Fine bounds on covariance estimation

Probability Seminar - IM-UFRJ

Based on a joint work with Roberto I. Oliveria (IMPA).

Zoraida Fernandez-Rico Columbia University, NY

"Rio de Janeiro", 24th April 2023

Preparing the ground

Mean estimation problem: Given X_1, \ldots, X_n i.i.d. real random variables with distribution P, we want to estimate $\mu_P = \mathbb{E}_{X \sim P}[X]$.

Natural choice:
$$\widehat{\mu}_n = \frac{1}{n} \sum_{i=1}^n X_i$$
.

Why choose the arithmetic mean? On certain natural conditions, when $n \to \infty$,

$$\widehat{\mu}_n o \mu_P$$
 .

Preparing the ground

Question: Given $\delta \in (0,1)$, what is the smallest $\epsilon = \epsilon(n, \delta, \sigma^2, \mu_P)$ such that for any P with μ_P and σ^2 :

$$\mathbb{P}\left(|\widehat{X}_n - \mu_P| \geq \epsilon
ight) \leq \delta\,?$$

Central Limit theorem

$$\lim_{n o\infty}\mathbb{P}\left(|\widehat{\mu}_n-\mu_P|>\sigma\sqrt{rac{2\log(2/\delta)}{n}}
ight)\leq\delta.$$

We would like similar inequalities in a non-asymptotic setting.

Why Sub-Gaussian?

For any $M>0, \alpha\in(0,1], \delta>2e^{-n/4}$, for any mean estimator, there exist a distribution $\mathbb{E}[|X-\mathbb{E}[X]|^{1-\alpha}]=M$ such that:

$$|\widehat{E}_n - \mu| \geq \left(rac{M^{1/lpha} \log(1/\delta)}{n}
ight)^{lpha/(1+lpha)}$$

with probability greater than δ .

"Sub-Gausssian mean estimators." Devroye, Lerasle, Lugosi, Oliveira (2016).

The sample mean is not optimal

If X_1, \ldots, X_n are i.i.d. on \mathbb{R} with mean μ and variance $\sigma^2 < +\infty$, Catoni showed that Chebyshev's inequality is essentially tight for some data distribution:

$$c\delta \leq \mathbb{P}\left(\left|rac{1}{n}\sum_{i=1}^n X_i - \mu
ight| \leq \sigma\sqrt{rac{1}{\delta n}}
ight) \leq \delta.$$

If the distribution is not sub-Gaussian, we only have Chevychev's inequality.

Are there better estimators?

There are better estimators!

The median-of-means. Nemirovsky, Yudin (1983), Birgé (1984) and Valiant and Vazirani (1986).

$$\widehat{\mu}_{ ext{MoM}} := ext{median} \left[rac{1}{m} \sum_{i=1}^m X_i, \dots, rac{1}{m} \sum_{i=(k-1)m+1}^{km} X_t
ight]$$

Catoni. Let $\psi : \mathbb{R} \to \mathbb{R}$ be an antisymmetric increasing function and a a parameter. Then, we define Catoni's mean estimator $\widehat{\mu}_{a,n}$ as the unique value y such that

$$R_{n,a}(y):=\sum_{i=1}^n \psi(a(X_i-y))=0.$$

Probabilistic contamination (Huber, 1964): There is an uncontaminated distribution P. But data comes from a contaminated law $(1 - \eta)P + \eta Q$ with Q unknown.

Assumption 1. A set of random variables Y_1, \ldots, Y_n , defined over the same probability space as the X_i , is called an η -contamination of $\{X_i\}_{i=1}^n$ if $\#\{i \in [n] : Y_i \neq X_i\} \leq \eta n$.

Trimmed means

Let $X_{(1)} \le \cdots \le X_{(n)}$ denote the order statistics of the $X_{1:n}$. Given $k \in (0, n/2)$, the k-trimmed-mean is given by:

$$\overline{X}_{n,k} = rac{1}{n-2k} \sum_{i=k+1}^{n-k} X_{(i)}.$$

Our first result.- Make Assumption 1. Given $\delta \in (0,1)$. Choose $k = \lfloor \eta n \rfloor + \lceil 8 \log(1/\delta) \rceil$ and n > Ck, then with probability $\geq 1 - \delta$:

$$|\overline{Y}_{n,k} - \mu| \leq c\sigma(1 + \epsilon_p(n,\delta,\eta))\sqrt{rac{2\log(2/\delta)}{n}} + c
u_p\eta^{1-rac{1}{p}}.$$

"A new look at the trimmed mean", Roberto I. Oliveira, Paulo Orenstein, R' (2023)

Trimmed means

See Lugosi and Mendelson (2021) for generalizations.

Also works when the variance is infinite. If $\mathbb{E}\left[|X - \mu_P|^{1+\alpha}\right] = M$ for some $\alpha \leq 1$. Then with probability $\geq 1 - \delta$:

$$|\overline{Y}_{n,k} - \mu| \leq \left(rac{cM^{1/lpha}\log(8/\delta)}{n}
ight)^{lpha/(1+lpha)} + c
u_p \eta^{1-rac{1}{p}}.$$

Nearly optimal constant. Assume $\nu_p < +\infty, \epsilon = 0$. Let be $M_4 := \nu_4/\sigma \ge 1$, there exists c>0 such that for any $h\in (0,1)$, if $\log(4/\delta) \le (c\,M_4)^{\frac{8}{4-1}}\,n$, then

$$\mathbb{P}\left[|\overline{X}_{n,k} - \mu| \ \leq (1+h)\,\sigma\sqrt{rac{2\log(4/\delta)}{n}}
ight] \geq 1-\delta.$$

Sub-Gaussian confidence intervals.

Higher dimensions

What is sub-Gaussian? Take $\mathcal{P}_{\text{GAUS},\Sigma} := \{ \text{ all Gaussian } P : \Sigma_P = \Sigma \}.$

Then the sample mean

$$\widehat{\mu}_n = rac{1}{n} \sum_{i=1}^n X_i$$

satisfies for all $P \in \mathcal{P}_{\text{GAUS},\Sigma}$:

$$\|\mathbb{P}_P\left(\|\widehat{\mu}_n - \mu_P\| \leq \sqrt{rac{ ext{tr}(\Sigma)}{n}} + \sqrt{rac{2\log(2/\delta)\|\Sigma_P\|}{n}}
ight) \geq 1 - \delta.$$

Robustness in higher dimensions

Assume $p \geq 2$ and $\nu_P(p) := \sup_{v \in \mathbb{S}^{d-1}} \left[\mathbb{E}_{X \sim P} |\langle X - \mu_P, v \rangle|^p \right]^{1/p} < +\infty.$

Goal: for all $P \in \mathcal{P}_p$, $p \geq 2$: for all $\delta \in (0,1)$

$$\|\mathbb{P}_P\left(\|\widehat{E}_n(Y_1,\ldots,Y_n)-\mu_P\|\leq c\,\epsilon_P^*(\delta,n)+c\,r_p(\eta)
ight)\geq 1-\delta$$

- $ullet \epsilon^*(\delta,n) = \sqrt{rac{ ext{tr}(\Sigma)}{n}} + \sqrt{rac{2\log(2/\delta)\|\Sigma_P\|}{n}},$
- $ullet r_p(\eta) =
 u_P(p) \eta^{rac{p-1}{p}}.$

Results in higher dimensions_

Hsu and Sabato (2016) generalized median-of-means.

Minsker (2015) presents the geometric median-of-means: computationally feasible, dimension free and almost sub-Gaussian.

Joly, Lugosi and Oliveira (2017): sub-Gaussian performance.

Lugosi and Mendelson (2017) generalized MoM: median-of-means tournaments. It was made computationally tractable by Hopkins (2020) $O(nd + (dk)^8)$, it achieve $r_p(\eta) \le \sqrt{||\Sigma||\eta}$ for p = 2.

Results in higher dimensions.

Other estimators are computable but do not do better for p > 2. See Diakonikolas Kane et al. (2019).

Depersin and Lecué (2022) O(n).

Trimmed mean of Lugosi and Mendelson (2021) is optimal for $p \ge 2$, but it is not computable.

Resende and Oliveira (2023) present the best posible result when there is contamination.

What is missing? We want a computationally efficient method.

Covariance estimation _

Kannan, Lovász and Simonovits (1997).

K. Tikhomirov (2018): the optimal rate of convergence $\sqrt{\frac{d}{n}}$ for for the sample covariance matrix assuming only the existence of p > 4 moments.

Bai and Yin provide convergence rates in the asymptotic setting.

Given Y_1, \ldots, Y_n an η -contamination of X_1, \ldots, X_n . We want to estimate $\Sigma = \mathbb{E}(X_1 X_1^\top)$.

Covariance estimation

Denote the effective rank of the covariance matrix as

$$\mathrm{r}(\Sigma) := rac{\mathrm{tr}(\Sigma)}{||\Sigma||_{\mathrm{op}}}.$$

Assumption 2. $(L^p - L^2 \text{ norm equivalence})$

Let X_1, \ldots, X_n be i.i.d. random vectors in \mathbb{R}^d with $\mathbb{E}[\|X_1\|^p] < +\infty$ for $p \geq 4$. For all $v \in \mathbb{R}^d$ and $2 \leq q \leq p$,

$$(\mathbb{E}|\langle X_1,v
angle|^q)^{1/q} \leq \kappa(q)(\mathbb{E}|\langle X_1,v
angle|^2)^{1/2}.$$

Sub-Gaussian Bounds

We want a measurable function $\widehat{E}_{n,\delta}(X_1,\ldots,X_n):\left(\mathbb{R}^d\right)^n\to\mathbb{R}^{d\times d}$ such that:

$$||\widehat{E}_{n,\delta}(X_1,\ldots,X_n) - \Sigma_P||_{\mathrm{op}} \leq c\,\kappa(p)||\Sigma||_{\mathrm{op}}\,\Bigg(\sqrt{rac{\mathrm{r}(\Sigma)}{n}} + \sqrt{rac{\log(1/\delta)}{n}}\Bigg),$$

with probability at least $1 - \delta$. Above c > 0 is uniform in n and δ .

Overview of known results ___

Koltchinskii and Lounici (2017).

Minsker (2018).

Catoni (2016) and Catoni and Giulini (2017). Mean estimation of matrices from a random sample.

Overview of known results

Mendelson and Zhivotovskiy (2019). For $\eta = 0$, their estimator requires a sample size $n \geq C(r(\Sigma)\log(r(\Sigma)) + \log(1/\delta))$ and achieves the following bound with probability $\geq 1 - \delta$:

$$||\widehat{\Sigma}_{n,\delta} - \Sigma_P||_{\operatorname{op}} \leq c \, \kappa_4^2 ||\Sigma||_{\operatorname{op}} \left(\sqrt{rac{\operatorname{r}(\Sigma) \log(\operatorname{r}(\Sigma))}{n}} + \sqrt{rac{\log(1/\delta)}{n}}
ight).$$

Parallel work by Abdalla and Zhivotovskiy (2022).

Theorem 1. The main result

Fix $\delta \in (0,1)$, $n \in \mathbb{N}$ and $\eta \in [0,1/2)$. Then, there is a constant C > 0 and an estimator \widehat{E}_{\star} such that, whenever Assumptions 1 and 2 hold, $n \geq C(\mathbf{r}(\Sigma) + \log(1/\delta))$ and $\eta \leq 1/C\kappa_4^4$; then

$$||\widehat{E}_{\star} - \Sigma||_{\mathrm{op}} \ \leq \ C \kappa_2^2 ||\Sigma||_{\mathrm{op}} \left(\sqrt{rac{\mathrm{r}(\Sigma)}{n}} + \sqrt{rac{\log(1/\delta)}{n}}
ight) + C \kappa_p^2 ||\Sigma||_{\mathrm{op}} \eta^{1-rac{2}{p}}
ight)$$

with probability at least $1 - \delta$.

Truncation.

PAC-Bayesian techniques for empirical processes.

Proof ideas_

- 1. Estimate $\langle v, \Sigma v \rangle$ uniformly over all $v \in \mathbb{S}^{d-1}$.
- 2. Consider the following *trimmed mean estimator* for $\langle v, \Sigma v \rangle$:

$$\widehat{\mathrm{e}}_k(v) = rac{1}{n-k} \inf_{S \subset [n], \#S = n-k} \sum_{i \in S} \langle Y_i, v
angle^2.$$

Proof ideas

- 1. Estimate $\langle v, \Sigma v \rangle$ uniformly over all $v \in \mathbb{S}^{d-1}$.
- 2. Consider the following *trimmed mean estimator* for $\langle v, \Sigma v \rangle$:

$$\widehat{\mathrm{e}}_k(v) = rac{1}{n-k} \inf_{S \subset [n], \#S = n-k} \sum_{i \in S} \langle Y_i, v
angle^2.$$

3. Show the following result under a counting condition:

$$orall v \in \mathbb{S}^{d-1} \,:\, \#\{i \in [n] \,:\, \langle X_i - \mu_P, v
angle^2 > B\} \leq t$$

we have an aproximation

$$\sup_{v\in \mathbb{S}^{d-1}} |\widehat{\mathrm{e}}_k(v) - \langle v, \Sigma v
angle| pprox \sup_{v\in \mathbb{S}^{d-1}} |rac{1}{n} \sum_{i=1}^n \langle X_i, v
angle^2 \wedge B - \mathbb{E}(\langle X_i, v
angle^2 \wedge B)|$$

Proof ideas

- 1. Estimate $\langle v, \Sigma v \rangle$ uniformly over all $v \in \mathbb{S}^{d-1}$.
- 2. Consider the following *trimmed mean estimator* for $\langle v, \Sigma v \rangle$:

$$\widehat{\mathrm{e}}_k(v) = rac{1}{n-k} \inf_{S \subset [n], \#S = n-k} \sum_{i \in S} \langle Y_i, v
angle^2.$$

3. Show the following result under a counting condition:

$$orall v \in \mathbb{S}^{d-1} \,:\, \#\{i \in [n] \,:\, \langle X_i - \mu_P, v
angle^2 > B\} \leq t$$

we have an aproximation

$$\sup_{v\in\mathbb{S}^{d-1}}|\widehat{\mathrm{e}}_k(v)-\langle v,\Sigma v
angle|pprox \sup_{v\in\mathbb{S}^{d-1}}|rac{1}{n}\sum_{i=1}^n\langle X_i,v
angle^2\wedge B-\mathbb{E}(\langle X_i,v
angle^2\wedge B)|$$

Proof ideas _____

- 4. PAC-Bayesian techniques.
- 5. Show that the estimator is good for a range of values k.
- 6. Choose a "good value" of \widehat{k} and output $\widehat{e}_{\widehat{k}}(v)$ for all $v \in \mathbb{S}^{d-1}$.

Proof ideas

Proposition 1.

There exists a random element \widehat{E}_k of $\mathbb{R}^{d\times d}_{ ext{sym}}$ such that:

$$\widehat{E}_k \in rg \min_{A \in \mathbb{R}^{d imes d}_{ ext{sym}}} \left(\sup_{v \in \mathbb{S}^{d-1}} |\langle v, Av
angle - \widehat{e}_k(v)|
ight).$$

Moreover, $||\widehat{E}_k - \Sigma|| \leq 2 \sup_{v \in \mathbb{S}^{d-1}} |\langle v, Av \rangle - \widehat{e}_k(v)|.$

Proof.- Kuratowski- Ryll-Nardzewski theorem.

Let
$$H_k(A):=\sup_{v\in \mathbb{S}^{d-1}}|\langle v,Av
angle-\widehat{e}_k(v)|, \,\,$$
 then $||\widehat{E}_k-\Sigma||=\sup_{v\in \mathbb{S}^{d-1}}|\langle v,\widehat{E}_kv
angle-\langle v,\Sigma v
angle|\leq H_k(\widehat{E}_k)+H_k(\Sigma).$

PAC-Bayes

Assumption 3. $\{Z_i(\theta)_{i\in\{1,\ldots,n\},\theta\in\mathbb{R}^d}\}$ is a family of random variables defined on a common probability space $(\Omega, \mathcal{F}, \mathbb{P})$.

- $1. \ (\omega, \theta) \to Z_i(\omega)(\theta) \in \mathbb{R} \ is \ (\mathcal{F} \otimes \mathcal{B}(\mathbb{R}^d))/\mathcal{B}(\mathbb{R})$ -measurable.
- 2. Given $\gamma > 0$, we denote by $\Gamma_{v,\gamma}$ the Gaussian probability measure over \mathbb{R}^d with mean v and covariance matrix $\gamma I_{d\times d}$. We also assume that for all $\omega \in \Omega$ the integrals

$$(\Gamma_{v,\gamma} Z_{ heta})(\omega) = \int_{\mathbb{R}^d} Z_{ heta}(\omega) \Gamma_{v,\gamma} d(heta)$$

are well defined for all ω and depend continuously on v.

3. For each $\theta \in \mathbb{R}^d$, $\{Z_i(\theta)\}$ are independent with bounded second moment, and $Z_i(\theta) - \mathbb{E}[Z_i(\theta)] \leq M$ for some constant M > 0.

PAC-Bayes

Denote: $\bar{\mu}_{\gamma} := \sup_{v \in \mathbb{S}^{d-1}} \Gamma_{v,\gamma} \mathbb{E}[Z_1(\theta)]$ and $\bar{\sigma}_{\gamma} := \sup_{v \in \mathbb{S}^{d-1}} \Gamma_{v,\gamma} \mathrm{Var}[Z_1(\theta)]$.

Lemma 1. PAC-Bayesian version of Bernstein's inequality

Make Assumption 3. Then, with probability at least $1 - \delta$:

$$\sup_{v\in\mathbb{S}^{d-1}}\sum_{i=1}^n\Gamma_{v,\gamma}\left(Z_i(heta)-\mathbb{E}[Z_i(heta)]
ight)\leq nar{\mu}_\gamma+ar{\sigma}_\gamma\sqrt{n}(\gamma^{-2}+2\log(1/\delta))\ +rac{M\left(\gamma^{-2}||v||^2+2\log(1/\delta)
ight)}{6}.$$

A counting lemma

Counting condition:

$$\operatorname{Count}(B,t) := \{ orall v \in \mathbb{S}^{d-1} \, : \, \#\{i \in [n] \, : \, \langle X_i,v
angle^2 > B\} \leq t \}.$$

Lemma 2. Counting lemma over the unit sphere

Under Assumption 1 and 2, pick $t \in \mathbb{N}$ and set:

$$B_p(t) := ||\Sigma||_{ ext{op}} \left[c \kappa_p^2 \left(rac{c \, n}{t}
ight)^{rac{2}{p}} ee c \kappa_4^2 \mathrm{r}(\Sigma) rac{\sqrt{n}}{t^{3/2}}
ight].$$

Then:

$$\mathbb{P}(\mathrm{Count}(B_p(t),t)) \geq 1-e^{-t}.$$

Empirical process

$$arepsilon(B) := \sup_{v \in \mathbb{S}^{d-1}} |rac{1}{n} \sum_{i=1}^n \langle X_i, v
angle^2 \wedge B - \mathbb{E}(\langle X_i, v
angle^2 \wedge B)|$$

$$\widetilde{arepsilon}_{\gamma}(B) := \sup_{v \in \mathbb{S}^{d-1}} |rac{1}{n} \sum_{i=1}^n \Gamma_{\gamma,v} \left(\langle X_i, heta
angle^2 \wedge B - \mathbb{E}(\langle X_i, heta
angle^2 \wedge B)
ight) |$$

Empirical process

Lemma 3. (Gaussian version)

Make Assumption 1 and 2. Consider γ , B > 0. Then

$$\widetilde{arepsilon}_{\gamma}(B) \leq c(\kappa) \left(\|\Sigma\|_{\mathrm{op}} + \gamma^2 \mathrm{tr}(\Sigma) \right) \sqrt{\frac{2 \log(2/\delta) + \gamma^{-2}}{n}} + \frac{B(2 \log(1/\delta) + \gamma^{-2})}{n}$$
 with probability at least $1 - \delta$.

Lemma 4. (Bound difference)

Make Assumption 1 and 2. Consider γ , B > 0. Then

$$|arepsilon(B) - \widetilde{arepsilon}_{\gamma}(B)| \leq \left| rac{1}{n} \sum_{i=1}^n \left((\gamma^2 ||X_i||^2) \wedge B - \mathbb{E}[(\gamma^2 ||X_i||^2) \wedge B]
ight)
ight| + rac{B\, k}{n} \, c$$

with probability at least $1 - e^{-k}$.

Putting everything together

Lemma 5.

Make Assumption 1 and 2. Consider $k_0 = \lfloor \eta n \rfloor + \lceil c \eta n + r(\Sigma) + \log(32/3\delta) \rceil < n$ and $p \geq 4$, then

$$igcap_{k=k_0}^{n-1}\{||\widehat{\mathrm{E}}_k-\Sigma||\leq C||\Sigma||\kappa_4^2\sqrt{rac{\mathrm{r}(\Sigma)+\log(1/\delta)+(k-k_0)}{n}}\ +C\kappa_p^2||\Sigma||\left(rac{k}{n}
ight)^{1-rac{2}{p}}\},$$

with probability $\geq 1 - \delta/2$.

The final estimator.

1. Define $\widehat{T}:=\inf_{S\subset [n],\#S=n-k} \frac{1}{n-k}\sum_{i\in S}||Y_i||^2$. It follows with probability at least $1-\delta/2$

$$rac{ ext{tr}(\Sigma)}{2} \leq 2\widehat{ ext{T}} \leq rac{3 ext{tr}(\Sigma)}{2}.$$

2. Under Assumptions 1 and 2. Set $n > D\kappa_p^2(\log(1/\delta) + r(\Sigma))$ and $k^* = \lfloor n/D \rfloor$. Then, with high probability:

$$rac{||\Sigma||}{2} \leq ||\widehat{\mathrm{E}}_{k^*}|| \leq rac{3||\Sigma||}{2}$$

3. Therefore, we set $\widehat{k} = [\eta n] + \lceil \frac{3\widehat{T}}{||\widehat{E}_{k^*}||} + \log(32/3\delta) \rceil$.

The final estimator.

1. Define $\widehat{T}:=\inf_{S\subset [n],\#S=n-k}\frac{1}{n-k}\sum_{i\in S}||Y_i||^2$. It follows with probability at least $1-\delta/2$

$$rac{\mathrm{tr}(\Sigma)}{2} \leq 2\widehat{\mathrm{T}} \leq rac{3\mathrm{tr}(\Sigma)}{2}.$$

2. Under Assumptions 1 and 2. Set $n > D\kappa_p^2(\log(1/\delta) + r(\Sigma))$ and $k^* = \lfloor n/D \rfloor$. Then, with high probability:

$$rac{||\Sigma||}{2} \leq ||\widehat{\mathrm{E}}_{k^*}|| \leq rac{3||\Sigma||}{2}$$

3. Therefore, we set $\widehat{k} = \lfloor \eta n \rfloor + \lceil \frac{3\widehat{\Gamma}}{||\widehat{\mathbf{E}}_{k^*}||} + \log(32/3\delta) \rceil$. $\widehat{\mathbf{E}}_{\star} = \widehat{\mathbf{E}}_{\widehat{k}}$.

Our current work

Computationally efficient mean estimator for vectors under heavy tails and adversarial contamination setting.

Sparse framework.

Linear regression.

Regression

Covariance

