Coalescent Structure of Galton-Watson trees in varying environment

Sandra Palau (UNAM, México)
Joint work with: Simon Harris (University of Auckland, N.Z.)
and Juan Carlos Pardo (CIMAT, México)
Simulations: Enrique Moctezuma (UNAM, México)

Probability Seminar.
Mathematics Institute, Federal University of Rio de Janeiro.

GOAL

Take a critical Galton-Watson process in a varying environment. If the system survives until time N, consider the genealogical tree of a sample of $k \geq 1$ particles chosen uniformly without replacement from those alive. How does their ancestral tree look like? What happens when $N \rightarrow \infty$?

GALTON-WATSON IN VARYING ENVIRONMENT

A varying environment $e=\left(q_{1}, q_{2}, \ldots\right)$ is a sequence of probability measures on $\mathbb{N}_{0}=\{0,1,2, \cdots\}$. We define a Galton-Watson process $Z=$ $\left\{Z_{n}, n \geq 0\right\}$ in a varying environment e as

$$
Z_{0}=1 \quad \text { and } \quad Z_{n}:=\sum_{i=1}^{Z_{n-1}} \chi_{i}^{(n)}, \quad n \geq 1,
$$

where $\left\{\chi_{i}^{(n)} ; i, n \geq 1\right\}$ is a sequence of independent random variables

$$
\mathbb{P}\left(\chi_{i}^{(n)}=k\right)=q_{n}(k), \quad k \in \mathbb{N}_{0} .
$$

$\chi_{i}^{(n)}$ is the offspring of the i-th particle in the $(n-1)$-th generation.

We denote by $\left(Z_{n} ; \mathbb{P}^{(e)}\right)$ the law of the process.

GALTON-WATSON IN VARYING ENVIRONMENT

Let f_{i} be the generating function associated with q_{i}. By applying the branching property recursively, we deduce that

$$
\mathbb{E}^{(e)}\left[s^{Z_{n}}\right]=f_{1} \circ \cdots \circ f_{n}(s), \quad \text { for } \quad 0 \leq s \leq 1 \quad \text { and } \quad n \geq 1 \text {, }
$$

where $f \circ g$ denotes the composition of f with g. Let $f_{1, n}(s):=f_{1} \circ \cdots \circ f_{n}(s)$. By differentiating, we obtain the mean and second factorial moment

$$
\mathbb{E}^{(e)}\left[Z_{n}\right]=\mu_{n}, \quad \text { and } \quad \frac{\mathbb{E}^{(e)}\left[Z_{n}\left(Z_{n}-1\right)\right]}{\mathbb{E}^{(e)}\left[Z_{n}\right]^{2}}=\sum_{k=0}^{n-1} \frac{\nu_{k+1}}{\mu_{k}}=: \rho_{n}, \quad n \geq 1,
$$

where $\mu_{0}:=1$ and for any $n \geq 1$,

$$
\mu_{n}:=f_{1}^{\prime}(1) \cdots f_{n}^{\prime}(1), \quad \text { and } \quad \nu_{n}:=\frac{f_{n}^{\prime \prime}(1)}{f_{n}^{\prime}(1)^{2}} .
$$

Hypothesis in the environment

GWVEs can behave in an strange manner as possessing multiple rates of growth; see [MacPhee and Schuh 1983]. Kersting, (2020) showed that these exotic possibilities can be precluded by the following condition:

Condition (*)

For every $\epsilon>0$, there is a finite constant c_{ϵ} such that for all $n \geq 1$

$$
\begin{equation*}
\mathbb{E}\left[\left(\chi_{1}^{(n)}\right)^{2} \mathbf{1}_{\left\{\chi_{1}^{(n)}>c_{\epsilon}\left(1+\mathbb{E}\left[\chi_{1}^{(n)}\right]\right)\right\}}\right] \leq \epsilon \mathbb{E}\left[\left(\chi_{1}^{(n)}\right)^{2} \mathbf{1}_{\left\{\chi_{1}^{(n)}>2\right\}}\right] . \tag{*}
\end{equation*}
$$

We say that a GWVE is regular if it satisfies Condition (*).
It can be difficult to verify. A easier condition, which it is satisfied by most common probability distributions, is: There exists $c>0$ such that

$$
f_{n}^{\prime \prime \prime}(1) \leq c f_{n}^{\prime \prime}(1)\left(1+f_{n}^{\prime}(1)\right), \quad \text { for any } n \geq 1 .
$$

Asymptotic behaviour

Kersting showed that under Condition (\star), the behaviour of a GWVE is dictated by the two sequences

$$
\mu_{n}:=\mathbb{E}^{(e)}\left[Z_{n}\right] \quad \text { and } \quad \rho_{n}:=\frac{\mathbb{E}^{(e)}\left[Z_{n}\left(Z_{n}-1\right)\right]}{\mathbb{E}^{(e)}\left[Z_{n}\right]^{2}}, \quad n \geq 1 .
$$

Specifically, $\lim _{n \rightarrow \infty} \frac{\rho_{n}}{2} \mathbb{P}^{(e)}\left[Z_{n}>0\right]=1$ and $\mathbb{E}^{(e)}\left[Z_{n} \mid Z_{n}>0\right] \sim \frac{\mu_{n} \rho_{n}}{2}$ as $n \rightarrow \infty$.

A regular GWVE is critical if and only if

$$
\lim _{n \rightarrow \infty} \rho_{n}=\infty \quad \text { and } \quad \lim _{n \rightarrow \infty} \mu_{n} \rho_{n}=\infty .
$$

In this case, $\lim _{n \rightarrow \infty} \mathbb{P}^{(e)}\left[Z_{n}>0\right]=0$ and Yaglom's limit exists: $\frac{2}{\mu_{n} \rho_{n}} Z_{n}$ conditioned on $\left\{Z_{n}>0\right\}$ converges in distribution to a standard exponential random variable.

GOAL

Take a critical Galton-Watson process in a varying environment. It has extinction a.s. Conditional on survival, take the genealogical tree of a sample of $k \geq 1$ particles chosen uniformly without replacement from those alive. How does it look like? What happens when $N \rightarrow \infty$?

Rooted trees: Ulam-Harris labeling

Let $\mathcal{U}:=\{\varnothing\} \cup \bigcup_{n=1}^{\infty} \mathbb{N}^{n}$ be the set of finite sequences of positive integers.

- We define the length of u by $|u|=n$, if $u=\left(u_{1}, \cdots, u_{n}\right) \in \mathbb{N}^{n}$ and $|\varnothing|=0$.
- The concatenation of $u=\left(u_{1}, \ldots, u_{n}\right)$ and $v=\left(v_{1}, \ldots, v_{m}\right)$ is denote by $u v:=\left(u_{1}, \ldots, u_{n}, v_{1}, \ldots, v_{m}\right)$, with the convention that $u \varnothing=$ $\varnothing u=u$.
- We say that v is an ancestor of u and write $v \leqslant u$ if there exists $w \in \mathcal{U}$ such that $u=v w$.
- For $u \in \mathcal{U}$, we define the genealogical line of u as $\llbracket \varnothing, u \rrbracket:=\{w \in \mathcal{U}: \varnothing \leqslant w \leqslant u\}$.

Example:

If $u=112$, then $|u|=3$ and $\llbracket \varnothing, u \rrbracket=\{\varnothing, 1,11,112\}$.
If $v=32$, then $u v=11232$.

Rooted trees

A rooted tree \mathbf{t} is a subset of \mathcal{U} that satisfies

- $\varnothing \in \mathbf{t}$.
- $\llbracket \varnothing, u \rrbracket \subset \mathbf{t}$ for any $u \in \mathbf{t}$.
- For every $u \in \mathbf{t}$ there exists a number $l_{u}(\mathbf{t})$ such that $u j \in \mathbf{t}$ if and only if $1 \leq j \leq l_{u}(\mathbf{t})$.
The empty string \varnothing is called the root.
The integer $l_{u}(\mathbf{t})$ represents the number of offspring of $u \in \mathbf{t}$.
A leaf is a $u \in \mathbf{t}$ such that $l_{u}(\mathbf{t})=0$. Its ge-
 nealogical line $\mathbf{u}:=\llbracket \varnothing, u \rrbracket$ is called a spine.

The set of trees with k spines is denote by

$$
\mathcal{T}^{k}:=\left\{\left(\mathbf{t} ; \mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right): \mathbf{t} \text { is a tree and } \mathbf{v}_{i} \text { is a spine on } \mathbf{t} \text { for all } i \leq k\right\} .
$$

TREE IN VARYING ENVIRONMENT WITH $k \geq 1$ SPINES

Construction:

- Start with one particle with k marks.
- Particles in generation m gives birth according to q_{m+1}.
- If a particle with j marks gives birth to $a>0$ particles, then, each mark chooses the line to follow uniformly.
- If a particle with j marks give birth to 0 particles, then its marks
 are transferred to a graveyard.

TREE IN VARYING ENVIRONMENT WITH $k \geq 1$ SPINES

 A Galton-Watson tree in environment e with $k \geq 1$ spines, $\left(\mathbf{T} ; \mathbf{V}_{1}, \ldots, \mathbf{V}_{k}\right)$ is a \mathcal{T}^{k}-valued r.v. with distribution$$
\mathbb{P}_{n}^{(e, k)}\left(\left(\mathbf{t} ; \mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right)\right)=\prod_{u \in \mathbf{t}| | u \mid<n} q_{|u|+1}\left(l_{u}(\mathbf{t})\right) \prod_{i=1}^{k} \prod_{u \in \mathbf{v}_{i}| | u| | \mathbf{v}_{i} \mid \wedge n} \frac{1}{l_{u}(\mathbf{t})},
$$

for any $n \geq 0$ and $\left(\mathbf{t} ; \mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right) \in \mathcal{T}^{k}$.
Example:

$$
\begin{aligned}
& \mathbb{P}_{3}^{(e, 4)}\left(\left(\mathbf{t} ; \mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right)\right) \\
& =q_{1}(1) q_{2}(5) q_{3}(2) q_{3}(0)^{2} q_{3}(1)^{2}\left(\frac{1}{5}\right)^{4}\left(\frac{1}{2}\right)^{3}
\end{aligned}
$$

CHANGE OF MEASURE.

Let $\theta \in[0,1)$ and define the function $g_{n, \theta}: \mathcal{T}^{k} \rightarrow \mathbb{R}$, as follows

$$
g_{n, \theta}\left(\mathbf{t} ; \mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right):=e^{-\theta X_{n}(\mathbf{t})} \mathbf{1}_{\left\{\mathbf{v}_{i} \neq \mathbf{v}_{j}, i \neq j\right\}} \mathbf{1}_{\left\{\left|\mathbf{v}_{i}\right|=n, i \leq k\right\}} \prod_{i=1}^{k} \prod_{u \in \mathbf{v}_{i}:|u|<n} l_{u}(\mathbf{t}) .
$$

$g_{n, \theta}\left(\mathbf{t} ; \mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right)$ is non negative if the k spines are different, alive at time n and uniformly chosen.

Observe that

$$
\mathbb{E}_{n}^{(e, k)}\left[g_{n, \theta}\left(\mathbf{T} ; \mathbf{V}_{1}, \ldots, \mathbf{V}_{k}\right)\right]=\mathbb{E}^{(e)}\left[Z_{n}\left(Z_{n}-1\right) \cdots\left(Z_{n}-k+1\right) e^{-\theta Z_{n}}\right]<\infty .
$$

CHANGE OF MEASURE $\mathbf{Q}_{n}^{(e, k, \theta)}$

We define the change of measure

$$
\mathbf{Q}_{n}^{(e, k, \theta)}\left(\left(\mathbf{t} ; \mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right)\right):=\frac{g_{n, \theta}\left(\mathbf{t} ; \mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right) \mathbb{P}_{n}^{(e, k)}\left(\left(\mathbf{t} ; \mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right)\right)}{\mathbb{E}_{n}^{(e, k)}\left[g_{n, \theta}\left(\mathbf{T} ; \mathbf{V}_{1}, \ldots, \mathbf{V}_{k}\right)\right]}
$$

for $\left(\mathbf{t} ; \mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right) \in \widehat{\mathcal{T}}_{n}^{k}$.

Spine splitting time

Denote by ψ_{1} and $\hat{\psi}_{1}$ the last time where all spines are together and the first spine splitting time, respectively.

Let $0 \leq m<n$, then
$\mathbf{Q}_{n}^{(e, k, \theta)}\left(\psi_{1} \geq m\right)$
$=\frac{\mathbb{E}^{(e)}\left[e^{-\theta Z_{n}} Z_{n}\right]}{\mathbb{E}^{(e)}\left[e^{-\theta Z_{n}} Z_{n}^{[k]}\right]} \frac{\mathbb{E}^{\left(e_{m}\right)}\left[e^{-\theta Z_{n-m}} Z_{n-m}^{[k]}\right]}{\mathbb{E}^{\left(e_{m}\right)}\left[e^{-\theta Z_{n-m}} Z_{n-m}\right]}$,
where $x^{[k]}$ its k-th factorial, that is $x^{[k]}:=x(x-1) \times \cdots \times(x-k+1)$.

We also have explicitly

$k=5, \psi_{1}=9$, there are 3 groups with 1,1, and 3 marks.
$F\left(m ; k_{1}, \cdots k_{g}\right)$
$:=\mathbf{Q}_{n}^{(e, k, \theta)}\left(\operatorname{At} \hat{\psi}_{1}=m\right.$ spines split into g groups with k_{1}, \ldots, k_{g} marks $)$.

CONSTRUCTION OF A GWTVE UNDER $\mathbf{Q}_{n}^{(e, k, \theta)}$

- Start with one particle with k marks.
- If $k=1$, we consider $\psi_{1}=n$. Otherwise, select ψ_{1}, the number of spine groups g and their sizes k_{1}, \ldots, k_{g} according to $F\left(m ; k_{1}, \cdots k_{g}\right)$.
- An unmarked particle in gen. $m \in\{0, \ldots, n-1\}$ gives birth to unmarked particles with probability
$q_{m+1}^{(0, \theta)}(\ell)=q_{m+1}(\ell) \frac{f_{m+1, n}\left(e^{-\theta}\right)^{\ell}}{\mathbb{E}^{\left(e_{m}\right)}\left[e^{-\theta Z_{n-m}}\right]}$.

CONSTRUCTION OF A GWTVE UNDER $\mathbf{Q}_{n}^{(e, k, \theta)}$

- Start with one particle with k marks.
- If $k=1$, we consider $\psi_{1}=n$. Otherwise, select ψ_{1}, the number of spine groups g and their sizes k_{1}, \ldots, k_{g} according to $F\left(m ; k_{1}, \cdots k_{g}\right)$.
- An unmarked particle in gen. $m \in\{0, \ldots, n-1\}$ gives birth to unmarked particles with probability
$q_{m+1}^{(0, \theta)}(\ell)=q_{m+1}(\ell) \frac{f_{m+1, n}\left(e^{-\theta}\right)^{\ell}}{\mathbb{E}^{\left(e_{m}\right)}\left[e^{-\theta Z_{n-m}}\right]}$.
- A marked particle in gen. $m \in\left\{0, \ldots, \psi_{1}-1\right\}$ gives birth to particles accordingly to
$q_{m+1}^{(1, \theta)}(\ell)=\frac{\ell q_{m+1}(\ell)\left(f_{m+1, n}\left(e^{-\theta}\right)\right)^{\ell-1}}{f_{m+1}^{\prime}\left(f_{m+1, n}\left(e^{-\theta}\right)\right)}$
Uniformly, select one of the particles to carry the k marks. All the other particles remain unmarked.

CONSTRUCTION OF A GWTVE UNDER $\mathbf{Q}_{n}^{(e, k, \theta)}$

- Start with one p. with k marks.
- Select ψ_{1}, g and k_{1}, \ldots, k_{g} according to $F\left(m ; k_{1}, \cdots k_{g}\right)$.
- Unmarked particles in gen. $m \in\{0, \ldots, n-1\}$ gives birth to unmarked particles according to $q_{m+1}^{(0, \theta)}$.
- Marked particle in gen. $m \in\left\{0, \ldots, \psi_{1}-1\right\}$ gives birth as $q_{m+1}^{(1, \theta)}$. Select one to carry the k marks. All the other particles remain unmarked.
- The marked particle at generation $m=\psi_{1}$ gives birth accordingly to

$$
q_{m+1}^{(g, \theta)}(\ell)=\frac{\ell^{[g]} q_{m+1}(\ell)\left(f_{m+1, n}\left(e^{-\theta}\right)\right)^{l-g}}{\left.\frac{\partial^{8}}{\partial s^{8}} f_{m+1}(s)\right|_{s=f_{m+1, n}\left(e^{-\theta}\right)}}
$$

Uniformly, select g of them as marked with k_{1}, \ldots, k_{g} marks, respectively. All the other particles remain unmarked.

- Repeat steps for each of the g marked particles.

K-SAMPLE TREE

For each $i \leq k-1$, denote by ψ_{i} the last time where there are at most i marked particles.

We know the joint distribution of the spines split times $\left(\psi_{1}, \ldots, \psi_{k-1}\right)$ and the splitting groups under $\mathbf{Q}_{n}^{(e, k, \theta)}$. Now, for a CRITICAL GWVE, we want to know its asymptotic behaviour as $n \rightarrow \infty$.

Time rescaling

Recall that

$$
\rho_{0}=0, \quad \text { and } \quad \rho_{n}=\frac{\mathbb{E}^{(e)}\left[Z_{n}\left(Z_{n}-1\right)\right]}{\mathbb{E}^{(e)}\left[Z_{n}\right]^{2}}=\sum_{k=0}^{n-1} \frac{\nu_{k+1}}{\mu_{k}}, \quad n \geq 1 .
$$

Observe that $\left\{\rho_{m} / \rho_{n} ; m \geq n\right\}$ can be thought as a cumulative probability distribution. We define its right-continuous generalised inverse as

$$
\tau_{n}(t)=\max \left\{k \geq 0: \rho_{k} \leq t \rho_{n}\right\}, \quad t \in[0,1]
$$

Binary trees

Let \mathcal{B}^{k} be the set of full binary trees with k leaves, i.e. $\mathbf{b} \in \mathcal{B}^{k}$ if and only if $l_{u}(\mathbf{b}) \in\{0,2\}$ for all $u \in \mathbf{b}$ and $k=\left|\left\{u \in \mathbf{b}: l_{u}(\mathbf{b})=0\right\}\right|$. We endow \mathcal{B}^{k} with the $\mathbb{P}_{\mathcal{B}^{k}}$ probability measure of choosing uniformly a binary branching tree with k leaves.

Denote by $\mathcal{O}:\left\{\left(\mathbf{t} ; \mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right) \in \mathcal{T}^{k}\right.$: spine splittings are binary $\} \longrightarrow \mathcal{B}^{k}$, the operation that squeeze or stretch each line of the tree $\bigcup_{i=1}^{k} \mathbf{v}_{i}$ in a way that we obtain a tree in \mathcal{B}^{k}.

AsYMPTOTIC LIMIT UNDER $\mathbf{Q}_{n}^{\left(e, k, \theta_{n}\right)}$

Proposition (Harris, Palau, Pardo)

Consider a critical GWVE. Let $0 \leq s_{1} \leq t_{1} \leq s_{2} \leq \cdots \leq s_{k-1} \leq t_{k-1} \leq 1$ and $\mathbf{b} \in \mathcal{B}^{k}$. Then

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \mathbf{Q}_{n}^{\left(e, k, \theta_{n}\right)}\left(\psi_{1}\right. & \left.\in\left(\tau_{n}\left(s_{1}\right), \tau_{n}\left(t_{1}\right)\right), \ldots, \psi_{k-1} \in\left(\tau_{n}\left(s_{k-1}\right), \tau_{n}\left(t_{k-1}\right)\right), \mathcal{O}=\mathbf{b}\right) \\
& =\mathbb{P}_{\mathcal{B}^{k}}(\mathbf{b})(k-1)!(1+\theta)^{k-1} \prod_{i=1}^{k-1}\left(\frac{1-s_{i}}{1+\theta\left(1-s_{i}\right)}-\frac{1-t_{i}}{1+\theta\left(1-t_{i}\right)}\right) .
\end{aligned}
$$

Observations:

- Asymptotically, all the splitting are binary.
- The tree topology $\left\{\mathcal{O}=\mathbf{t}, \mathbf{t} \in \mathcal{B}^{k}\right\}$ and the split times $\left\{\psi_{i}, i=1, \ldots, k-\right.$ $1\}$ are asymptotically independent.

AsYMPTOTIC LIMIT UNDER $\mathbf{Q}_{n}^{\left(e, k, \theta_{n}\right)}$

Observations:

- $\left\{\psi_{i}, i \leq k-1\right\}$ converges in distribution to an ordered sample of $k-1$ random variables. Let $\left\{\widetilde{\psi}_{i}, i \leq k-1\right\}$ be a uniformly random permutation of $\left\{\psi_{i}, i \leq k-1\right\}$.
- If we start with i groups of spines of sizes a_{1}, \ldots, a_{i}, in the limit, the split times for any group j will be distributed like $a_{j}-1$ independent random variables, all with the same distribution. In particular, this implies that the first group to split will be group j with probability proportional to $a_{j}-1$, that is, with probability $\left(a_{j}-1\right) /(k-i)$.

ASYMPTOTIC BEHAVIOUR UNDER $\mathbb{P}^{(e)}$

Theorem (Harris, Palau, Pardo)
Consider a Critical GWVE and $\left\{t_{1}, \ldots, t_{k-1}\right\} \subset(0,1)$ with $t_{i} \neq t_{j}$. Then,

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \mathbb{P}^{(e)}\left(\widetilde{\psi}_{1} \geq \tau_{n}\left(t_{1}\right), \ldots, \widetilde{\psi}_{k-1} \geq \tau_{n}\left(t_{k-1}\right) \mid Z_{n} \geq k\right) \\
&=k\left(\prod_{i=1}^{k-1} \frac{1-t_{i}}{t_{i}}-\sum_{j=1}^{k-1} \frac{1-t_{j}}{t_{j}} \prod_{i=1, i \neq j}^{k-1} \frac{t_{i}}{t_{i}-t_{j}} \log \left(1-t_{j}\right)\right) .
\end{aligned}
$$

The times $\left\{\widetilde{\psi}_{i}, i \leq k-1\right\}$ are asymptotically independent of the sample tree topology. The partition process $\left(P_{1}(n), \ldots, P_{k-1}(n)\right)$ that describes the tree topology satisfies:

- If a block of size a splits, it creates 2 blocks whose sizes are ℓ and $a-\ell$ with probability converging to $1 /(a-1)$, for $1 \leq \ell \leq a-1$.
- If $P_{i}(n)$ contains blocks of sizes a_{1}, \ldots, a_{i+1}, the probability that block j is the next to split converges to $\left(a_{j}-1\right) /(k-i-1)$.

THANK YOU

- Boenkost, Foutel-Rodier, Schertzer. The genealogy of a nearly critical branching processes in varying environment. Arxiv: 2207. 11612.
- Harris, Johnston, and Roberts. The coalescent structure of continuous -time Galton-Watson trees. The Annals of Applied Probability, 30(3):1368-1414, 2020.
- Harris, Palau and Pardo. The coalescent structure of Galton-Watson trees in varying environments. ArXiv: 2207.10923v2.
- Kersting. A unifying approach to branching processes in a varying environment. J. Appl. Probab. 57(1), 196-220, 2020.
- Kersting. On the genealogical structure of critical branching processes in a varying environment. Proceedings of the Steklov Institute of Mathematics, 316(1), 209-219, 2022.
- Kersting and Vatutin. Discrete time branching processes in random environment. Wiley Online Library, 2017.

