration of the expansion:

Inductive (Dobrushin): No-cluster expansion approach.

I Easy to apply, hard to improve.

I A posteriori, convergence of the cluster expansion.

I Weaker than detailed cluster expansion analysis

Kirkwood-Salzburg: Coupled equations for the correlations.

I Correlation analyticity: Banach plus fix-point argument.

I A posteriori, convergence of the cluster expansion.

I Proven equivalent to inductive approach.
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State of the art: High-temperature expansions

Current situation

Classical stat mech

I Most only two-body interactions.

I Exceptions rely on a dominant two-body component.

I KS techniques OK for multi-body, but less precise.

I Needed: Multi-body HTE cluster expansion.

Quantum stat mech (lattice systems)

I Almost all resort to KS equations.

I Exceptions only for low-temperature expansions.

I Needed: Multi-body HTE quantum cluster expansion.
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Summary of results

Our results

Multi-body cluster expansions for both classical and quantum
lattice spin systems.

I Interactions must be exponentially summable in the
number of bodies.

I For quantum spin systems, this is needed for the dynamics
to exist and for Gibbs = KMS.

I Our expansion is inspired in, and uses ideas of Park (1982)

Mathematical novelties:

I Gas expansion better done at the level of operators

I Canonical way to expand with or without commutativity
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Polymers

The general setup

Countable family P of objects: polymers, animals, . . . ,
characterized by

I An incompatibility constraint:

γ � γ′

γ ∼ γ′ if γ, γ′ ∈ P incompatible
compatible

For simplicity: each polymer incompatible with itself

I A family of activities ρ = {ργ}γ∈P ∈ CP .



Intro Setup Fundamental Quantum Gas Convergence

Polymers

The general setup

Countable family P of objects: polymers, animals, . . . ,
characterized by

I An incompatibility constraint:

γ � γ′

γ ∼ γ′ if γ, γ′ ∈ P incompatible
compatible

For simplicity: each polymer incompatible with itself

I A family of activities ρ = {ργ}γ∈P ∈ CP .



Intro Setup Fundamental Quantum Gas Convergence

Main mathematical objects

Gas of polymers

For each finite family PΛ ⊂ P,

Partition function

ΞΛ(z) = 1 +
∑
n≥1

1

n!

∑
(γ1,...,γn)∈Pn

Λ

zγ1zγ2 . . . zγn
∏
j<k

11{γj∼γk} (1)

and the free energy (modulo sign)

FΛ(z) = log ΞΛ(z)

Probability weights

WΛ

(
{γ1, γ2, . . . , γn}

)
=

1

ΞΛ(z)
zγ1zγ2 · · · zγn

∏
j<k

11{γj∼γk}
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Issues

The questions:

In the limit PΛ → P (“thermodynamic limit”)

I Existence and analyticity of the free-energy density FΛ/ |Λ|
I Existence and properties of the measure defined by WΛ.

I Asymptotic behavior of ΞΛ
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The expansion

The cluster expansion
Theorem [Canonical cluster expansion]

log ΞΛ =

∞∑
n=1

1

n!

∑
(γ1,...,γn)⊂Λn

ωTn (γ1, . . . , γn) zγ1 . . . zγn (2)

(In the sense of formal power series) with

ωTn (γ1, . . . , γn) =



1 n = 1∑
G⊂G(γ1,...,γn)
G conn.spann.

(−1)|E(G)| n > 1 and
G(γ1, . . . , γn) conn.

0
n > 1 and
G(γ1, . . . , γn) not conn.

.

G(γ1, . . . , γn) = graph of vertex set {1, . . . , n} and edge set

{{i, j} : γi � γj , 0 ≤ i < j ≤ n} ,
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Summability result

The fundamental result

Theorem [Fundamental] Let ϕ : [0,+∞)P −→ [0,+∞]P

ϕY0(µ) = 1+
∑
n≥1

∑
{Y1,...,Yn}⊂P

n∏
i=1

1{Y0�Yi}
∏

1≤k<`≤n
1{Yk∼Y`}

n∏
j=1

µYj

(3)
If λ ∈ [0,+∞)P satisfies

λY ≤
µY

ϕY (µ)
(4)

for each Y ∈ P, for some µ ∈ [0,+∞)P , then the following
holds uniformly in Λ for ρ ∈ D(λ).
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Summability result

(a) The cluster expansions (2) converge absolutely.

(b) The following bounds hold for each Y ∈ P(Λ):∣∣∣∣ΞΛ\Y

ΞΛ

∣∣∣∣ ≤ µY
λY

(5)

∣∣∣∣log
ΞΛ

ΞΛ\Y

∣∣∣∣ ≤ −ϕY (µ) log(1− λY ) (6)

Rules of the game:

I Write your partition function in the gas form (1)

I Use the fundamenta theorem to conclude
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Quantum setup

Quantum lattice systems: Ingredients

Lattice: L = set of sites. E.g. L = Zd

Spin spaces:

I Hx space at site x (often copies of a fixed space H)

I Structure depends on whether classcal or quantum

I For each Λ ⊂⊂ L, HΛ = ⊗x∈ΛHx

Algebras of observables:

I Sequence of complex unital Banach algebras {AΛ : Λ ⊂⊂ L}
I Increasing: Λ1 ⊂ Λ2 =⇒ AΛ1 ⊂ AΛ2 , with
AΛ1 3 A1 7−→ A1 ⊗ 1Λ2\Λ1

∈ AΛ2
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Quantum setup

Traces: Maps trΛ : AΛ −→ C satisfying

(T0) Lnearity and invariance under cyclic permutations of
products

(T1) Normalization: trΛ(1Λ) = 1

(T2) Continuity: If A ∈ AΛ, |trΛ(A)| ≤ ‖A‖
(T3) Factorization:

trΛ =
⊗
x∈Λ

tr{x} . (7)
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Cases

Main applications

Classical spin systems

I Hx = measure space with probability measure dµx

I AΛ = bounded measurable complex-valued functions on HΛ

I trΛ = ⊗x∈Λdµx

Quantum spin systems:

I H = finite-dimensional Hilbert space

I AΛ = bounded operators on HΛ.

I Trace = normalization of the canonical trace TrHΛ
of HΛ:

trΛ =
1

dimHΛ
TrHΛ

(8)
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Finite-volume objects

Finite-volume quantities

Interaction: Family Φ = {Φ(X) : X ⊂⊂ L} with Φ(X) ∈ AX
Bonds: BΛ =

{
X ⊂⊂ Λ : Φ(X) 6= 0

}
Hamiltonian: HΛ =

∑
X⊂Λ

Φ(X) =: HBΛ

Finite-volume state: Defined by the expectations

πβΛ(A) =
trΛ

(
A e−βHΛ

)
ZβΛ

A ∈ AΛ, β = inverse temperature

Partition function: ZβΛ = trΛ

(
e−βHΛ

)
Free energy: −βFΛ = logZβΛ
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General gas expansions

Classical gas expansion

Usual “±1 trick”: e−βΦ(X) = 1 +
(
eΦ(X) − 1

)
:

e−βHΛ =
∏
X∈BΛ

[
1 +

(
eΦ(X) − 1

)]
=

∑
B⊂BΛ

ξB (9)

with
ξB =

∑
B̃⊂B

(−1)|B\B̃| e−βHB̃ = ξB1 · · · ξBn (10)

{B1 . . . ,Bn} = maximally connected families of B

Quantum: left identity in (9) is false, but last one is true
(Möbius transform)
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General gas expansions

Möbius transform

I S finite set,

I V vector space (product irrelevant, can be
non-commutative),

I F,G : {subsets of S} −→ V
Then,

F (C) =
∑
B⊂C

G(B) ∀C ⇐⇒ G(B) =
∑
A⊂B

(−1)|B\A|F (A) ∀B
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General gas expansions

Möbius transform plus compatibility

In addition we assume a compatibility relation “∼” such that

C1 ∼ C2 =⇒
{
C1 ∩ C2 = ∅
F (C1 ∪ C2) = F (C1)F (C2)

}
(11)

Then
C1 ∼ C2 =⇒ G(C1 ∪ C2) = G(C1)G(C2)

Say C is connected if

I C can not decomposed into two compatible subsets;

I ≡ C is connected wrt the incompatibility relation

Then each G(B) can be factored into contributions due to
maximally connected components
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General gas expansions

General gas expansion

Bottom line:

Theorem (General gas expansion)

Let F : {subsets of S} −→ V satisfying (11). Then,

F (C) = F (∅) +

∞∑
n=1

∑
{B1,...,Bn}
conn. Bi⊂C

n∏
i=1

G(Bi)
∏

1≤i<j≤n
1{Bi∼Bj} (12)

with
G(B) =

∑
A⊂B

(−1)|B\A|F (A)
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Quantum gas expansions

Quantum gas expansion

For our basic application,

I S = BΛ

I B1 ∼ B2 if X1 ∩X2 = ∅ for all X1 ∈ B1 and X2 ∈ B2

I F (β) = e−βHB (HB= partially turned-on Hamiltonian)

Then,

e−βHΛ = 1 +

∞∑
n=1

∑
{B1,...,Bn}

conn.Bi⊂BΛ

n∏
i=1

ξBi

∏
1≤i<j≤n

1{Bi∼Bj} (13)

with
ξB =

∑
B̃⊂B

(−1)|B\B̃| e−βHB̃
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Quantum gas expansions

Quantum partition functions as gas expansions

If we take the trΛ of the previous expansion
(recall that the trace factorizes)

Theorem
The quantum partition function takes the form

ZΛ = 1 +

∞∑
n=1

∑
{B1,...,Bn}

conn.Bi⊂BΛ

n∏
i=1

ρBi
∏

1≤i<j≤n
1{Bi∼Bj} , (14)

with

ρB :=
∑
B̃⊂B

(−1)|B\B̃| ZB̃ , ZB := trΛ

(
e−β

∑
X∈B Φ(X)

)
(15)

(Partially-turned-on partition functions)
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Quantum gas expansions

Comments

I The form (15) of the fugacities is inspired in work by Park
(1982), itself related to Greenberg (1969)

I These authors, however, mannouvered towards KS
equations, and never wrote a full-fledged cluster expansion

I The expansion (13) can be subjected to other linear
factorizable forms:
I Can consider quantum boundary conditions
I Can prove uniqueness of KMS=Gibbs state
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General criterion

Convergence in terms of interactions

The cluster expansion takes of logZΛ the form (2)

We apply the fundamental convergence criterion (26) bounding
ρB in terms of the interaction.

For the classical case,

ξB =
∑
B̃⊂B

(−1)|B\B̃| e−βHB̃ =
∏
X∈B

(
e−β‖Φ(X)‖ − 1

)

For the quantum case this becomes an upper bound (Park)

‖ρB‖ ≤
∏
X∈B

∣∣∣e−β‖Φ(X)‖ − 1
∣∣∣
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General criterion

Convergence criterion

This leads to convergence conditions∑
B∈P

B connected
B=Y

∏
X∈B

∣∣∣eβ‖Φ(X)‖ − 1
∣∣∣ ≤ λY

with

λY ≤ argmaxµ

{
µY

ϕY (µ)

}
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Tractable approximations

Weaker explicit bounds

Change variables to µY = λY ea(Y )

The condition over λ becomes

sup
x∈X0

∑
X∈P
x∈X

λX ea(X) ≤ ea(X0)/|X0| − 1 ,

for each X0 ∈ P, for some a ∈ [0,+∞)P

[Improved Gruber-Kunz bound]

Traditional choice: a(X) = a |X|.
I This dependence is usually not much off the mark.

I Optimization involves the single parameter a.
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Tractable approximations

Simplest bound

With this choice, the convergence condition is

T (a) ≤ ea − 1 (16)

with

T (a) := sup
x

∑
n≥1

∑
{X1,...,Xn}

x∈X1, Gn connected

n∏
i=1

∣∣∣eβ‖Φ(Xi)‖ − 1
∣∣∣ ea|Xi|. (17)

Notice that, for our criterion to apply,

∃α > 0 : sup
x∈Zd

∑
x∈X⊂Zd

X finite

∣∣∣e‖Φ(X)‖ − 1
∣∣∣ eα|X| <∞ .
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Tractable approximations

Sufficient condition for applicability

The above condition is equivalent to

∃α > 0 : sup
x∈Zd

∑
x∈X⊂Zd

X finite

‖Φ(X)‖ eα|X| <∞ .

I Classical: Also necessary (Dobrushin-Martirosyan, 1988).

I Quantum: required for the existence of the dynamics.

I A posteriori, the above approximations are not that bad.



Intro Setup Fundamental Quantum Gas Convergence

High-temperature radius

β-radius of analyticity

To disentangle the β-dependence: |ez − 1| ≤ z ez, (z > 0)
We obtain as sufficient condition

|β| ‖Φ‖∞ ≤ max
a>0

W
[
ΓΦ(a)

]
I W = Lambert function.

I ΓΦ(a) includes a fixed-point condition.
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Nearest-neighbor case

Bounds for nearest-neighbor interactions

Our bound:

|β| e|β| ≤ 0.097619

2d
.

Park (1982):

|β| e|β| ≤ 0.06

2d

(
1 +

0.06

2d

)
[Ours = 62% improvement]

Simon (1993) (Example 2, page 462):

|β| e|β| ≤ 1

48 d2

[worse than Park’s.]
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