Coalescent Structure of Galton-Watson trees in varying environment

Sandra Palau (UNAM, México)

Joint work with: Simon Harris (University of Auckland, N.Z.) and Juan Carlos Pardo (CIMAT, México) Simulations: Enrique Moctezuma (UNAM, México)

Probability Seminar. Mathematics Institute, Federal University of Rio de Janeiro.

Sandra Palau (UNAM, México)

Coalescent Structure of Galton-Watson trees in varying environment

イロン イボン イヨン イヨン 三日

GOAL

Take a critical Galton-Watson process in a varying environment. If the system survives until time *N*, consider the genealogical tree of a sample of $k \ge 1$ particles chosen uniformly without replacement from those alive. How does their ancestral tree look like? What happens when $N \rightarrow \infty$?

イロト イポト イヨト イヨト

GALTON-WATSON IN VARYING ENVIRONMENT

A *varying environment* $e = (q_1, q_2, ...)$ is a sequence of probability measures on $\mathbb{N}_0 = \{0, 1, 2, \cdots\}$. We define a *Galton-Watson process* $Z = \{Z_n, n \ge 0\}$ *in a varying environment e* as

$$Z_0 = 1$$
 and $Z_n := \sum_{i=1}^{Z_{n-1}} \chi_i^{(n)}, \quad n \ge 1,$

where $\{\chi_i^{(n)}; i, n \ge 1\}$ is a sequence of independent random variables

$$\mathbb{P}(\chi_i^{(n)}=k)=q_n(k), \qquad k\in\mathbb{N}_0.$$

 $\chi_i^{(n)}$ is the offspring of the *i*-th particle in the (n-1)-th generation.

イロト イポト イヨト イヨト

We denote by $(Z_n; \mathbb{P}^{(e)})$ the law of the process.

GALTON-WATSON IN VARYING ENVIRONMENT

Let f_i be the generating function associated with q_i . By applying the branching property recursively, we deduce that

 $\mathbb{E}^{(e)}\left[s^{Z_n}\right] = f_1 \circ \cdots \circ f_n(s), \quad \text{for} \quad 0 \le s \le 1 \quad \text{and} \quad n \ge 1,$

where $f \circ g$ denotes the composition of f with g. Let $f_{1,n}(s) \coloneqq f_1 \circ \cdots \circ f_n(s)$. By differentiating, we obtain the mean and second factorial moment

$$\mathbb{E}^{(e)}[Z_n] = \mu_n$$
, and $\frac{\mathbb{E}^{(e)}[Z_n(Z_n-1)]}{\mathbb{E}^{(e)}[Z_n]^2} = \sum_{k=0}^{n-1} \frac{\nu_{k+1}}{\mu_k} =: \rho_n, \quad n \ge 1,$

where $\mu_0 \coloneqq 1$ and for any $n \ge 1$,

$$\mu_n := f'_1(1) \cdots f'_n(1), \text{ and } \nu_n := \frac{f''_n(1)}{f'_n(1)^2}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の ()

HYPOTHESIS IN THE ENVIRONMENT

GWVEs can behave in an strange manner as possessing multiple rates of growth; see [MacPhee and Schuh 1983]. Kersting, (2020) showed that these exotic possibilities can be precluded by the following condition:

Condition (*)

For every $\epsilon > 0$, there is a finite constant c_{ϵ} such that for all $n \ge 1$

$$\mathbb{E}\left[\left(\chi_{1}^{(n)}\right)^{2}\mathbf{1}_{\{\chi_{1}^{(n)}>c_{\epsilon}(1+\mathbb{E}[\chi_{1}^{(n)}])\}}\right] \leq \epsilon \mathbb{E}\left[\left(\chi_{1}^{(n)}\right)^{2}\mathbf{1}_{\{\chi_{1}^{(n)}>2\}}\right].$$
 (*)

We say that a GWVE is *regular* if it satisfies Condition (*).

It can be difficult to verify. A easier condition, which it is satisfied by most common probability distributions, is: There exists c > 0 such that

$$f_n'''(1) \le c f_n''(1)(1+f_n'(1)), \quad \text{for any } n \ge 1.$$

イロン イボン イヨン イヨン 三日

ASYMPTOTIC BEHAVIOUR

Kersting showed that under Condition (\star) , the behaviour of a GWVE is dictated by the two sequences

$$\mu_n := \mathbb{E}^{(e)}[Z_n] \quad \text{and} \quad \rho_n := \frac{\mathbb{E}^{(e)}[Z_n(Z_n-1)]}{\mathbb{E}^{(e)}[Z_n]^2}, \quad n \ge 1.$$

Specifically, $\lim_{n\to\infty} \frac{\rho_n}{2} \mathbb{P}^{(e)}[Z_n > 0] = 1$ and $\mathbb{E}^{(e)}[Z_n | Z_n > 0] \sim \frac{\mu_n \rho_n}{2}$ as $n \to \infty$.

A regular GWVE is *critical* if and only if

 $\lim_{n\to\infty}\rho_n=\infty \quad \text{and} \quad \lim_{n\to\infty}\mu_n\rho_n=\infty.$

In this case, $\lim_{n\to\infty} \mathbb{P}^{(e)}[Z_n > 0] = 0$ and Yaglom's limit exists: $\frac{2}{\mu_n \rho_n} Z_n$ conditioned on $\{Z_n > 0\}$ converges in distribution to a standard exponential random variable.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ●

GOAL

Take a critical Galton-Watson process in a varying environment. It has extinction a.s. Conditional on survival, take the genealogical tree of a sample of $k \ge 1$ particles chosen uniformly without replacement from those alive. How does it look like? What happens when $N \to \infty$?

イロト イポト イヨト イヨト

ROOTED TREES: ULAM-HARRIS LABELING

Let $\mathcal{U} := \{\emptyset\} \cup \bigcup_{n=1}^{\infty} \mathbb{N}^n$ be the set of finite sequences of positive integers.

- We define the *length* of u by |u| = n, if $u = (u_1, \dots, u_n) \in \mathbb{N}^n$ and $|\emptyset| = 0$.
- The concatenation of $u = (u_1, ..., u_n)$ and $v = (v_1, ..., v_m)$ is denote by $uv := (u_1, ..., u_n, v_1, ..., v_m)$, with the convention that $u \varnothing = \emptyset u = u$.
- We say that v is an ancestor of u and write $v \le u$ if there exists $w \in U$ such that u = vw.
- ▶ For $u \in U$, we define the genealogical line of u as $[[\emptyset, u]] := \{w \in U : \emptyset \leq w \leq u\}.$

Example:

If u = 1 1 2, then |u| = 3 and $[[\emptyset, u]] = \{\emptyset, 1, 1 1, 1 1 2\}$. If v = 3 2, then uv = 1 1 2 3 2.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● の Q @

ROOTED TREES

A *rooted tree* \mathbf{t} is a subset of \mathcal{U} that satisfies

- ▶ Ø ∈ **t**.
- $\llbracket \emptyset, u \rrbracket \subset \mathbf{t}$ for any $u \in \mathbf{t}$.
- For every $u \in \mathbf{t}$ there exists a number $l_u(\mathbf{t})$ such that $uj \in \mathbf{t}$ if and only if $1 \le j \le l_u(\mathbf{t})$.

The empty string \emptyset is called *the root*.

The integer $l_u(t)$ represents the number of offspring of $u \in t$.

A *leaf* is a $u \in \mathbf{t}$ such that $l_u(\mathbf{t}) = 0$. Its genealogical line $\mathbf{u} := [[\emptyset, u]]$ is called a *spine*.

The set of trees with k spines is denote by

ヘロン 人間 とくほ とくほ とう

 $\mathcal{T}^k \coloneqq \{ (\mathbf{t}; \mathbf{v}_1, \dots, \mathbf{v}_k) : \mathbf{t} \text{ is a tree and } \mathbf{v}_i \text{ is a spine on } \mathbf{t} \text{ for all } i \leq k \}.$

TREE IN VARYING ENVIRONMENT WITH $k \ge 1$ SPINES

Construction:

- Start with one particle with k marks.
- Particles in generation *m* gives birth according to q_{m+1}.
- If a particle with *j* marks gives birth to *a* > 0 particles, then, each mark chooses the line to follow uniformly.
- If a particle with *j* marks give birth to 0 particles, then its marks are transferred to a graveyard.

イロト イポト イヨト イヨト

TREE IN VARYING ENVIRONMENT WITH $k \ge 1$ SPINES A *Galton-Watson tree in environment e with* $k \ge 1$ *spines,* $(\mathbf{T}; \mathbf{V}_1, \dots, \mathbf{V}_k)$ is a \mathcal{T}^k -valued r.v. with distribution

$$\mathbb{P}_n^{(e,k)}((\mathbf{t};\mathbf{v}_1,\ldots,\mathbf{v}_k)) = \prod_{u\in\mathbf{t}:|u|< n} q_{|u|+1}(l_u(\mathbf{t})) \prod_{i=1}^k \prod_{u\in\mathbf{v}_i:|u|<|\mathbf{v}_i|\wedge n} \frac{1}{l_u(\mathbf{t})},$$

for any $n \ge 0$ and $(\mathbf{t}; \mathbf{v}_1, \ldots, \mathbf{v}_k) \in \mathcal{T}^k$.

Example:

$$\mathbb{P}_{3}^{(e,4)}((\mathbf{t};\mathbf{v}_{1},\ldots,\mathbf{v}_{k})) = q_{1}(1)q_{2}(5)q_{3}(2)q_{3}(0)^{2}q_{3}(1)^{2}\left(\frac{1}{5}\right)^{4}\left(\frac{1}{2}\right)^{3}.$$

4 E b

э

CHANGE OF MEASURE.

Let $\theta \in [0,1)$ and define the function $g_{n,\theta} : \mathcal{T}^k \to \mathbb{R}$, as follows

$$g_{n,\theta}(\mathbf{t};\mathbf{v}_1,\ldots,\mathbf{v}_k) \coloneqq e^{-\theta X_n(\mathbf{t})} \mathbf{1}_{\{\mathbf{v}_i\neq\mathbf{v}_j,i\neq j\}} \mathbf{1}_{\{|\mathbf{v}_i|=n,i\leq k\}} \prod_{i=1}^{\kappa} \prod_{u\in\mathbf{v}_i: |u|< n} l_u(\mathbf{t}).$$

 $g_{n,\theta}(\mathbf{t}; \mathbf{v}_1, \dots, \mathbf{v}_k)$ is non negative if the *k* spines are different, alive at time *n* and uniformly chosen.

イロト 不得 とくほと くほとう

Observe that

$$\mathbb{E}_n^{(e,k)}[g_{n,\theta}(\mathbf{T};\mathbf{V}_1,\ldots,\mathbf{V}_k)] = \mathbb{E}^{(e)}[Z_n(Z_n-1)\cdots(Z_n-k+1)e^{-\theta Z_n}] < \infty.$$

э

Change of measure $\mathbf{Q}_n^{(e,k,\theta)}$

We define the change of measure

$$\mathbf{Q}_n^{(e,k,\theta)}((\mathbf{t};\mathbf{v}_1,\ldots,\mathbf{v}_k)) \coloneqq \frac{g_{n,\theta}(\mathbf{t};\mathbf{v}_1,\ldots,\mathbf{v}_k)\mathbb{P}_n^{(e,k)}((\mathbf{t};\mathbf{v}_1,\ldots,\mathbf{v}_k))}{\mathbb{E}_n^{(e,k)}[g_{n,\theta}(\mathbf{T};\mathbf{V}_1,\ldots,\mathbf{V}_k)]},$$

for $(\mathbf{t}; \mathbf{v}_1, \ldots, \mathbf{v}_k) \in \widehat{\mathcal{T}}_n^k$.

イロト 不得 とくほと くほとう

3

SPINE SPLITTING TIME

Denote by ψ_1 and $\hat{\psi}_1$ the last time where all spines are together and the first spine splitting time, respectively.

Let $0 \le m < n$, then

$$\mathbf{Q}_{n}^{(e,k,\theta)}(\psi_{1} \ge m) = \frac{\mathbb{E}^{(e)}\left[e^{-\theta Z_{n}}Z_{n}\right]}{\mathbb{E}^{(e)}\left[e^{-\theta Z_{n}}Z_{n}^{[k]}\right]} \frac{\mathbb{E}^{(e_{m})}\left[e^{-\theta Z_{n-m}}Z_{n-m}^{[k]}\right]}{\mathbb{E}^{(e_{m})}\left[e^{-\theta Z_{n-m}}Z_{n-m}\right]}$$

where $x^{[k]}$ its *k*-th factorial, that is $x^{[k]} \coloneqq x(x-1) \times \cdots \times (x-k+1)$.

We also have explicitly

k = 5, $\psi_1 = 9$, there are 3 groups with 1, 1, and 3 marks.

$$F(m; k_1, \dots k_g)$$

:= $\mathbf{Q}_n^{(e,k,\theta)}$ (At $\hat{\psi}_1 = m$ spines split into g groups with k_1, \dots, k_g marks).

CONSTRUCTION OF A GWTVE UNDER $\mathbf{Q}_n^{(e,k,\theta)}$

- Start with one particle with k marks.
- If k = 1, we consider $\psi_1 = n$. Otherwise, select ψ_1 , the number of spine groups g and their sizes k_1, \ldots, k_g according to $F(m; k_1, \cdots k_g)$.
- An unmarked particle in gen. $m \in \{0, ..., n - 1\}$ gives birth to unmarked particles with probability

$$q_{m+1}^{(0,\theta)}(\ell) = q_{m+1}(\ell) \frac{f_{m+1,n}(e^{-\theta})^{\ell}}{\mathbb{E}^{(e_m)} \left[e^{-\theta Z_{n-m}}\right]}.$$

イロン イボン イヨン イヨン 三日

CONSTRUCTION OF A GWTVE UNDER $\mathbf{Q}_n^{(e,k,\theta)}$

- Start with one particle with *k* marks.
- If k = 1, we consider $\psi_1 = n$. Otherwise, select ψ_1 , the number of spine groups g and their sizes k_1, \ldots, k_g according to $F(m; k_1, \cdots k_g)$.
- An unmarked particle in gen. $m \in \{0, ..., n - 1\}$ gives birth to unmarked particles with probability

$$q_{m+1}^{(0,\theta)}(\ell) = q_{m+1}(\ell) \frac{f_{m+1,n}(e^{-\theta})^{\ell}}{\mathbb{E}^{(e_m)} \left[e^{-\theta Z_{n-m}}\right]}.$$

• A marked particle in gen. $m \in \{0, ..., \psi_1 - 1\}$ gives birth to particles accordingly to

 $q_{m+1}^{(1,\theta)}(\ell) = \frac{\ell q_{m+1}(\ell) \left(f_{m+1,n}(e^{-\theta}) \right)^{\ell-1}}{f'_{m+1}(f_{m+1,n}(e^{-\theta}))}$

Uniformly, select one of the particles to carry the *k* marks. All the other particles remain unmarked.

イロン イボン イヨン イヨン 三日

CONSTRUCTION OF A GWTVE UNDER $\mathbf{Q}_n^{(e,k,\theta)}$

- Start with one p. with *k* marks.
- Select ψ_1 , g and k_1, \ldots, k_g according to $F(m; k_1, \cdots k_g)$.
- Unmarked particles in gen. $m \in \{0, ..., n-1\}$ gives birth to unmarked particles according to $q_{m+1}^{(0,\theta)}$.
- Marked particle in gen. $m \in \{0, ..., \psi_1 - 1\}$ gives birth as $q_{m+1}^{(1,\theta)}$. Select one to carry the *k* marks. All the other particles remain unmarked.

• The marked particle at generation $m = \psi_1$ gives birth accordingly to

 $q_{m+1}^{(g,\theta)}(\ell) = \frac{\ell^{[g]}q_{m+1}(\ell)(f_{m+1,n}(e^{-\theta}))^{l-g}}{\frac{\partial^{g}}{\partial s^{g}}f_{m+1}(s)\Big|_{s=f_{m+1,n}(e^{-\theta})}}$

Uniformly, select *g* of them as marked with k_1, \ldots, k_g marks, respectively. All the other particles remain unmarked.

イロン イボン イヨン イヨン 三日

 Repeat steps for each of the g marked particles.

K-SAMPLE TREE

For each $i \le k - 1$, denote by ψ_i the last time where there are at most i marked particles.

 $\psi_1 = 9 = \psi_2, \psi_3 = 11 \text{ and } \psi_4 = 12.$

We know the joint distribution of the spines split times $(\psi_1, \ldots, \psi_{k-1})$ and the splitting groups under $\mathbf{Q}_n^{(e,k,\theta)}$. Now, for a CRITICAL GWVE, we want to know its asymptotic behaviour as $n \to \infty$.

イロト イポト イヨト 一日

TIME RESCALING

Recall that

$$\rho_0 = 0, \quad \text{and} \qquad \rho_n = \frac{\mathbb{E}^{(e)}[Z_n(Z_n - 1)]}{\mathbb{E}^{(e)}[Z_n]^2} = \sum_{k=0}^{n-1} \frac{\nu_{k+1}}{\mu_k}, \qquad n \ge 1.$$

Observe that $\{\rho_m | \rho_n; m \ge n\}$ can be thought as a cumulative probability distribution. We define its right-continuous generalised inverse as

 $\tau_n(t) = \max\{k \ge 0 : \rho_k \le t\rho_n\}, \qquad t \in [0,1].$

Sandra Palau (UNAM, México)

Coalescent Structure of Galton-Watson trees in varying environment

BINARY TREES

Let \mathcal{B}^k be the set of full binary trees with *k* leaves, i.e. $\mathbf{b} \in \mathcal{B}^k$ if and only if $l_u(\mathbf{b}) \in \{0,2\}$ for all $u \in \mathbf{b}$ and $k = |\{u \in \mathbf{b} : l_u(\mathbf{b}) = 0\}|$. We endow \mathcal{B}^k with the $\mathbb{P}_{\mathcal{B}^k}$ probability measure of choosing uniformly a binary branching tree with *k* leaves.

Denote by $\mathcal{O} : \{(\mathbf{t}; \mathbf{v}_1, \dots, \mathbf{v}_k) \in \mathcal{T}^k : \text{spine splittings are binary}\} \longrightarrow \mathcal{B}^k$, the operation that squeeze or stretch each line of the tree $\bigcup_{i=1}^k \mathbf{v}_i$ in a way that we obtain a tree in \mathcal{B}^k .

Coalescent Structure of Galton-Watson trees in varying environment

ASYMPTOTIC LIMIT UNDER $\mathbf{Q}_n^{(e,k,\theta_n)}$

Proposition (Harris, Palau, Pardo)

Consider a critical GWVE. Let $0 \le s_1 \le t_1 \le s_2 \le \cdots \le s_{k-1} \le t_{k-1} \le 1$ and $\mathbf{b} \in \mathcal{B}^k$. Then

$$\lim_{n \to \infty} \mathbf{Q}_{n}^{(e,k,\theta_{n})} \Big(\psi_{1} \in (\tau_{n}(s_{1}), \tau_{n}(t_{1})), \dots, \psi_{k-1} \in (\tau_{n}(s_{k-1}), \tau_{n}(t_{k-1})), \mathcal{O} = \mathbf{b} \Big) \\ = \mathbb{P}_{\mathcal{B}^{k}}(\mathbf{b})(k-1)! (1+\theta)^{k-1} \prod_{i=1}^{k-1} \Big(\frac{1-s_{i}}{1+\theta(1-s_{i})} - \frac{1-t_{i}}{1+\theta(1-t_{i})} \Big).$$

Observations:

- Asymptotically, all the splitting are binary.
- The tree topology $\{\mathcal{O} = \mathbf{t}, \mathbf{t} \in \mathcal{B}^k\}$ and the split times $\{\psi_i, i = 1, \dots, k-1\}$ are asymptotically independent.

(日)

Asymptotic limit under $\mathbf{Q}_n^{(e,k,\theta_n)}$

Observations:

- { ψ_i , $i \le k 1$ } converges in distribution to an ordered sample of k 1 random variables. Let { $\widetilde{\psi}_i$, $i \le k 1$ } be a uniformly random permutation of { ψ_i , $i \le k 1$ }.
- If we start with *i* groups of spines of sizes a_1, \ldots, a_i , in the limit, the split times for any group *j* will be distributed like $a_j 1$ independent random variables, all with the same distribution. In particular, this implies that the first group to split will be group *j* with probability proportional to $a_j 1$, that is, with probability $(a_j 1)/(k i)$.

(日)

Asymptotic behaviour under $\mathbb{P}^{(e)}$

Theorem (Harris, Palau, Pardo)

Consider a Critical GWVE and $\{t_1, \ldots, t_{k-1}\} \subset (0, 1)$ with $t_i \neq t_j$. Then,

$$\lim_{k \to \infty} \mathbb{P}^{(e)} \left(\widetilde{\psi}_1 \ge \tau_n(t_1), \dots, \widetilde{\psi}_{k-1} \ge \tau_n(t_{k-1}) \mid Z_n \ge k \right)$$
$$= k \left(\prod_{i=1}^{k-1} \frac{1-t_i}{t_i} - \sum_{j=1}^{k-1} \frac{1-t_j}{t_j} \prod_{i=1, i \neq j}^{k-1} \frac{t_i}{t_i - t_j} \log(1-t_j) \right).$$

The times $\{\widetilde{\psi}_i, i \leq k-1\}$ are asymptotically independent of the sample tree topology. The partition process $(P_1(n), \ldots, P_{k-1}(n))$ that describes the tree topology satisfies:

- If a block of size *a* splits, it creates 2 blocks whose sizes are ℓ and $a \ell$ with probability converging to 1/(a 1), for $1 \le \ell \le a 1$.
- If P_i(n) contains blocks of sizes a₁,...,a_{i+1}, the probability that block *j* is the next to split converges to (a_j − 1)/(k − i − 1).

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

э

THANK YOU

- Boenkost, Foutel–Rodier, Schertzer. The genealogy of a nearly critical branching processes in varying environment. Arxiv: 2207. 11612.
- Harris, Johnston, and Roberts. The coalescent structure of continuous -time Galton–Watson trees. *The Annals of Applied Probability*, 30(3):1368–1414, 2020.
- Harris, Palau and Pardo. The coalescent structure of Galton-Watson trees in varying environments. ArXiv: 2207.10923v2.
- Kersting. A unifying approach to branching processes in a varying environment. *J. Appl. Probab.* 57(1), 196–220, 2020.
- Kersting. On the genealogical structure of critical branching processes in a varying environment. *Proceedings of the Steklov Institute of Mathematics*, 316(1), 209–219, 2022.
- Kersting and Vatutin. *Discrete time branching processes in random environment*. Wiley Online Library, 2017.

イロン 不良 とくほう 不良 とうせい