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Dynamical system notation is easier for this talk:

Consider (Ω,T , µ), T : Ω→ Ω, and a T -invariant probability
measure µ ◦ T−1 = µ.

If: Ω = AN with A a finite set
T the shift: Tx = T (x0x1x2 . . .) = x1x2 . . .
(notation x = x0x1x2 . . . ∈ Ω),

we get a stationary stochastic process X by doing

P(X n−1
0 = xn−1

0 ) = µ(xn−1
0 ).

To fix idea: think about an i.i.d. sequence of Ber(p) r.v.’s!!
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Hitting time of x in the measurable B ⊂ Ω

τB(x) := inf{k ≥ 1 : T kx ∈ B}.

Theorem (Poincaré Recurrence Theorem (1890))
T -invariance⇒ µB(τB(x) <∞) = 1 for B with µ(B) > 0.
(We use the notation µB(·) := µ(B∩·)

µ(B) .)

→ This is a qualitative result

Theorem (The Kac Lemma (1947))

Ergodicity⇒ EBτB = 1
µ(B) (µ(B) > 0).

→ First quantitative result.
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What about µB(τBµ(B) > t)?

Theorem (Folklore)
For suitable dynamics and suitable Bn(x)→ x ∈ Ω

µBn (τBnµ(Bn) > t) n→∞−→ e−t , µ− a.e. x ∈ Ω.

The scaling factor µ(Bn) comes from the Kac Lemma.

“suitable dynamics”: mixing conditions (stronger than ergodicity)

“suitable Bn(x)”: Think about “cylinders/patterns”.
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Dichotomy: Periodic vs. non-Periodic point x

Preceeding result cannot hold if T kx = x (periodic points x)

Theorem (Galves, Collet, Schmitt (90’s), Abadi et al. (2000’s))
For suitable dynamics and suitable Bn(x)→ x ∈ Ω

µBn (τBnλ(Bn)µ(Bn) > t)
λ(Bn)

n→∞−→ e−t , ∀x ∈ Ω.

The new scaling parameter λ(Bn(x)) accounts for periodic x ’s.

And λ(Bn(x))→ 1 for aperiodic x ’s.
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Abadi et al. (2000’s): Several possible choices for λ(Bn(x)), but a
simple one is

µBn (τBn > “first possible return to Bn”)



What about the number Nn(x) counting visits to Bn in the time
window [1, t/µ(Bn)], t > 0?

Theorem (Pitskel (1991), Hirata (1993)...)
For suitable dynamics and suitable Bn(x)→ x ∈ Ω

L(Nn)⇒ Pois(t) , µ− a.e. x ∈ Ω.

Theorem (Haydn and Vaienti (2009) for cylinder sets)
For suitable dynamics and cylinder sets or balls Bn(x)→ x ∈ Ω

L(Nn)⇒ Pólya-Aeppli (tλ) , ∀x ∈ Ω

when λ := limn λ(Bn(x)) exists.

Pólya-Aeppli(tλ) is the Compound Poisson
∑M

i=1 Xi with
X ′i s are i.i.d. Geo(λ)

M ∼ Pois(tλ).
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What about arbitrary target measurable null set Γ instead of x?

Take Un ↘ Γ, with Un is a union of n-cylinders.

Haydn and Vaienti (2020)
-> for geometric dynamical systems

Motivation: spatial synchronization of dynamical systems.

G., Haydn and Vaienti (to appear, 2023)
-> for symbolic dynamical systems.

Motivation: approximate synchronization of stochastic
processes.
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Define the return time of x into its n-cylinder

rn(x) := τxn−1
0

(x).

Recall the Shannon entropy of µ:

hµ := lim
n

1
n

∑
an−1

0

µ(an−1
0 ) logµ(an−1

0 ).

Theorem (Ornstein and Weiss (1993))
For ergodic measure µ

log rn

n
→ hµ µ− a.e. x ∈ Ω

What about the fluctuations?
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Theorem (Collet, Galves and Schmitt (1999))
If µ satisfies

strongly mixing,

with σ2 := lim Var
(
log rn√

n

)
> 0,

then:

L
(

log rn/n − hµ
σ/
√

n

)
⇒ N (0,1),

and there exists a u0 > 0 s.t. for u ∈ [0,u0[

− lim
1
n

logµ

(
log rn

n
> h + u

)
= m(h + u)

− lim
1
n

logµ

(
log rn

n
< h − u

)
= m(h − u),

where m is the Legendre-Fenchel transform of

M(q) := lim
n

1
n

logE
(
µ(X n

1 )−1
)q

, q ∈ R.



Observation: Example for i.i.d. Ber(1/3)
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Define the following limits, provided it exists:

Λ := lim
n

1
n

logE(1− λ(X n
1 )).

Theorem (Abadi, Amorim, Chazottes, G. (to appear, 2023))
Same conditions as before:

Λ exists and equals limn
1
n log maxan−1

0
µ(an−1

0 )

and R(q) exists and

R(q) =M(q) for q > q?

= Λ for q ≤ q?

where q? ∈ (−1,0) is the solution of the equationM(q) = Λ.
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Consequence:



The computation of R(q) has interest by itself.

a.s lim
n

1
n

log rn(x) =h = lim
n

1
n

logµ(xn
1 )−1 a.s.

L
(

log rn/n − hµ
σ/
√

n

)
⇒ N (0,1)⇐ L

(
logµ(X n

1 )−1/n − hµ
σ/
√

n

)

These local considerations yield “ansatz”

rn ←→ µ(X n
1 )−1

and

R(q) := lim
n

1
n

logErq
n ←→ lim

n

1
n

logEµ(X n
1 )−q =M(q)

Grassberger and Procaccia (1983): return time picture to
estimate the dimension.

Haydn et al. (2002) shown, by simulations, that this doesn’t work.
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