# Quantitative results in Poincaré recurrence for mixing processes 

Sandro Gallo, UFSCar (Brazil)

16 de janeiro de 2023

Thanks to Giulio and Eulália for the invitation!

Thanks to Giulio and Eulália for the invitation!

Based on recent works with M. Abadi (IME-USP), V. Amorim (IFSP), JR. Chazottes (Polytechnique), N. Haydn (USC), S. Vaienti (Aix-Marseille).

## Présentation

(1) Setting

2 First return time and number of returns

3 Fluctuations of the return time

## Dynamical system notation is easier for this talk:

Consider $(\Omega, T, \mu), T: \Omega \rightarrow \Omega$, and a $T$-invariant probability measure $\mu \circ T^{-1}=\mu$.

## Dynamical system notation is easier for this talk:

Consider $(\Omega, T, \mu), T: \Omega \rightarrow \Omega$, and a $T$-invariant probability measure $\mu \circ T^{-1}=\mu$.

If: $\Omega=A^{\mathbb{N}}$ with $A$ a finite set
$T$ the shift: $T x=T\left(x_{0} x_{1} x_{2} \ldots\right)=x_{1} x_{2} \ldots$
(notation $x=x_{0} x_{1} x_{2} \ldots \in \Omega$ ),

## Dynamical system notation is easier for this talk:

Consider $(\Omega, T, \mu), T: \Omega \rightarrow \Omega$, and a $T$-invariant probability measure $\mu \circ T^{-1}=\mu$.

If: $\Omega=A^{\mathbb{N}}$ with $A$ a finite set
$T$ the shift: $T x=T\left(x_{0} x_{1} x_{2} \ldots\right)=x_{1} x_{2} \ldots$
(notation $x=x_{0} x_{1} x_{2} \ldots \in \Omega$ ),
we get a stationary stochastic process $X$ by doing

$$
\mathbb{P}\left(X_{0}^{n-1}=x_{0}^{n-1}\right)=\mu\left(x_{0}^{n-1}\right)
$$

## Dynamical system notation is easier for this talk:

Consider $(\Omega, T, \mu), T: \Omega \rightarrow \Omega$, and a $T$-invariant probability measure $\mu \circ T^{-1}=\mu$.

If: $\Omega=A^{\mathbb{N}}$ with $A$ a finite set
$T$ the shift: $T x=T\left(x_{0} x_{1} x_{2} \ldots\right)=x_{1} x_{2} \ldots$
(notation $x=x_{0} x_{1} x_{2} \ldots \in \Omega$ ),
we get a stationary stochastic process $X$ by doing

$$
\mathbb{P}\left(X_{0}^{n-1}=x_{0}^{n-1}\right)=\mu\left(x_{0}^{n-1}\right)
$$

To fix idea: think about an i.i.d. sequence of $\operatorname{Ber}(p)$ r.v.s!!

## Présentation

## (1) Setting

2 First return time and number of returns
(3) Fluctuations of the return time

Hitting time of $x$ in the measurable $B \subset \Omega$

$$
\tau_{B}(x):=\inf \left\{k \geq 1: T^{k} x \in B\right\} .
$$

Hitting time of $x$ in the measurable $B \subset \Omega$

$$
\tau_{B}(x):=\inf \left\{k \geq 1: T^{k} x \in B\right\} .
$$

## Theorem (Poincaré Recurrence Theorem (1890))

$T$-invariance $\Rightarrow \mu_{B}\left(\tau_{B}(x)<\infty\right)=1$ for $B$ with $\mu(B)>0$. (We use the notation $\mu_{B}(\cdot):=\frac{\mu(B \cap \cdot)}{\mu(B)}$.)

Hitting time of $x$ in the measurable $B \subset \Omega$

$$
\tau_{B}(x):=\inf \left\{k \geq 1: T^{k} x \in B\right\} .
$$

## Theorem (Poincaré Recurrence Theorem (1890))

$T$-invariance $\Rightarrow \mu_{B}\left(\tau_{B}(x)<\infty\right)=1$ for $B$ with $\mu(B)>0$. (We use the notation $\mu_{B}(\cdot):=\frac{\mu(B \cap \cdot)}{\mu(B)}$.)
$\rightarrow$ This is a qualitative result

Hitting time of $x$ in the measurable $B \subset \Omega$

$$
\tau_{B}(x):=\inf \left\{k \geq 1: T^{k} x \in B\right\} .
$$

## Theorem (Poincaré Recurrence Theorem (1890))

$T$-invariance $\Rightarrow \mu_{B}\left(\tau_{B}(x)<\infty\right)=1$ for $B$ with $\mu(B)>0$. (We use the notation $\mu_{B}(\cdot):=\frac{\mu(B \cap \cdot)}{\mu(B)}$.)
$\rightarrow$ This is a qualitative result

## Theorem (The Kac Lemma (1947))

Ergodicity $\Rightarrow \mathbb{E}_{B} \tau_{B}=\frac{1}{\mu(B)} \quad(\mu(B)>0)$.

Hitting time of $x$ in the measurable $B \subset \Omega$

$$
\tau_{B}(x):=\inf \left\{k \geq 1: T^{k} x \in B\right\} .
$$

## Theorem (Poincaré Recurrence Theorem (1890))

$T$-invariance $\Rightarrow \mu_{B}\left(\tau_{B}(x)<\infty\right)=1$ for $B$ with $\mu(B)>0$. (We use the notation $\mu_{B}(\cdot):=\frac{\mu(B \cap \cdot)}{\mu(B)}$.)
$\rightarrow$ This is a qualitative result

## Theorem (The Kac Lemma (1947))

Ergodicity $\Rightarrow \mathbb{E}_{B} \tau_{B}=\frac{1}{\mu(B)} \quad(\mu(B)>0)$.
$\rightarrow$ First quantitative result.

What about $\mu_{B}\left(\tau_{B} \mu(B)>t\right)$ ?

## Theorem (Folklore)

For suitable dynamics and suitable $B_{n}(x) \rightarrow x \in \Omega$

$$
\mu_{B_{n}}\left(\tau_{B_{n}} \mu\left(B_{n}\right)>t\right) \xrightarrow{n \rightarrow \infty} e^{-t} \quad, \quad \underline{\mu} \text { a.e. } x \in \Omega .
$$

The scaling factor $\mu\left(B_{n}\right)$ comes from the Kac Lemma.
"suitable dynamics": mixing conditions (stronger than ergodicity)
"suitable $B_{n}(x)$ ": Think about "cylinders/patterns".

What about $\mu_{B}\left(\tau_{B} \mu(B)>t\right)$ ?

## Theorem (Folklore)

For suitable dynamics and suitable $B_{n}(x) \rightarrow x \in \Omega$

$$
\mu_{B_{n}}\left(\tau_{B_{n}} \mu\left(B_{n}\right)>t\right) \xrightarrow{n \rightarrow \infty} e^{-t} \quad, \quad \mu-\text { a.e. } x \in \Omega .
$$

The scaling factor $\mu\left(B_{n}\right)$ comes from the Kac Lemma.
"suitable dynamics": mixing conditions (stronger than ergodicity)
"suitable $B_{n}(x)$ ": Think about "cylinders/patterns".

Dichotomy: Periodic vs. non-Periodic point $x$

## Dichotomy: Periodic vs. non-Periodic point $x$

Preceeding result cannot hold if $T^{k} x=x$ (periodic points $x$ )

Dichotomy: Periodic vs. non-Periodic point $x$
Preceeding result cannot hold if $T^{k} x=x$ (periodic points $x$ )

Theorem (Galves, Collet, Schmitt (90's), Abadi et al. (2000's))
For suitable dynamics and suitable $B_{n}(x) \rightarrow x \in \Omega$

$$
\frac{\mu_{B_{n}}\left(\tau_{B_{n}} \lambda\left(B_{n}\right) \mu\left(B_{n}\right)>t\right)}{\lambda\left(B_{n}\right)} \xrightarrow{n \rightarrow \infty} e^{-t} \quad, \quad \forall x \in \Omega .
$$

Dichotomy: Periodic vs. non-Periodic point $x$
Preceeding result cannot hold if $T^{k} x=x$ (periodic points $x$ )

## Theorem (Galves, Collet, Schmitt (90's), Abadi et al. (2000's))

For suitable dynamics and suitable $B_{n}(x) \rightarrow x \in \Omega$

$$
\frac{\mu_{B_{n}}\left(\tau_{B_{n}} \lambda\left(B_{n}\right) \mu\left(B_{n}\right)>t\right)}{\lambda\left(B_{n}\right)} \xrightarrow{n \rightarrow \infty} e^{-t} \quad, \quad \forall x \in \Omega .
$$

The new scaling parameter $\lambda\left(B_{n}(x)\right)$ accounts for periodic $x$ 's.

Dichotomy: Periodic vs. non-Periodic point $x$
Preceeding result cannot hold if $T^{k} x=x$ (periodic points $x$ )

## Theorem (Galves, Collet, Schmitt (90's), Abadi et al. (2000's))

For suitable dynamics and suitable $B_{n}(x) \rightarrow x \in \Omega$

$$
\frac{\mu_{B_{n}}\left(\tau_{B_{n}} \lambda\left(B_{n}\right) \mu\left(B_{n}\right)>t\right)}{\lambda\left(B_{n}\right)} \xrightarrow{n \rightarrow \infty} e^{-t} \quad, \quad \forall x \in \Omega .
$$

The new scaling parameter $\lambda\left(B_{n}(x)\right)$ accounts for periodic $x$ 's.
And $\lambda\left(B_{n}(x)\right) \rightarrow 1$ for aperiodic $x$ 's.

Abadi et al. (2000's): Several possible choices for $\lambda\left(B_{n}(x)\right)$, but a simple one is
$\mu_{B_{n}}\left(\tau_{B_{n}}>\right.$ "first possible return to $\left.B_{n}{ }^{\prime \prime}\right)$

What about the number $N_{n}(x)$ counting visits to $B_{n}$ in the time window $\left[1, t / \mu\left(B_{n}\right)\right], t>0$ ?

What about the number $N_{n}(x)$ counting visits to $B_{n}$ in the time window $\left[1, t / \mu\left(B_{n}\right)\right], t>0$ ?

## Theorem (Pitskel (1991), Hirata (1993)...)

For suitable dynamics and suitable $B_{n}(x) \rightarrow x \in \Omega$

$$
\mathcal{L}\left(N_{n}\right) \Rightarrow \operatorname{Pois}(t) \quad, \quad \underline{\mu-\text { a.e. } x \in \Omega} .
$$

What about the number $N_{n}(x)$ counting visits to $B_{n}$ in the time window $\left[1, t / \mu\left(B_{n}\right)\right], t>0$ ?

## Theorem (Pitskel (1991), Hirata (1993)...)

For suitable dynamics and suitable $B_{n}(x) \rightarrow x \in \Omega$

$$
\mathcal{L}\left(N_{n}\right) \Rightarrow \operatorname{Pois}(t) \quad, \quad \underline{\mu-\text { a.e. } x \in \Omega .}
$$

## Theorem (Haydn and Vaienti (2009) for cylinder sets)

For suitable dynamics and cylinder sets or balls $B_{n}(x) \rightarrow x \in \Omega$

$$
\mathcal{L}\left(N_{n}\right) \Rightarrow \text { Pólya-Aeppli }(t \lambda) \quad, \quad \forall x \in \Omega
$$

when $\lambda:=\lim _{n} \lambda\left(B_{n}(x)\right)$ exists.

What about the number $N_{n}(x)$ counting visits to $B_{n}$ in the time window $\left[1, t / \mu\left(B_{n}\right)\right], t>0$ ?

## Theorem (Pitskel (1991), Hirata (1993)...)

For suitable dynamics and suitable $B_{n}(x) \rightarrow x \in \Omega$

$$
\mathcal{L}\left(N_{n}\right) \Rightarrow \operatorname{Pois}(t) \quad, \quad \underline{\mu-\text { a.e. } x \in \Omega .}
$$

## Theorem (Haydn and Vaienti (2009) for cylinder sets)

For suitable dynamics and cylinder sets or balls $B_{n}(x) \rightarrow x \in \Omega$

$$
\mathcal{L}\left(N_{n}\right) \Rightarrow \text { Pólya-Aeppli }(t \lambda) \quad, \quad \forall x \in \Omega
$$

when $\lambda:=\lim _{n} \lambda\left(B_{n}(x)\right)$ exists.

Pólya-Aeppli $(t \lambda)$ is the Compound Poisson $\sum_{i=1}^{M} X_{i}$ with

- $X_{i}^{\prime}$ s are i.i.d. Geo( $\lambda$ )
- $M \sim \operatorname{Pois}(t \lambda)$.

What about arbitrary target measurable null set $\Gamma$ instead of $x$ ?

What about arbitrary target measurable null set $\Gamma$ instead of $x$ ?
Take $U_{n} \searrow \Gamma$, with $U_{n}$ is a union of $n$-cylinders.

What about arbitrary target measurable null set $\Gamma$ instead of $x$ ?
Take $U_{n} \searrow \Gamma$, with $U_{n}$ is a union of $n$-cylinders.

- Haydn and Vaienti (2020)
-> for geometric dynamical systems
Motivation: spatial synchronization of dynamical systems.

What about arbitrary target measurable null set $\Gamma$ instead of $x$ ?
Take $U_{n} \searrow \Gamma$, with $U_{n}$ is a union of $n$-cylinders.

- Haydn and Vaienti (2020)
-> for geometric dynamical systems
Motivation: spatial synchronization of dynamical systems.
- G., Haydn and Vaienti (to appear, 2023)
-> for symbolic dynamical systems.
Motivation: approximate synchronization of stochastic processes.


## Présentation

(1) Setting

2 First return time and number of returns
(3) Fluctuations of the return time

Define the return time of $x$ into its $n$-cylinder

$$
r_{n}(x):=\tau_{x_{0}^{n-1}}(x)
$$

Define the return time of $x$ into its $n$-cylinder

$$
r_{n}(x):=\tau_{x_{0}^{n-1}}(x)
$$

Recall the Shannon entropy of $\mu$ :

$$
h_{\mu}:=\lim _{n} \frac{1}{n} \sum_{a_{0}^{n-1}} \mu\left(a_{0}^{n-1}\right) \log \mu\left(a_{0}^{n-1}\right)
$$

Define the return time of $x$ into its $n$-cylinder

$$
r_{n}(x):=\tau_{x_{0}^{n-1}}(x) .
$$

Recall the Shannon entropy of $\mu$ :

$$
h_{\mu}:=\lim _{n} \frac{1}{n} \sum_{a_{0}^{n-1}} \mu\left(a_{0}^{n-1}\right) \log \mu\left(a_{0}^{n-1}\right) .
$$

## Theorem (Ornstein and Weiss (1993))

For ergodic measure $\mu$

$$
\frac{\log r_{n}}{n} \rightarrow h_{\mu} \quad \mu-\text { a.e. } x \in \Omega
$$

Define the return time of $x$ into its $n$-cylinder

$$
r_{n}(x):=\tau_{x_{0}^{n-1}}(x) .
$$

Recall the Shannon entropy of $\mu$ :

$$
h_{\mu}:=\lim _{n} \frac{1}{n} \sum_{a_{0}^{n-1}} \mu\left(a_{0}^{n-1}\right) \log \mu\left(a_{0}^{n-1}\right) .
$$

## Theorem (Ornstein and Weiss (1993))

For ergodic measure $\mu$

$$
\frac{\log r_{n}}{n} \rightarrow h_{\mu} \quad \mu-\text { a.e. } x \in \Omega
$$

What about the fluctuations?

## Theorem (Collet, Galves and Schmitt (1999))

If $\mu$ satisfies

- strongly mixing,
- with $\sigma^{2}:=\lim \operatorname{Var}\left(\frac{\log r_{n}}{\sqrt{n}}\right)>0$,
then:

$$
\mathcal{L}\left(\frac{\log r_{n} / n-h_{\mu}}{\sigma / \sqrt{n}}\right) \Rightarrow \mathcal{N}(0,1)
$$

and there exists a $u_{0}>0$ s.t. for $u \in\left[0, u_{0}[\right.$

$$
\begin{aligned}
& -\lim \frac{1}{n} \log \mu\left(\frac{\log r_{n}}{n}>h+u\right)=m(h+u) \\
& -\lim \frac{1}{n} \log \mu\left(\frac{\log r_{n}}{n}<h-u\right)=m(h-u)
\end{aligned}
$$

where $m$ is the Legendre-Fenchel transform of

$$
\mathcal{M}(q):=\lim _{n} \frac{1}{n} \log \mathbb{E}\left(\mu\left(X_{1}^{n}\right)^{-1}\right)^{q}, \quad q \in \mathbb{R}
$$

Observation: Example for i.i.d. $\operatorname{Ber}(1 / 3)$



## Theorem (Collet, Galves and Schmitt (1999))

If $\mu$ satisfies

- strongly mixing,
- with $\sigma^{2}:=\lim \operatorname{Var}\left(\frac{\log r_{n}}{\sqrt{n}}\right)>0$,
then:

$$
\mathcal{L}\left(\frac{\log r_{n} / n-h_{\mu}}{\sigma / \sqrt{n}}\right) \Rightarrow \mathcal{N}(0,1)
$$

and there exists a $u_{0}>0$ s.t. for $u \in\left[0, u_{0}[\right.$

$$
\begin{aligned}
& -\lim \frac{1}{n} \log \mu\left(\frac{\log r_{n}}{n}>h+u\right)=m(h+u) \\
& -\lim \frac{1}{n} \log \mu\left(\frac{\log r_{n}}{n}<h-u\right)=m(h-u)
\end{aligned}
$$

where $m$ is the Legendre-Fenchel transform of

$$
\mathcal{M}(q):=-\lim _{n} \frac{1}{n} \log \mathbb{E} \mu\left(X_{1}^{n}\right)^{q}, \quad q \in \mathbb{R}
$$

Define the following limits, provided it exists:

$$
\Lambda:=\lim _{n} \frac{1}{n} \log \mathbb{E}\left(1-\lambda\left(X_{1}^{n}\right)\right)
$$

Define the following limits, provided it exists:

$$
\Lambda:=\lim _{n} \frac{1}{n} \log \mathbb{E}\left(1-\lambda\left(X_{1}^{n}\right)\right)
$$

## Theorem (Abadi, Amorim, Chazottes, G. (to appear, 2023))

Same conditions as before:

- $\Lambda$ exists and equals $\lim { }_{n} \frac{1}{n} \log \max _{a_{0}^{n-1}} \mu\left(a_{0}^{n-1}\right)$
- and $\mathcal{R}(q)$ exists and

$$
\begin{aligned}
\mathcal{R}(q) & =\mathcal{M}(q) & & \text { for } q>q^{\star} \\
& =\Lambda & & \text { for } q \leq q^{\star}
\end{aligned}
$$

where $q^{\star} \in(-1,0)$ is the solution of the equation $\mathcal{M}(q)=\Lambda$.

Consequence:



The computation of $\mathcal{R}(q)$ has interest by itself.

The computation of $\mathcal{R}(q)$ has interest by itself.

$$
\begin{gathered}
\text { a.s } \lim _{n} \frac{1}{n} \log r_{n}(x)=h=\lim _{n} \frac{1}{n} \log \mu\left(x_{1}^{n}\right)^{-1} \text { a.s. } \\
\mathcal{L}\left(\frac{\log r_{n} / n-h_{\mu}}{\sigma / \sqrt{n}}\right) \Rightarrow \mathcal{N}(0,1) \Leftarrow \mathcal{L}\left(\frac{\log \mu\left(X_{1}^{n}\right)^{-1} / n-h_{\mu}}{\sigma / \sqrt{n}}\right)
\end{gathered}
$$

The computation of $\mathcal{R}(q)$ has interest by itself.

$$
\begin{gathered}
\text { a.s } \lim _{n} \frac{1}{n} \log r_{n}(x)=h=\lim _{n} \frac{1}{n} \log \mu\left(x_{1}^{n}\right)^{-1} \text { a.s. } \\
\mathcal{L}\left(\frac{\log r_{n} / n-h_{\mu}}{\sigma / \sqrt{n}}\right) \Rightarrow \mathcal{N}(0,1) \Leftarrow \mathcal{L}\left(\frac{\log \mu\left(X_{1}^{n}\right)^{-1} / n-h_{\mu}}{\sigma / \sqrt{n}}\right)
\end{gathered}
$$

These local considerations yield "ansatz"

$$
r_{n} \longleftrightarrow \mu\left(X_{1}^{n}\right)^{-1}
$$

and

$$
\mathcal{R}(q):=\lim _{n} \frac{1}{n} \log \mathbb{E} r_{n}^{q} \longleftrightarrow \lim _{n} \frac{1}{n} \log \mathbb{E} \mu\left(X_{1}^{n}\right)^{-q}=\mathcal{M}(q)
$$

The computation of $\mathcal{R}(q)$ has interest by itself.

$$
\begin{gathered}
\text { a.s } \lim _{n} \frac{1}{n} \log r_{n}(x)=h=\lim _{n} \frac{1}{n} \log \mu\left(x_{1}^{n}\right)^{-1} \text { a.s. } \\
\mathcal{L}\left(\frac{\log r_{n} / n-h_{\mu}}{\sigma / \sqrt{n}}\right) \Rightarrow \mathcal{N}(0,1) \Leftarrow \mathcal{L}\left(\frac{\log \mu\left(X_{1}^{n}\right)^{-1} / n-h_{\mu}}{\sigma / \sqrt{n}}\right)
\end{gathered}
$$

These local considerations yield "ansatz"

$$
r_{n} \longleftrightarrow \mu\left(X_{1}^{n}\right)^{-1}
$$

and

$$
\mathcal{R}(q):=\lim _{n} \frac{1}{n} \log \mathbb{E} r_{n}^{q} \longleftrightarrow \lim _{n} \frac{1}{n} \log \mathbb{E} \mu\left(X_{1}^{n}\right)^{-q}=\mathcal{M}(q)
$$

Grassberger and Procaccia (1983): return time picture to estimate the dimension.

The computation of $\mathcal{R}(q)$ has interest by itself.

$$
\begin{gathered}
\text { a.s } \lim _{n} \frac{1}{n} \log r_{n}(x)=h=\lim _{n} \frac{1}{n} \log \mu\left(x_{1}^{n}\right)^{-1} \text { a.s. } \\
\mathcal{L}\left(\frac{\log r_{n} / n-h_{\mu}}{\sigma / \sqrt{n}}\right) \Rightarrow \mathcal{N}(0,1) \Leftarrow \mathcal{L}\left(\frac{\log \mu\left(X_{1}^{n}\right)^{-1} / n-h_{\mu}}{\sigma / \sqrt{n}}\right)
\end{gathered}
$$

These local considerations yield "ansatz"

$$
r_{n} \longleftrightarrow \mu\left(X_{1}^{n}\right)^{-1}
$$

and

$$
\mathcal{R}(q):=\lim _{n} \frac{1}{n} \log \mathbb{E} r_{n}^{q} \longleftrightarrow \lim _{n} \frac{1}{n} \log \mathbb{E} \mu\left(X_{1}^{n}\right)^{-q}=\mathcal{M}(q)
$$

Grassberger and Procaccia (1983): return time picture to estimate the dimension.

Haydn et al. (2002) shown, by simulations, that this doesn't work.

THANK YOU!!!

