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GOAL

Take a critical Galton-Watson process in a varying environment. If
the system survives until time N, consider the genealogical tree of a
sample of k ≥ 1 particles chosen uniformly without replacement from
those alive. How does their ancestral tree look like? What happens
when N →∞?
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GALTON-WATSON IN VARYING ENVIRONMENT

A varying environment e = (q1, q2, . . .) is a sequence of probability mea-
sures on N0 = {0,1,2,⋯}. We define a Galton-Watson process Z =
{Zn,n ≥ 0} in a varying environment e as

Z0 = 1 and Zn ∶=
Zn−1

∑
i=1
χ
(n)
i , n ≥ 1,

where {χ(n)
i ; i,n ≥ 1} is a sequence of

independent random variables

P(χ(n)
i = k) = qn(k), k ∈ N0.

χ
(n)
i is the offspring of the i-th particle

in the (n − 1)-th generation.

We denote by (Zn;P(e)) the law of the process.
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GALTON-WATSON IN VARYING ENVIRONMENT

Let fi be the generating function associated with qi. By applying the
branching property recursively, we deduce that

E(e) [sZn] = f1 ○ ⋯ ○ fn(s), for 0 ≤ s ≤ 1 and n ≥ 1,

where f ○g denotes the composition of f with g. Let f1,n(s) ∶= f1○⋯○fn(s).
By differentiating, we obtain the mean and second factorial moment

E(e)[Zn] = µn, and
E(e)[Zn(Zn − 1)]

E(e)[Zn]2
=

n−1

∑
k=0

νk+1

µk
=∶ ρn, n ≥ 1,

where µ0 ∶= 1 and for any n ≥ 1,

µn ∶= f ′1(1)⋯f ′n(1), and νn ∶=
f ′′n (1)
f ′n(1)2 .
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HYPOTHESIS IN THE ENVIRONMENT

GWVEs can behave in an strange manner as possessing multiple rates
of growth; see [MacPhee and Schuh 1983]. Kersting, (2020) showed
that these exotic possibilities can be precluded by the following condi-
tion:

Condition (★)
For every ε > 0, there is a finite constant cε such that for all n ≥ 1

E [(χ(n)
1 )

2
1{χ(n)1 >cε(1+E[χ(n)1 ])}] ≤ εE [(χ(n)

1 )
2

1{χ(n)1 >2}] . (★)

We say that a GWVE is regular if it satisfies Condition (★).

It can be difficult to verify. A easier condition, which it is satisfied by
most common probability distributions, is: There exists c > 0 such
that

f ′′′n (1) ≤ cf ′′n (1)(1 + f ′n(1)), for any n ≥ 1.
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ASYMPTOTIC BEHAVIOUR

Kersting showed that under Condition (★), the behaviour of a GWVE
is dictated by the two sequences

µn ∶= E(e)[Zn] and ρn ∶=
E(e)[Zn(Zn − 1)]

E(e)[Zn]2
, n ≥ 1.

Specifically, lim
n→∞

ρn
2 P

(e)[Zn > 0] = 1 and E(e)[Zn ∣ Zn > 0] ∼ µnρn
2 as

n→∞.

A regular GWVE is critical if and only if

lim
n→∞

ρn =∞ and lim
n→∞

µnρn =∞.

In this case, lim
n→∞

P(e)[Zn > 0] = 0 and Yaglom’s limit exists: 2
µnρn

Zn

conditioned on {Zn > 0} converges in distribution to a standard expo-
nential random variable.
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GOAL

Take a critical Galton-Watson process in a varying environment.
It has extinction a.s. Conditional on survival, take the genealogical tree
of a sample of k ≥ 1 particles chosen uniformly without replacement
from those alive. How does it look like? What happens when N →∞?
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ROOTED TREES: ULAM-HARRIS LABELING

Let U ∶= {∅} ∪
∞
⋃

n=1
Nn be the set of finite sequences of positive integers.

▸ We define the length of u by ∣u∣ = n, if u = (u1,⋯,un) ∈ Nn and
∣∅∣ = 0.

▸ The concatenation of u = (u1, . . . ,un) and v = (v1, . . . ,vm) is de-
note by uv ∶= (u1, . . . ,un,v1, . . . ,vm), with the convention that u∅ =
∅u = u.

▸ We say that v is an ancestor of u and write v ≼ u if there exists
w ∈ U such that u = vw.

▸ For u ∈ U , we define the genealogical line of u as
J∅,uK ∶= {w ∈ U ∶ ∅ ≼ w ≼ u}.

Example:
If u = 1 1 2, then ∣u∣ = 3 and J∅,uK = {∅,1,1 1,1 1 2}.
If v = 3 2, then uv = 1 1 2 3 2.
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ROOTED TREES

A rooted tree t is a subset of U that satisfies
▸ ∅ ∈ t.
▸ J∅,uK ⊂ t for any u ∈ t.
▸ For every u ∈ t there exists a number

lu(t) such that uj ∈ t if and only if
1 ≤ j ≤ lu(t).

The empty string ∅ is called the root.
The integer lu(t) represents the number of
offspring of u ∈ t.
A leaf is a u ∈ t such that lu(t) = 0. Its ge-
nealogical line u ∶= J∅,uK is called a spine.

The set of trees with k spines is denote by

T k ∶= {(t;v1, . . . ,vk) ∶ t is a tree and vi is a spine on t for all i ≤ k}.
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TREE IN VARYING ENVIRONMENT WITH k ≥ 1 SPINES

Construction:
▸ Start with one particle with k

marks.
▸ Particles in generation m gives

birth according to qm+1.
▸ If a particle with j marks gives

birth to a > 0 particles, then, each
mark chooses the line to follow
uniformly.

▸ If a particle with j marks give
birth to 0 particles, then its marks
are transferred to a graveyard.
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TREE IN VARYING ENVIRONMENT WITH k ≥ 1 SPINES
A Galton-Watson tree in environment e with k ≥ 1 spines, (T;V1, . . . ,Vk)
is a T k-valued r.v. with distribution

P(e,k)
n ((t;v1, . . . ,vk)) = ∏

u∈t∶ ∣u∣<n
q∣u∣+1(lu(t))

k

∏
i=1

∏
u∈vi∶ ∣u∣<∣vi∣∧n

1
lu(t)

,

for any n ≥ 0 and (t;v1, . . . ,vk) ∈ T k.

Example:

P(e,4)
3 ((t;v1, . . . ,vk))

= q1(1)q2(5)q3(2)q3(0)2q3(1)2 (1
5
)

4

(1
2
)

3

.

Sandra Palau (UNAM, México) Coalescent Structure of Galton-Watson trees in varying environment 11 of 23



CHANGE OF MEASURE.
Let θ ∈ [0,1) and define the function gn,θ ∶ T k → R, as follows

gn,θ(t;v1, . . . ,vk) ∶= e−θXn(t)1{vi≠vj,i≠j}1{∣vi∣=n,i≤k}

k

∏
i=1

∏
u∈vi∶ ∣u∣<n

lu(t).

gn,θ(t;v1, . . . ,vk) is non negative
if the k spines are different, alive
at time n and uniformly chosen.

Observe that

E(e,k)
n [gn,θ(T;V1, . . . ,Vk)] = E(e)[Zn(Zn − 1)⋯(Zn − k + 1)e−θZn] <∞.

Sandra Palau (UNAM, México) Coalescent Structure of Galton-Watson trees in varying environment 12 of 23



CHANGE OF MEASURE Q(e,k,θ)
n

We define the change of measure

Q(e,k,θ)
n ((t;v1, . . . ,vk)) ∶=

gn,θ(t;v1, . . . ,vk)P(e,k)
n ((t;v1, . . . ,vk))

E(e,k)
n [gn,θ(T;V1, . . . ,Vk)]

,

for (t;v1, . . . ,vk) ∈ T̂ k
n .
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SPINE SPLITTING TIME
Denote by ψ1 and ψ̂1 the last time where all spines are together and
the first spine splitting time, respectively.

Let 0 ≤ m < n, then

Q(e,k,θ)
n (ψ1 ≥ m)

=
E(e) [e−θZn Zn]

E(e) [e−θZn Z[k]
n ]

E(em) [e−θZn−m Z[k]
n−m]

E(em) [e−θZn−m Zn−m]
,

where x[k] its k-th factorial, that is
x[k] ∶= x(x − 1) ×⋯ × (x − k + 1).

We also have explicitly

k = 5, ψ1 = 9, there are 3 groups with 1, 1,

and 3 marks.

F(m; k1,⋯kg)

∶= Q(e,k,θ)
n (At ψ̂1 = m spines split into g groups with k1, . . . , kg marks) .
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CONSTRUCTION OF A GWTVE UNDER Q(e,k,θ)
n

▸ Start with one particle with k
marks.

▸ If k = 1, we consider ψ1 = n.
Otherwise, select ψ1, the num-
ber of spine groups g and
their sizes k1, . . . , kg according
to F(m; k1,⋯kg).

▸ An unmarked particle in gen.
m ∈ {0, . . . ,n − 1} gives birth
to unmarked particles with
probability

q(0,θ)
m+1 (`) = qm+1(`)

fm+1,n(e−θ)`

E(em) [e−θZn−m]
.

▸ A marked particle in gen.
m ∈ {0, . . . , ψ1 − 1} gives birth
to particles accordingly to

q(1,θ)
m+1 (`) =

`qm+1(`) (fm+1,n(e−θ))`−1

f ′m+1(fm+1,n(e−θ))

Uniformly, select one of the parti-
cles to carry the k marks. All the
other particles remain unmarked.
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CONSTRUCTION OF A GWTVE UNDER Q(e,k,θ)
n

▸ Start with one p. with k marks.
▸ Select ψ1, g and k1, . . . , kg ac-

cording to F(m; k1,⋯kg).
▸ Unmarked particles in gen.

m ∈ {0, . . . ,n− 1} gives birth to
unmarked particles according
to q(0,θ)

m+1 .
▸ Marked particle in gen.

m ∈ {0, . . . , ψ1 − 1} gives birth
as q(1,θ)

m+1 . Select one to carry
the k marks. All the other
particles remain unmarked.

▸ The marked particle at generation
m = ψ1 gives birth accordingly to

q(g,θ)
m+1 (`) =

`[g]qm+1(`)(fm+1,n(e−θ))l−g

∂g

∂sg fm+1(s)∣
s=fm+1,n(e−θ)

Uniformly, select g of them as
marked with k1, . . . , kg marks,
respectively. All the other particles
remain unmarked.

▸ Repeat steps for each of the g
marked particles.
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K-SAMPLE TREE

For each i ≤ k − 1, denote by ψi the last time where there are at most i
marked particles.

ψ1 = 9 = ψ2, ψ3 = 11 and ψ4 = 12.

We know the joint distribution of the spines split times (ψ1, . . . , ψk−1)
and the splitting groups under Q(e,k,θ)

n . Now, for a CRITICAL GWVE,
we want to know its asymptotic behaviour as n→∞.
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TIME RESCALING
Recall that

ρ0 = 0, and ρn =
E(e)[Zn(Zn − 1)]

E(e)[Zn]2
=

n−1

∑
k=0

νk+1

µk
, n ≥ 1.

Observe that {ρm/ρn;m ≥ n} can be thought as a cumulative proba-
bility distribution. We define its right-continuous generalised inverse
as

τn(t) =max{k ≥ 0 ∶ ρk ≤ tρn}, t ∈ [0,1].
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BINARY TREES
Let Bk be the set of full binary trees with k leaves, i.e. b ∈ Bk if and only
if lu(b) ∈ {0,2} for all u ∈ b and k = ∣{u ∈ b ∶ lu(b) = 0}∣. We endow
Bk with the PBk probability measure of choosing uniformly a binary
branching tree with k leaves.

Denote by O ∶ {(t;v1, . . . ,vk) ∈ T k ∶ spine splittings are binary}Ð→ Bk,

the operation that squeeze or stretch each line of the tree
k
⋃
i=1

vi in a way

that we obtain a tree in Bk.
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ASYMPTOTIC LIMIT UNDER Q(e,k,θn)
n

Proposition (Harris, Palau, Pardo)
Consider a critical GWVE. Let 0 ≤ s1 ≤ t1 ≤ s2 ≤ ⋅ ⋅ ⋅ ≤ sk−1 ≤ tk−1 ≤ 1 and
b ∈ Bk. Then

lim
n→∞

Q(e,k,θn)
n (ψ1 ∈ (τn(s1), τn(t1)), . . . , ψk−1 ∈ (τn(sk−1), τn(tk−1)),O = b)

= PBk(b)(k − 1)! (1 + θ)k−1
k−1

∏
i=1

( 1−si
1+θ(1−si)

− 1−ti
1+θ(1−ti)

) .

Observations:
▸ Asymptotically, all the splitting are binary.
▸ The tree topology {O = t, t ∈ Bk} and the split times {ψi, i = 1, . . . , k−

1} are asymptotically independent.
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ASYMPTOTIC LIMIT UNDER Q(e,k,θn)
n

Observations:
▸ {ψi, i ≤ k − 1} converges in distribution to an ordered sample of

k − 1 random variables. Let {ψ̃i, i ≤ k − 1} be a uniformly random
permutation of {ψi, i ≤ k − 1}.

▸ If we start with i groups of spines of sizes a1, . . . , ai, in the limit,
the split times for any group j will be distributed like aj − 1 in-
dependent random variables, all with the same distribution. In
particular, this implies that the first group to split will be group
j with probability proportional to aj − 1, that is, with probability
(aj − 1)/(k − i).
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ASYMPTOTIC BEHAVIOUR UNDER P(e)

Theorem (Harris, Palau, Pardo)
Consider a Critical GWVE and {t1, . . . , tk−1} ⊂ (0,1) with ti ≠ tj. Then,

lim
n→∞

P(e) (ψ̃1 ≥ τn(t1), . . . , ψ̃k−1 ≥ τn(tk−1) ∣ Zn ≥ k)

= k
⎛
⎝

k−1

∏
i=1

1 − ti

ti
−

k−1

∑
j=1

1 − tj

tj

k−1

∏
i=1,i≠j

ti

ti − tj
log(1 − tj)

⎞
⎠
.

The times {ψ̃i, i ≤ k − 1} are asymptotically independent of the sample
tree topology. The partition process (P1(n), . . . ,Pk−1(n)) that describes
the tree topology satisfies:
▸ If a block of size a splits, it creates 2 blocks whose sizes are ` and

a − ` with probability converging to 1/(a − 1), for 1 ≤ ` ≤ a − 1.
▸ If Pi(n) contains blocks of sizes a1, ..., ai+1, the probability that

block j is the next to split converges to (aj − 1)/(k − i − 1).
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