Intro Setup 000000 000 Fundamental

Quantum 0000 Gas 0000000 Convergence

High-temperature cluster expansion for classical and quantum spin lattice systems with multi-body interactions

Tong Xuan Nguyen New York University Shanghai Roberto Fernández New York University Shanghai Utrecht University (Emer.)

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくぐ

Seminário de probabilidade do IM-UFRJ September 2022

Intro	Setup	Fundamental	Quantum	Gas	Convergence
00000	000	000	0000	0000000	0000000
Basic defin	ition				

Canonical form

- Power expansion of the logarithm of the (grand-canonical) partition function.
- ▶ Expansion variables = "fugacities" (effective parameters)
- Interaction: gas of objects subject to pure hard-core exclusions.

Cluster-expansion technology: Rewrite your expansion so it takes the above form:

- ► High-temperature expansion
- ► Low-temperature (contour) expansion
- General perturbative methods (right choice of variables)

うして ふゆ く は く は く む く し く

Intro	Setup	Fundamental	Quantum	Gas	Convergence
00000	000	000	0000	0000000	0000000
Basic defin	ition				

Canonical form

- Power expansion of the logarithm of the (grand-canonical) partition function.
- ▶ Expansion variables = "fugacities" (effective parameters)
- Interaction: gas of objects subject to pure hard-core exclusions.

Cluster-expansion technology: Rewrite your expansion so it takes the above form:

- ► High-temperature expansion
- ► Low-temperature (contour) expansion
- General perturbative methods (right choice of variables)

Intro	Setup	Fundamental	Quantum	Gas	Convergence
00000	000	000	0000	0000000	0000000
iIsues and co	onsequences				

Main issues

- Determine small-fugacity (poly)disk of convergence, hence analyticity.
- Through differentiation, full control of (reduced) correlation functions
- Through linear combinations, full control of expectations of more general observables.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Consequences:

- Lack of phase transition in the strongest sense.
- ► Full control of
 - ► Expectations
 - ► Finite volume corrections
 - Sensitivity to boundary conditions
 - ► etc.

Intro	Setup	Fundamental	Quantum	Gas	Convergence
00000	000	000	0000	0000000	0000000
iIsues and co	onsequences				

Main issues

- Determine small-fugacity (poly)disk of convergence, hence analyticity.
- Through differentiation, full control of (reduced) correlation functions
- Through linear combinations, full control of expectations of more general observables.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Consequences:

- ▶ Lack of phase transition in the strongest sense.
- ► Full control of
 - Expectations
 - ► Finite volume corrections
 - Sensitivity to boundary conditions
 - ▶ etc.

Intro	Setup	Fundamental	Quantum	Gas	Convergence			
00€000 iJsuos and	000	000	0000	0000000	0000000			
iIsues and consequences								

Mathematical aspects

The focus is on partition functions Ξ_{Λ} . Two steps:

(A1) Gas expansion = Ξ_Λ written as hard-core gas
"Molecules" can be very general (e.g. subsets of lattice)
Hard-core = incompatibility relation, also very general

(A2) *Cluster expansion* = formal series of $\log \Xi_{\Lambda} =$

- Well known combinatoric expression
- Several approaches available to determine convergence

うして ふゆ く は く は く む く し く

Intro	Setup	Fundamental	Quantum	Gas	Convergence				
000000	000	000	0000	0000000	0000000				
iIsues and	iIsues and consequences								

Mathematical aspects

The focus is on partition functions Ξ_{Λ} . Two steps:

- (A1) Gas expansion = Ξ_{Λ} written as hard-core gas
 - "Molecules" can be very general (e.g. subsets of lattice)
 - ► Hard-core = incompatibility relation, also very general

(A2) Cluster expansion = formal series of $\log \Xi_{\Lambda} =$

- ▶ Well known combinatoric expression
- Several approaches available to determine convergence

Intro	Setup	Fundamental	Quantum	Gas	Convergence
000000	000	000	0000	0000000	0000000
Alternative	techniques				

Competing methods

Methods that avoid explicit consideration of the expansion:

Inductive (Dobrushin): No-cluster expansion approach.

- Easy to apply, hard to improve.
- ▶ A posteriori, convergence of the cluster expansion.
- ▶ Weaker than detailed cluster expansion analysis

Kirkwood-Salzburg: Coupled equations for the correlations.

Correlation analyticity: Banach plus fix-point argument.

- ▶ A posteriori, convergence of the cluster expansion.
- ▶ Proven equivalent to inductive approach.

Intro	Setup	Fundamental	Quantum	Gas	Convergence
000000	000	000	0000	0000000	0000000
Alternative	techniques				

Competing methods

Methods that avoid explicit consideration of the expansion:

Inductive (Dobrushin): No-cluster expansion approach.

- Easy to apply, hard to improve.
- ▶ A posteriori, convergence of the cluster expansion.
- ▶ Weaker than detailed cluster expansion analysis

Kirkwood-Salzburg: Coupled equations for the correlations.

- ▶ Correlation analyticity: Banach plus fix-point argument.
- ▶ A posteriori, convergence of the cluster expansion.
- ▶ Proven equivalent to inductive approach.

Intro	Setup	Fundamental	Quantum	Gas	Convergence
000000	000	000	0000	0000000	0000000
State of the	e art: High-te	emperature expansion	ıs		

Current situation

Classical stat mech

- ▶ Most only two-body interactions.
- Exceptions rely on a dominant two-body component.
- ▶ KS techniques OK for multi-body, but less precise.
- ▶ *Needed:* Multi-body HTE cluster expansion.

Quantum stat mech (lattice systems)

- Almost all resort to KS equations.
- Exceptions only for low-temperature expansions.
- ▶ *Needed:* Multi-body HTE quantum cluster expansion.

Intro	Setup	Fundamental	Quantum	Gas	Convergence
000000	000	000	0000	0000000	0000000
State of the	e art: High-te	emperature expansion	ıs		

Current situation

Classical stat mech

- ▶ Most only two-body interactions.
- Exceptions rely on a dominant two-body component.
- ▶ KS techniques OK for multi-body, but less precise.
- ▶ *Needed:* Multi-body HTE cluster expansion.

Quantum stat mech (lattice systems)

- ▶ Almost all resort to KS equations.
- Exceptions only for low-temperature expansions.
- ▶ *Needed:* Multi-body HTE quantum cluster expansion.

うして ふゆ く は く は く む く し く

Intro 00000●	Setup 000	Fundamental 000	Quantum 0000	Gas 0000000	Convergence
Summary	of results				
		Our	results		

Multi-body cluster expansions for both classical and quantum lattice spin systems.

- Interactions must be exponentially summable in the number of bodies.
- ▶ For quantum spin systems, this is needed for the dynamics to exist and for Gibbs = KMS.
- Our expansion is inspired in, and uses ideas of Park (1982)

Mathematical novelties:

- Gas expansion better done at the level of operators
- Canonical way to expand with or without commutativity

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Intro ○○○○○●	Setup 000	Fundamental 000	Quantum 0000	Gas 0000000	Convergence
Summary	of results				
		Our	results		

Multi-body cluster expansions for both classical and quantum lattice spin systems.

- Interactions must be exponentially summable in the number of bodies.
- ▶ For quantum spin systems, this is needed for the dynamics to exist and for Gibbs = KMS.
- ▶ Our expansion is inspired in, and uses ideas of Park (1982)

Mathematical novelties:

- ▶ Gas expansion better done at the level of operators
- ▶ Canonical way to expand with or without commutativity

Intro	Setup	Fundamental	Quantum	Gas	Convergence
000000	0 00	000	0000	0000000	0000000
Polymers					

The general setup

Countable family \mathcal{P} of objects: polymers, animals, ..., characterized by

► An *incompatibility* constraint:

$$\begin{array}{ll} \gamma \nsim \gamma' \\ \gamma \sim \gamma' & \text{if } \gamma, \gamma' \in \mathcal{P} & \begin{array}{l} \text{incompatible} \\ \text{compatible} \end{array} \end{array}$$

うして ふゆ く は く は く む く し く

For simplicity: each polymer incompatible with itself A family of *activities* $\rho = \{\rho_{\gamma}\}_{\gamma \in \mathcal{P}} \in \mathbb{C}^{\mathcal{P}}$.

Intro	Setup	Fundamental	Quantum	Gas	Convergence
000000	0 00	000	0000	0000000	0000000
Polymers					

The general setup

Countable family \mathcal{P} of objects: polymers, animals, ..., characterized by

► An *incompatibility* constraint:

$$\begin{array}{ll} \gamma \nsim \gamma' \\ \gamma \sim \gamma' & \text{if } \gamma, \gamma' \in \mathcal{P} & \begin{array}{l} \text{incompatible} \\ \text{compatible} \end{array} \end{array}$$

うして ふゆ く は く は く む く し く

For simplicity: each polymer incompatible with itself A family of *activities* $\boldsymbol{\rho} = \{\rho_{\gamma}\}_{\gamma \in \mathcal{P}} \in \mathbb{C}^{\mathcal{P}}$.

Intro	Setup	Fundamental	Quantum	Gas	Convergence
000000	000	000	0000	0000000	000000
Main mat	hematical obj	ects			

Gas of polymers

For each *finite* family $\mathcal{P}_{\Lambda} \subset \mathcal{P}$,

Partition function

$$\Xi_{\Lambda}(\boldsymbol{z}) = 1 + \sum_{n \ge 1} \frac{1}{n!} \sum_{(\gamma_1, \dots, \gamma_n) \in \mathcal{P}^n_{\Lambda}} z_{\gamma_1} z_{\gamma_2} \dots z_{\gamma_n} \prod_{j < k} \mathbb{1}_{\{\gamma_j \sim \gamma_k\}}$$
(1)

and the $\mathbf{free}~\mathbf{energy}~(\mathrm{modulo~sign})$

$$F_{\Lambda}(\boldsymbol{z}) = \log \Xi_{\Lambda}(\boldsymbol{z})$$

Probability weights

$$W_{\Lambda}(\{\gamma_1, \gamma_2, \dots, \gamma_n\}) = \frac{1}{\Xi_{\Lambda}(z)} z_{\gamma_1} z_{\gamma_2} \cdots z_{\gamma_n} \prod_{j < k} \mathbb{1}_{\{\gamma_j \sim \gamma_k\}}$$

Intro	Setup	Fundamental	Quantum	Gas	Convergence
000000	000	000	0000	0000000	000000
Main mat	hematical obj	ects			

Gas of polymers

For each *finite* family $\mathcal{P}_{\Lambda} \subset \mathcal{P}$,

Partition function

$$\Xi_{\Lambda}(\boldsymbol{z}) = 1 + \sum_{n \ge 1} \frac{1}{n!} \sum_{(\gamma_1, \dots, \gamma_n) \in \mathcal{P}^n_{\Lambda}} z_{\gamma_1} z_{\gamma_2} \dots z_{\gamma_n} \prod_{j < k} \mathbb{1}_{\{\gamma_j \sim \gamma_k\}}$$
(1)

and the $\mathbf{free}~\mathbf{energy}~(\mathrm{modulo~sign})$

$$F_{\Lambda}(\boldsymbol{z}) = \log \Xi_{\Lambda}(\boldsymbol{z})$$

Probability weights

$$\mathrm{W}_{\Lambda}ig(\{\gamma_1,\gamma_2,\ldots,\gamma_n\}ig) \;=\; rac{1}{\Xi_{\Lambda}(oldsymbol{z})} \, z_{\gamma_1} z_{\gamma_2}\cdots z_{\gamma_n} \prod_{j < k} 1\!\!1_{\{\gamma_j \sim \gamma_k\}}$$

Intro 000000	Setup ○○●	Fundamental 000	Quantum 0000	Gas 0000000	Convergence
Issues					
		The g	uestions:		

In the limit $\mathcal{P}_{\Lambda} \to \mathcal{P}$ ("thermodynamic limit")

Existence and analyticity of the free-energy density $F_{\Lambda}/|\Lambda|$

うして ふゆ く は く は く む く し く

- Existence and properties of the measure defined by W_{Λ} .
- Asymptotic behavior of Ξ_{Λ}

Intro	Setup	Fundamental	Quantum	Gas	Convergence
000000	000	000	0000	0000000	0000000
The expan	sion				

The cluster expansion

Theorem [Canonical cluster expansion]

$$\log \Xi_{\Lambda} = \sum_{n=1}^{\infty} \frac{1}{n!} \sum_{(\gamma_1, \dots, \gamma_n) \subset \Lambda^n} \omega_n^T(\gamma_1, \dots, \gamma_n) \, z_{\gamma_1} \dots z_{\gamma_n} \qquad (2)$$

(In the sense of formal power series) with

$$\omega_n^T(\gamma_1, \dots, \gamma_n) = \begin{cases} 1 & n = 1\\ \sum_{\substack{G \subset \mathbb{G}(\gamma_1, \dots, \gamma_n) \\ G \text{ conn.spann.} \\ 0 & \mathbb{G}(\gamma_1, \dots, \gamma_n) \text{ conn.} \\ 0 & \mathbb{G}(\gamma_1, \dots, \gamma_n) \text{ not conn.} \end{cases}$$

 $\mathbb{G}(\gamma_1, \dots, \gamma_n) = \text{graph of vertex set } \{1, \dots, n\} \text{ and edge set}$ $\{\{i, j\} : \gamma_i \nsim \gamma_j, 0 \le i < j \le n\},$

Intro	Setup	Fundamental	Quantum	Gas	Convergence
000000	000	000	0000	0000000	0000000
Summabil	ity result				

The fundamental result

Theorem [Fundamental] Let $\varphi : [0, +\infty)^{\mathcal{P}} \longrightarrow [0, +\infty]^{\mathcal{P}}$

$$\varphi_{Y_0}(\boldsymbol{\mu}) = 1 + \sum_{n \ge 1} \sum_{\{Y_1, \dots, Y_n\} \subset \mathcal{P}} \prod_{i=1}^n \mathbf{1}_{\{Y_0 \nsim Y_i\}} \prod_{1 \le k < \ell \le n} \mathbf{1}_{\{Y_k \sim Y_\ell\}} \prod_{j=1}^n \mu_{Y_j}$$

$$(3)$$

If $\boldsymbol{\lambda} \in [0, +\infty)^{\mathcal{P}}$ satisfies

$$\lambda_Y \leq \frac{\mu_Y}{\varphi_Y(\boldsymbol{\mu})} \tag{4}$$

うして ふゆ く は く は く む く し く

for each $Y \in \mathcal{P}$, for some $\boldsymbol{\mu} \in [0, +\infty)^{\mathcal{P}}$, then the following holds uniformly in Λ for $\boldsymbol{\rho} \in \mathcal{D}(\boldsymbol{\lambda})$.

Intro	Setup	Fundamental	Quantum	Gas	Convergence
000000	000	000	0000	0000000	0000000
Summabili	ity result				

(a) The cluster expansions (2) converge absolutely.
(b) The following bounds hold for each Y ∈ P(Λ):

$$\frac{\Xi_{\Lambda \setminus Y}}{\Xi_{\Lambda}} \bigg| \leq \frac{\mu_Y}{\lambda_Y} \tag{5}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

$$\left|\log \frac{\Xi_{\Lambda}}{\Xi_{\Lambda \setminus Y}}\right| \leq -\varphi_Y(\boldsymbol{\mu}) \log(1 - \lambda_Y) \tag{6}$$

Rules of the game:

- Write your partition function in the gas form (1)
- ▶ Use the fundamenta theorem to conclude

Intro	Setup	Fundamental	Quantum	Gas	Convergence
000000	000	000	0000	0000000	0000000
Summabili	ity result				

(a) The cluster expansions (2) converge absolutely.
(b) The following bounds hold for each Y ∈ P(Λ):

$$\frac{\Xi_{\Lambda \setminus Y}}{\Xi_{\Lambda}} \bigg| \leq \frac{\mu_Y}{\lambda_Y} \tag{5}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

$$\left|\log\frac{\Xi_{\Lambda}}{\Xi_{\Lambda\setminus Y}}\right| \leq -\varphi_Y(\boldsymbol{\mu})\,\log(1-\lambda_Y) \tag{6}$$

Rules of the game:

- Write your partition function in the gas form (1)
- ▶ Use the fundamenta theorem to conclude

Intro	Setup	Fundamental	Quantum	Gas	Convergence
000000	000	000	0000	0000000	0000000
Quantum	setup				

Quantum lattice systems: Ingredients

Lattice: $\mathbb{L} = \text{set of sites. E.g. } \mathbb{L} = \mathbb{Z}^d$ Spin spaces:

- \mathcal{H}_x space at site x (often copies of a fixed space \mathcal{H})
- Structure depends on whether classcal or quantum
- $\blacktriangleright \text{ For each } \Lambda \subset \mathbb{L}, \mathcal{H}_{\Lambda} = \otimes_{x \in \Lambda} \mathcal{H}_x$

Algebras of observables:

► Sequence of complex unital Banach algebras $\{A_{\Lambda} : \Lambda \subset \mathbb{L}\}$

うして ふゆ く は く は く む く し く

► Increasing: $\Lambda_1 \subset \Lambda_2 \implies \mathcal{A}_{\Lambda_1} \subset \mathcal{A}_{\Lambda_2}$, with $\mathcal{A}_{\Lambda_1} \ni \mathcal{A}_1 \longmapsto \mathcal{A}_1 \otimes \mathbf{1}_{\Lambda_2 \setminus \Lambda_1} \in \mathcal{A}_{\Lambda_2}$

Intro	Setup	Fundamental	Quantum	Gas	Convergence
000000	000	000	0000	0000000	0000000
Quantum a	setup				

Quantum lattice systems: Ingredients

Lattice: $\mathbb{L} = \text{set of sites. E.g. } \mathbb{L} = \mathbb{Z}^d$ Spin spaces:

- \blacktriangleright \mathcal{H}_x space at site x (often copies of a fixed space \mathcal{H})
- Structure depends on whether classcal or quantum
- $\blacktriangleright \text{ For each } \Lambda \subset \mathbb{L}, \mathcal{H}_{\Lambda} = \otimes_{x \in \Lambda} \mathcal{H}_x$

Algebras of observables:

► Sequence of complex unital Banach algebras $\{A_{\Lambda} : \Lambda \subset \mathbb{L}\}$

• Increasing: $\Lambda_1 \subset \Lambda_2 \implies \mathcal{A}_{\Lambda_1} \subset \mathcal{A}_{\Lambda_2}$, with $\mathcal{A}_{\Lambda_1} \ni \mathcal{A}_1 \longmapsto \mathcal{A}_1 \otimes \mathbf{1}_{\Lambda_2 \setminus \Lambda_1} \in \mathcal{A}_{\Lambda_2}$

Traces: Maps $\operatorname{tr}_{\Lambda} : \mathcal{A}_{\Lambda} \longrightarrow \mathbb{C}$ satisfying

- (T0) Lnearity and invariance under cyclic permutations of products
- (T1) Normalization: $tr_{\Lambda}(\mathbf{1}_{\Lambda}) = 1$
- **(T2)** Continuity: If $A \in \mathcal{A}_{\Lambda}$, $|\mathrm{tr}_{\Lambda}(A)| \leq ||A||$
- **(T3)** Factorization:

$$\operatorname{tr}_{\Lambda} = \bigotimes_{x \in \Lambda} \operatorname{tr}_{\{x\}} . \tag{7}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Intro	Setup	Fundamental	Quantum	Gas	Convergence
000000	000	000	0000	0000000	0000000
Casas					

Main applications

Classical spin systems

- \mathcal{H}_x = measure space with probability measure $d\mu_x$
- ▶ A_{Λ} = bounded measurable complex-valued functions on H_{Λ}
- $\blacktriangleright \operatorname{tr}_{\Lambda} = \otimes_{x \in \Lambda} d\mu_x$

Quantum spin systems:

- $\blacktriangleright \ \mathcal{H} = \text{finite-dimensional Hilbert space}$
- \mathcal{A}_{Λ} = bounded operators on \mathcal{H}_{Λ} .
- Trace = normalization of the canonical trace $\operatorname{Tr}_{\mathcal{H}_{\Lambda}}$ of \mathcal{H}_{Λ} :

$$tr_{\Lambda} = \frac{1}{\dim \mathcal{H}_{\Lambda}} Tr_{\mathcal{H}_{\Lambda}}$$
(8)

うして ふゆ く は く は く む く し く

Intro	Setup	Fundamental	Quantum	Gas	Convergence
000000	000	000	0000	0000000	0000000
Cases					

Main applications

Classical spin systems

- \mathcal{H}_x = measure space with probability measure $d\mu_x$
- ▶ A_{Λ} = bounded measurable complex-valued functions on H_{Λ}
- $\blacktriangleright \operatorname{tr}_{\Lambda} = \otimes_{x \in \Lambda} d\mu_x$

Quantum spin systems:

- ▶ \mathcal{H} = finite-dimensional Hilbert space
- \mathcal{A}_{Λ} = bounded operators on \mathcal{H}_{Λ} .
- Trace = normalization of the canonical trace $\operatorname{Tr}_{\mathcal{H}_{\Lambda}}$ of \mathcal{H}_{Λ} :

$$tr_{\Lambda} = \frac{1}{\dim \mathcal{H}_{\Lambda}} Tr_{\mathcal{H}_{\Lambda}}$$
(8)

Intro	Setup	Fundamental	Quantum	Gas	Convergence	
000000	000	000	0000	0000000	0000000	
Finite-volume objects						

Finite-volume quantities

Interaction: Family $\Phi = \{\Phi(X) : X \subset \mathbb{L}\}$ with $\Phi(X) \in \mathcal{A}_X$ Bonds: $\mathcal{B}_{\Lambda} = \{X \subset \Lambda : \Phi(X) \neq 0\}$ Hamiltonian: $H_{\Lambda} = \sum_{X \subset \Lambda} \Phi(X) =: H_{\mathcal{B}_{\Lambda}}$

Finite-volume state: Defined by the expectations

$$\pi^{\beta}_{\Lambda}(A) = \frac{\operatorname{tr}_{\Lambda}(A \operatorname{e}^{-\beta H_{\Lambda}})}{Z^{\beta}_{\Lambda}}$$

うして ふゆ く は く は く む く し く

 $A \in \mathcal{A}_{\Lambda}, \ \beta = \text{inverse temperature}$ **Partition function:** $Z_{\Lambda}^{\beta} = \operatorname{tr}_{\Lambda}(e^{-\beta H_{\Lambda}})$ **Free energy:** $-\beta F_{\Lambda} = \log Z_{\Lambda}^{\beta}$

Intro	Setup	Fundamental	Quantum	Gas	Convergence	
000000	000	000	0000	0000000	0000000	
Finite-volume objects						

Finite-volume quantities

Interaction: Family $\Phi = \{\Phi(X) : X \subset \mathbb{L}\}$ with $\Phi(X) \in \mathcal{A}_X$ Bonds: $\mathcal{B}_{\Lambda} = \{X \subset \Lambda : \Phi(X) \neq 0\}$ Hamiltonian: $H_{\Lambda} = \sum_{X \subset \Lambda} \Phi(X) =: H_{\mathcal{B}_{\Lambda}}$

Finite-volume state: Defined by the expectations

$$\pi^{eta}_{\Lambda}(A) \;=\; rac{\mathrm{tr}_{\Lambda} \left(A \,\mathrm{e}^{-eta H_{\Lambda}}
ight)}{Z^{eta}_{\Lambda}}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 $A \in \mathcal{A}_{\Lambda}, \ \beta = \text{inverse temperature}$ **Partition function:** $Z_{\Lambda}^{\beta} = \operatorname{tr}_{\Lambda}(e^{-\beta H_{\Lambda}})$ **Free energy:** $-\beta F_{\Lambda} = \log Z_{\Lambda}^{\beta}$

Intro	Setup	Fundamental	Quantum	Gas	Convergence		
000000	000	000	0000	0000 000	0000000		
General gas expansions							

Classical gas expansion

Usual "±1 trick": $e^{-\beta \Phi(X)} = 1 + (e^{\Phi(X)} - 1)$:

$$e^{-\beta H_{\Lambda}} = \prod_{X \in \mathcal{B}_{\Lambda}} \left[1 + \left(e^{\Phi(X)} - 1 \right) \right] = \sum_{\mathcal{B} \subset \mathcal{B}_{\Lambda}} \xi_{\mathcal{B}}$$
(9)

with

$$\xi_{\mathcal{B}} = \sum_{\widetilde{\mathcal{B}} \subset \mathcal{B}} (-1)^{\left| \mathcal{B} \setminus \widetilde{\mathcal{B}} \right|} e^{-\beta H_{\widetilde{\mathcal{B}}}} = \xi_{\mathcal{B}_1} \cdots \xi_{\mathcal{B}_n}$$
(10)

うしゃ ふゆ きょう きょう うくの

 $\{\mathcal{B}_1 \ldots, \mathcal{B}_n\}$ = maximally connected families of \mathcal{B}

Quantum: left identity in (9) is false, but last one is *true* (Möbius transform)

General gas expansions	0	Convergenc	Gas	Quantum	Fundamental	Setup	Intro
	0000	0000000	0000 000	0000	000	000	Concercia

Classical gas expansion

Usual "±1 trick": $e^{-\beta \Phi(X)} = 1 + (e^{\Phi(X)} - 1)$:

$$e^{-\beta H_{\Lambda}} = \prod_{X \in \mathcal{B}_{\Lambda}} \left[1 + \left(e^{\Phi(X)} - 1 \right) \right] = \sum_{\mathcal{B} \subset \mathcal{B}_{\Lambda}} \xi_{\mathcal{B}}$$
(9)

with

$$\xi_{\mathcal{B}} = \sum_{\widetilde{\mathcal{B}}\subset\mathcal{B}} (-1)^{\left|\mathcal{B}\setminus\widetilde{\mathcal{B}}\right|} e^{-\beta H_{\widetilde{\mathcal{B}}}} = \xi_{\mathcal{B}_1}\cdots\xi_{\mathcal{B}_n}$$
(10)

 $\{\mathcal{B}_1 \dots, \mathcal{B}_n\}$ = maximally connected families of \mathcal{B} Quantum: left identity in (9) is false, but last one is *true* (Möbius transform)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

	Intro	Setup	Fundamental	Quantum	Gas	Convergence
	000000	000	000	0000	000000	0000000
General gas expansions						

Möbius transform

- \blacktriangleright *S* finite set,
- ▶ V vector space (product irrelevant, can be non-commutative),

$$\blacktriangleright F, G : \{ \text{subsets of } \mathcal{S} \} \longrightarrow \mathbb{V}$$

Then,

$$F(C) = \sum_{B \subset C} G(B) \ \forall C \quad \Longleftrightarrow \quad G(B) = \sum_{A \subset B} (-1)^{|B \setminus A|} F(A) \ \forall B$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへぐ

Intro	Setup	Fundamental	Quantum	Gas	Convergence		
000000	000	000	0000	0000000	0000000		
General gas expansions							

Möbius transform plus compatibility

In addition we assume a compatibility relation " \sim " such that

$$C_1 \sim C_2 \implies \left\{ \begin{array}{c} C_1 \cap C_2 = \emptyset \\ F(C_1 \cup C_2) = F(C_1)F(C_2) \end{array} \right\}$$
(11)

うして ふゆ く は く は く む く し く

Then

$$C_1 \sim C_2 \implies G(C_1 \cup C_2) = G(C_1) G(C_2)$$

Say C is **connected** if

C can not decomposed into two compatible subsets;
 ≡ C is connected wrt the incompatibility relation
 Then each G(B) can be factored into contributions due to maximally connected components

Intro	Setup	Fundamental	Quantum	Gas	Convergence		
000000	000	000	0000	0000000	0000000		
General gas expansions							

Möbius transform plus compatibility

In addition we assume a compatibility relation " \sim " such that

$$C_1 \sim C_2 \implies \left\{ \begin{array}{c} C_1 \cap C_2 = \emptyset \\ F(C_1 \cup C_2) = F(C_1)F(C_2) \end{array} \right\}$$
(11)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Then

$$C_1 \sim C_2 \implies G(C_1 \cup C_2) = G(C_1) G(C_2)$$

Say C is **connected** if

C can not decomposed into two compatible subsets;
 ≡ C is connected wrt the incompatibility relation
 Then each G(B) can be factored into contributions due to maximally connected components

Intro 000000	Setup 000	Fundamental	Quantum 0000	Gas 000●000	Convergence		
General gas expansions							

General gas expansion

Bottom line:

Theorem (General gas expansion) Let $F : \{subsets of S\} \longrightarrow \mathbb{V} \ satisfying \ (11).$ Then,

$$F(C) = F(\emptyset) + \sum_{n=1}^{\infty} \sum_{\substack{\{B_1,\dots,B_n\}\\ \text{conn. } B_i \subset C}} \prod_{i=1}^n G(B_i) \prod_{1 \le i < j \le n} \mathbf{1}_{\{B_i \sim B_j\}}$$
(12)

with

$$G(B) = \sum_{A \subset B} (-1)^{|B \setminus A|} F(A)$$

Intro	Setup	Fundamental	Quantum	Gas	Convergence		
000000	000	000	0000	0000000	0000000		
Quantum gas expansions							

Quantum gas expansion

For our basic application,

$$e^{-\beta H_{\Lambda}} = 1 + \sum_{n=1}^{\infty} \sum_{\substack{\{\mathcal{B}_1, \dots, \mathcal{B}_n\} \\ \text{conn. } \mathcal{B}_i \subset \mathcal{B}_{\Lambda}}} \prod_{i=1}^n \xi_{B_i} \prod_{1 \le i < j \le n} \mathbf{1}_{\{\mathcal{B}_i \sim \mathcal{B}_j\}}$$
(13)

with

$$\xi_{\mathcal{B}} = \sum_{\widetilde{\mathcal{B}} \subset \mathcal{B}} (-1)^{\left| \mathcal{B} \setminus \widetilde{\mathcal{B}} \right|} e^{-\beta H_{\widetilde{\mathcal{B}}}}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Intro	Setup	Fundamental	Quantum	Gas	Convergence
000000	000	000	0000	0000000	0000000
Quantum ga	s expansions				

Quantum partition functions as gas expansions

If we take the tr_{Λ} of the previous expansion (recall that the trace factorizes)

Theorem

The quantum partition function takes the form

$$Z_{\Lambda} = 1 + \sum_{n=1}^{\infty} \sum_{\substack{\{\mathcal{B}_1, \dots, \mathcal{B}_n\} \\ \text{conn.} \mathcal{B}_i \subset \mathcal{B}_{\Lambda}}} \prod_{i=1}^n \rho_{\mathcal{B}_i} \prod_{1 \le i < j \le n} \mathbf{1}_{\{\mathcal{B}_i \sim \mathcal{B}_j\}}, \qquad (14)$$

with

$$\rho_{\mathcal{B}} := \sum_{\widetilde{\mathcal{B}} \subset \mathcal{B}} (-1)^{\left| \mathcal{B} \setminus \widetilde{\mathcal{B}} \right|} Z_{\widetilde{\mathcal{B}}} \quad , \ Z_{\mathcal{B}} := \operatorname{tr}_{\Lambda} \left(e^{-\beta \sum_{X \in \mathcal{B}} \Phi(X)} \right) \quad (15)$$

・ロト ・ 同 ・ ・ ヨ ト ・ ヨ ・ うへつ

(Partially-turned-on partition functions)

- The form (15) of the fugacities is inspired in work by Park (1982), itself related to Greenberg (1969)
- ▶ These authors, however, mannouvered towards KS equations, and never wrote a full-fledged cluster expansion

A D F A 目 F A E F A E F A Q Q

- ▶ The expansion (13) can be subjected to other linear factorizable forms:
 - Can consider quantum boundary conditions
 - Can prove uniqueness of KMS=Gibbs state

- The form (15) of the fugacities is inspired in work by Park (1982), itself related to Greenberg (1969)
- ▶ These authors, however, mannouvered towards KS equations, and never wrote a full-fledged cluster expansion

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくぐ

- ▶ The expansion (13) can be subjected to other linear factorizable forms:
 - Can consider quantum boundary conditions
 - ▶ Can prove uniqueness of KMS=Gibbs state

Intro	Setup	Fundamental	Quantum	Gas	Convergence
000000	000	000	0000	0000000	● 0 00000
General cr	iterion				

Convergence in terms of interactions

The cluster expansion takes of $\log Z_{\Lambda}$ the form (2)

We apply the fundamental convergence criterion (26) bounding $\rho_{\mathcal{B}}$ in terms of the interaction.

For the classical case,

$$\xi_{\mathcal{B}} = \sum_{\widetilde{\mathcal{B}} \subset \mathcal{B}} (-1)^{\left| \mathcal{B} \setminus \widetilde{\mathcal{B}} \right|} e^{-\beta H_{\widetilde{\mathcal{B}}}} = \prod_{X \in \mathcal{B}} \left(e^{-\beta \left\| \Phi(X) \right\|} - 1 \right)$$

For the quantum case this becomes an upper bound (Park)

$$\|\rho_{\mathcal{B}}\| \leq \prod_{X \in \mathcal{B}} \left| \mathrm{e}^{-\beta \|\Phi(X)\|} - 1 \right|$$

うして ふゆ く は く は く む く し く

Intro	Setup	Fundamental	Quantum	Gas	Convergence
000000	000	000	0000	0000000	● 0 00000
General cr	iterion				

Convergence in terms of interactions

The cluster expansion takes of $\log Z_{\Lambda}$ the form (2)

We apply the fundamental convergence criterion (26) bounding $\rho_{\mathcal{B}}$ in terms of the interaction.

For the classical case,

$$\xi_{\mathcal{B}} = \sum_{\widetilde{\mathcal{B}} \subset \mathcal{B}} (-1)^{\left| \mathcal{B} \setminus \widetilde{\mathcal{B}} \right|} e^{-\beta H_{\widetilde{\mathcal{B}}}} = \prod_{X \in \mathcal{B}} \left(e^{-\beta \| \Phi(X) \|} - 1 \right)$$

For the quantum case this becomes an upper bound (Park)

$$\|\rho_{\mathcal{B}}\| \leq \prod_{X \in \mathcal{B}} \left| \mathrm{e}^{-\beta \|\Phi(X)\|} - 1 \right|$$

うして ふゆ く は く は く む く し く

Intro	Setup	Fundamental	Quantum	Gas	Convergence
000000	000	000	0000	0000000	● 0 00000
General cr	riterion				

Convergence in terms of interactions

The cluster expansion takes of $\log Z_{\Lambda}$ the form (2)

We apply the fundamental convergence criterion (26) bounding $\rho_{\mathcal{B}}$ in terms of the interaction.

For the classical case,

$$\xi_{\mathcal{B}} = \sum_{\widetilde{\mathcal{B}} \subset \mathcal{B}} (-1)^{\left| \mathcal{B} \setminus \widetilde{\mathcal{B}} \right|} e^{-\beta H_{\widetilde{\mathcal{B}}}} = \prod_{X \in \mathcal{B}} \left(e^{-\beta \| \Phi(X) \|} - 1 \right)$$

For the quantum case this becomes an upper bound (Park)

$$\|\rho_{\mathcal{B}}\| \leq \prod_{X \in \mathcal{B}} \left| \mathrm{e}^{-\beta \|\Phi(X)\|} - 1 \right|$$

Intro	Setup	Fundamental	Quantum	Gas	Convergence
000000	000	000	0000	0000000	000000
General cri	terion				

Convergence criterion

This leads to convergence conditions

$$\sum_{\substack{\mathcal{B} \in \mathcal{P} \\ \mathcal{B} \text{ connected} \\ \mathcal{B} = Y}} \prod_{X \in \mathcal{B}} \left| e^{\beta \| \Phi(X) \|} - 1 \right| \leq \lambda_Y$$

with

$$\lambda_Y \leq \operatorname{argmax}_{\boldsymbol{\mu}} \left\{ \frac{\mu_Y}{\varphi_Y(\boldsymbol{\mu})} \right\}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Intro	Setup	Fundamental	Quantum	Gas	Convergence
000000	000	000	0000	0000000	000000
Tractable a	approximation	15			

Weaker explicit bounds

Change variables to $\mu_Y = \lambda_Y e^{a(Y)}$

The condition over λ becomes

$$\sup_{\substack{x \in X_0 \\ x \in X}} \sum_{\substack{X \in \mathcal{P} \\ x \in X}} \lambda_X e^{a(X)} \le e^{a(X_0)/|X_0|} - 1 ,$$

for each $X_0 \in \mathcal{P}$, for some $\boldsymbol{a} \in [0, +\infty)^{\mathcal{P}}$ [Improved Gruber-Kunz bound]

Traditional choice: a(X) = a |X|.

This dependence is usually not much off the mark.

うして ふゆ く は く は く む く し く

• Optimization involves the single parameter a.

Intro	Setup	Fundamental	Quantum	Gas	Convergence
000000	000	000	0000	0000000	000000
Tractable a	approximation	15			

Weaker explicit bounds

Change variables to $\mu_Y = \lambda_Y e^{a(Y)}$

The condition over $\boldsymbol{\lambda}$ becomes

$$\sup_{\substack{x \in X_0 \\ x \in X}} \sum_{\substack{X \in \mathcal{P} \\ x \in X}} \lambda_X e^{a(X)} \le e^{a(X_0)/|X_0|} - 1 ,$$

うして ふゆ く は く は く む く し く

for each $X_0 \in \mathcal{P}$, for some $\boldsymbol{a} \in [0, +\infty)^{\mathcal{P}}$ [Improved Gruber-Kunz bound]

Traditional choice: a(X) = a |X|.

- ▶ This dependence is usually not much off the mark.
- Optimization involves the single parameter a.

Intro	Setup	Fundamental	Quantum	Gas	Convergence
000000	000	000	0000	0000000	000000
Tractable a	opproximation	15			

Simplest bound

With this choice, the convergence condition is

$$T(a) \leq e^a - 1 \tag{16}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへぐ

with

$$T(a) := \sup_{x} \sum_{n \ge 1} \sum_{\substack{\{X_1, \dots, X_n\}\\ x \in X_1, G_n \text{ connected}}} \prod_{i=1}^n \left| e^{\beta \| \Phi(X_i) \|} - 1 \right| e^{a|X_i|}.$$
 (17)

Notice that, for our criterion to apply,

$$\exists \alpha > 0 \quad : \quad \sup_{\substack{x \in \mathbb{Z}^d \\ X \text{ finite}}} \sum_{\substack{e \parallel \Phi(X) \parallel \\ -1 \mid e^{\alpha |X|} < \infty} .$$

Intro	Setup	Fundamental	Quantum	Gas	Convergence
000000	000	000	0000	0000000	000000
Tractable a	opprovimation	15			

Simplest bound

With this choice, the convergence condition is

$$T(a) \leq e^a - 1 \tag{16}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

with

$$T(a) := \sup_{x} \sum_{n \ge 1} \sum_{\substack{\{X_1, \dots, X_n\}\\ x \in X_1, G_n \text{ connected}}} \prod_{i=1}^n \left| e^{\beta \|\Phi(X_i)\|} - 1 \right| e^{a|X_i|}.$$
 (17)

Notice that, for our criterion to apply,

$$\exists \alpha > 0 \quad : \quad \sup_{\substack{x \in \mathbb{Z}^d \\ X \text{ finite}}} \sum_{\substack{x \in X \subset \mathbb{Z}^d \\ X \text{ finite}}} \left| e^{\|\Phi(X)\|} - 1 \right| e^{\alpha |X|} < \infty \; .$$

Intro	Setup	Fundamental	Quantum	Gas	Convergence
000000	000	000	0000	0000000	0000000
Tractable a	approximatio	ns			

Sufficient condition for applicability

The above condition is equivalent to

$$\exists \, \alpha > 0 \quad : \quad \sup_{\substack{x \in \mathbb{Z}^d \\ X \text{ finite}}} \sum_{\substack{x \in X \subset \mathbb{Z}^d \\ X \text{ finite}}} \| \Phi(X) \| \, \mathrm{e}^{\alpha |X|} < \infty \; .$$

- Classical: Also necessary (Dobrushin-Martirosyan, 1988).
- ▶ Quantum: required for the existence of the dynamics.
- ▶ A posteriori, the above approximations are not that bad.

うして ふゆ く は く は く む く し く

Intro	Setup	Fundamental	Quantum	Gas	Convergence
000000	000	000	0000	0000000	0000000
High-tempe	erature radius	5			

β -radius of analyticity

To disentangle the β -dependence: $|e^z - 1| \le z e^z$, (z > 0)We obtain as sufficient condition

$$|\beta| \|\Phi\|_{\infty} \leq \max_{a>0} W[\Gamma_{\Phi}(a)]$$

ション ふゆ さい シャリン しょうくしゃ

- \blacktriangleright W = Lambert function.
- $\Gamma_{\Phi}(a)$ includes a fixed-point condition.

Intro	Setup	Fundamental	Quantum	Gas	Convergence
000000	000	000	0000	0000000	000000
Nearest-ne	eighbor case				

Bounds for nearest-neighbor interactions Our bound:

$$|\beta| e^{|\beta|} \le \frac{0.097619}{2d}$$

.

Park (1982):

$$|\beta| e^{|\beta|} \le \frac{0.06}{2d} \left(1 + \frac{0.06}{2d}\right)$$

[Ours = 62% improvement]

Simon (1993) (Example 2, page 462):

$$|\beta| \,\mathrm{e}^{|\beta|} \leq \frac{1}{48 \, d^2}$$

[worse than Park's.]

Intro	Setup	Fundamental	Quantum	Gas	Convergence
000000	000	000	0000	0000000	000000
Nearest-ne	eighbor case				

Bounds for nearest-neighbor interactions Our bound:

$$|\beta| e^{|\beta|} \le \frac{0.097619}{2d}$$

.

Park (1982):

$$|\beta| e^{|\beta|} \le \frac{0.06}{2d} \left(1 + \frac{0.06}{2d}\right)$$

[Ours = 62% improvement]

Simon (1993) (Example 2, page 462):

$$|\beta| \,\mathrm{e}^{|\beta|} \leq \frac{1}{48 \, d^2}$$

[worse than Park's.]

Intro	Setup	Fundamental	Quantum	Gas	Convergence
000000	000	000	0000	0000000	000000
Nearest-ne	eighbor case				

Bounds for nearest-neighbor interactions Our bound:

$$|\beta| e^{|\beta|} \le \frac{0.097619}{2d}$$

Park (1982):

$$|\beta| e^{|\beta|} \le \frac{0.06}{2d} \left(1 + \frac{0.06}{2d}\right)$$

[Ours = 62% improvement]

Simon (1993) (Example 2, page 462):

$$|\beta| \,\mathrm{e}^{|\beta|} \leq \frac{1}{48 \, d^2}$$

[worse than Park's.]