Fine bounds on covariance estimation

Probability Seminar - IM-UFRJ

Based on a joint work with Roberto I. Oliveria (IMPA).
Zoraida Fernandez-Rico Columbia University, NY

Preparing the ground

Mean estimation problem: Given X_{1}, \ldots, X_{n} i.i.d. real random variables with distribution P, we want to estimate $\mu_{P}=\mathbb{E}_{X \sim P}[X]$.

Natural choice: $\quad \widehat{\mu}_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$.
Why choose the arithmetic mean? On certain natural conditions, when $n \rightarrow \infty$,

$$
\widehat{\mu}_{n} \rightarrow \mu_{P} .
$$

Preparing the ground

Question: Given $\delta \in(0,1)$, what is the smallest $\epsilon=\epsilon\left(n, \delta, \sigma^{2}, \mu_{P}\right)$ such that for any P with μ_{P} and σ^{2} :

$$
\mathbb{P}\left(\left|\widehat{X}_{n}-\mu_{P}\right| \geq \epsilon\right) \leq \delta ?
$$

Central Limit theorem

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(\left|\widehat{\mu}_{n}-\mu_{P}\right|>\sigma \sqrt{\frac{2 \log (2 / \delta)}{n}}\right) \leq \delta .
$$

We would like similar inequalities in a non-asymptotic setting.

Why Sub-Gaussian?

For any $M>0, \alpha \in(0,1], \delta>2 e^{-n / 4}$, for any mean estimator, there exist a distribution $\mathbb{E}\left[|X-\mathbb{E}[X]|^{1-\alpha}\right]=M$ such that:

$$
\left|\widehat{E}_{n}-\mu\right| \geq\left(\frac{M^{1 / \alpha} \log (1 / \delta)}{n}\right)^{\alpha /(1+\alpha)}
$$

with probability greater than δ.

```
"Sub-Gausssian mean estimators." Devroye, Lerasle, Lugosi, Oliveira (2016).
```


The sample mean is not optimal

If X_{1}, \ldots, X_{n} are i.i.d. on \mathbb{R} with mean μ and variance $\sigma^{2}<+\infty$, Catoni showed that Chebyshev's inequality is essentially tight for some data distribution:

$$
c \delta \leq \mathbb{P}\left(\left|\frac{1}{n} \sum_{i=1}^{n} X_{i}-\mu\right| \leq \sigma \sqrt{\frac{1}{\delta n}}\right) \leq \delta
$$

If the distribution is not sub-Gaussian, we only have Chevychev's inequality.

Are there better estimators?

There are better estimators!

The median-of-means. Nemirovsky, Yudin (1983), Birgé (1984) and Valiant and Vazirani (1986).

$$
\widehat{\mu}_{\mathrm{MoM}}:=\text { median }\left[\frac{1}{m} \sum_{i=1}^{m} X_{i}, \ldots, \frac{1}{m} \sum_{i=(k-1) m+1}^{k m} X_{t}\right]
$$

Catoni. Let $\psi: \mathbb{R} \rightarrow \mathbb{R}$ be an antisymmetric increasing function and a a parameter. Then, we define Catoni's mean estimator $\widehat{\mu}_{a, n}$ as the unique value y such that

$$
R_{n, a}(y):=\sum_{i=1}^{n} \psi\left(a\left(X_{i}-y\right)\right)=0
$$

Robustness

Probabilistic contamination (Huber, 1964): There is an uncontaminated distribution P. But data comes from a contaminated law $(1-\eta) P+\eta Q$ with Q unknown.

Assumption 1. A set of random variables Y_{1}, \ldots, Y_{n}, defined over the same probability space as the X_{i}, is called an $\boldsymbol{\eta}$-contamination of $\left\{X_{i}\right\}_{i=1}^{n}$ if $\#\left\{i \in[n]: Y_{i} \neq X_{i}\right\} \leq \eta n$.

Trimmed means

Let $X_{(1)} \leq \cdots \leq X_{(n)}$ denote the order statistics of the $X_{1: n}$. Given $k \in(0, n / 2)$, the k -trimmed-mean is given by:

$$
\bar{X}_{n, k}=\frac{1}{n-2 k} \sum_{i=k+1}^{n-k} X_{(i)} .
$$

Our first result.- Make Assumption 1. Given $\delta \in(0,1)$. Choose $k=$ $\lfloor\eta n\rfloor+\lceil 8 \log (1 / \delta)\rceil$ and $n>C k$, then with probability $\geq 1-\delta$:

$$
\left|\bar{Y}_{n, k}-\mu\right| \leq c \sigma\left(1+\epsilon_{p}(n, \delta, \eta)\right) \sqrt{\frac{2 \log (2 / \delta)}{n}}+c \nu_{p} \eta^{1-\frac{1}{p}} .
$$

Trimmed means

See Lugosi and Mendelson (2021) for generalizations.
Also works when the variance is infinite. If $\mathbb{E}\left[\left|X-\mu_{P}\right|^{1+\alpha}\right]=M$ for some $\alpha \leq 1$. Then with probability $\geq 1-\delta$:

$$
\left|\bar{Y}_{n, k}-\mu\right| \leq\left(\frac{c M^{1 / \alpha} \log (8 / \delta)}{n}\right)^{\alpha /(1+\alpha)}+c \nu_{p} \eta^{1-\frac{1}{p}}
$$

Nearly optimal constant. Assume $\nu_{p}<+\infty, \epsilon=0$. Let be $M_{4}:=$ $\nu_{4} / \sigma \geq 1$, there exists $c>0$ such that for any $h \in(0,1)$, if $\log (4 / \delta) \leq$ $\left(c M_{4}\right)^{\frac{8}{4-1}} n$, then

$$
\mathbb{P}\left[\left|\bar{X}_{n, k}-\mu\right| \leq(1+h) \sigma \sqrt{\frac{2 \log (4 / \delta)}{n}}\right] \geq 1-\delta
$$

Sub-Gaussian confidence intervals.

Higher dimensions

What is sub-Gaussian? Take $\mathcal{P}_{\mathrm{GAUS}, \Sigma}:=\left\{\right.$ all Gaussian $\left.P: \Sigma_{P}=\Sigma\right\}$.
Then the sample mean

$$
\widehat{\mu}_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}
$$

satisfies for all $P \in \mathcal{P}_{\mathrm{GAUS}, \Sigma}$:

$$
\mathbb{P}_{P}\left(\left\|\widehat{\mu}_{n}-\mu_{P}\right\| \leq \sqrt{\frac{\operatorname{tr}(\Sigma)}{n}}+\sqrt{\frac{2 \log (2 / \delta)\left\|\Sigma_{P}\right\|}{n}}\right) \geq 1-\delta .
$$

Robustness in higher dimensions

Assume $p \geq 2$ and $\nu_{P}(p):=\sup _{v \in \mathbb{S}^{d-1}}\left[\mathbb{E}_{X \sim P}\left|\left\langle X-\mu_{P}, v\right\rangle\right|^{p}\right]^{1 / p}<+\infty$.

Goal: for all $P \in \mathcal{P}_{p}, p \geq 2$: for all $\delta \in(0,1)$
$\mathbb{P}_{P}\left(\left\|\widehat{E}_{n}\left(Y_{1}, \ldots, Y_{n}\right)-\mu_{P}\right\| \leq c \epsilon_{P}^{*}(\delta, n)+c r_{p}(\eta)\right) \geq 1-\delta$

- $\epsilon^{*}(\delta, n)=\sqrt{\frac{\operatorname{tr}(\Sigma)}{n}}+\sqrt{\frac{2 \log (2 / \delta)\left\|\Sigma_{P}\right\|}{n}}$,
- $r_{p}(\eta)=\nu_{P}(p) \eta^{\frac{p-1}{p}}$.

Results in higher dimensions

Hsu and Sabato (2016) generalized median-of-means.
Minsker (2015) presents the geometric median-of-means: computationally feasible, dimension free and almost sub-Gaussian.

Joly, Lugosi and Oliveira (2017): sub-Gaussian performance.
Lugosi and Mendelson (2017) generalized MoM: median-of-means tournaments. It was made computationally tractable by Hopkins (2020) $O\left(n d+(d k)^{8}\right)$, it achieve $r_{p}(\eta) \leq \sqrt{\|\Sigma\| \mid} \eta$ for $p=2$.

Results in higher dimensions

Other estimators are computable but do not do better for $p>2$. See Diakonikolas Kane et al. (2019).

Depersin and Lecué (2022) $O(n)$.
Trimmed mean of Lugosi and Mendelson (2021) is optimal for $p \geq 2$, but it is not computable.

Resende and Oliveira (2023) present the best posible result when there is contamination.

What is missing? We want a computationally efficient method.

Covariance estimation

Kannan, Lovász and Simonovits (1997).
K. Tikhomirov (2018): the optimal rate of convergence $\sqrt{\frac{d}{n}}$ for for the sample covariance matrix assuming only the existence of $p>4$ moments.

Bai and Yin provide convergence rates in the asymptotic setting.

Given Y_{1}, \ldots, Y_{n} an η-contamination of X_{1}, \ldots, X_{n}. We want to estimate $\Sigma=\mathbb{E}\left(X_{1} X_{1}^{\top}\right)$.

Covariance estimation

Denote the effective rank of the covariance matrix as

$$
\mathrm{r}(\Sigma):=\frac{\operatorname{tr}(\Sigma)}{\|\Sigma\|_{\mathrm{op}}}
$$

Assumption 2. ($L^{p}-L^{2}$ norm equivalence)
Let X_{1}, \ldots, X_{n} be i.i.d. random vectors in \mathbb{R}^{d} with $\mathbb{E}\left[\left\|X_{1}\right\|^{p}\right]<+\infty$ for $p \geq 4$. For all $v \in \mathbb{R}^{d}$ and $2 \leq q \leq p$,

$$
\left(\mathbb{E}\left|\left\langle X_{1}, v\right\rangle\right|^{q}\right)^{1 / q} \leq \kappa(q)\left(\mathbb{E}\left|\left\langle X_{1}, v\right\rangle\right|^{2}\right)^{1 / 2} .
$$

Sub-Gaussian Bounds

We want a measurable function $\widehat{E}_{n, \delta}\left(X_{1}, \ldots, X_{n}\right):\left(\mathbb{R}^{d}\right)^{n} \rightarrow \mathbb{R}^{d \times d}$ such that:

$$
\left\|\widehat{E}_{n, \delta}\left(X_{1}, \ldots, X_{n}\right)-\Sigma_{P}\right\|_{\text {op }} \leq c \kappa(p)\|\Sigma\|_{\text {op }}\left(\sqrt{\frac{\mathrm{r}(\Sigma)}{n}}+\sqrt{\frac{\log (1 / \delta)}{n}}\right)
$$

with probability at least $1-\delta$. Above $c>0$ is uniform in n and δ.

Overview of known results

Koltchinskii and Lounici (2017).
Minsker (2018).
Catoni (2016) and Catoni and Giulini (2017). Mean estimation of matrices from a random sample.

Overview of known results

Mendelson and Zhivotovskiy (2019). For $\eta=0$, their estimator requires a sample size $n \geq C(\mathrm{r}(\Sigma) \log (\mathrm{r}(\Sigma))+\log (1 / \delta))$ and achieves the following bound with probability $\geq 1-\delta$:

$$
\left\|\widehat{\Sigma}_{n, \delta}-\Sigma_{P}\right\|_{\mathrm{op}} \leq c \kappa_{4}^{2}\|\Sigma\|_{\mathrm{op}}\left(\sqrt{\frac{\mathrm{r}(\Sigma) \log (\mathrm{r}(\Sigma))}{n}}+\sqrt{\frac{\log (1 / \delta)}{n}}\right) .
$$

Parallel work by Abdalla and Zhivotovskiy (2022).

Theorem 1. The main result

Fix $\delta \in(0,1), n \in \mathbb{N}$ and $\eta \in[0,1 / 2)$. Then, there is a constant $C>0$ and an estimator \widehat{E}_{\star} such that, whenever Assumptions 1 and 2 hold, $n \geq$ $C(\mathrm{r}(\Sigma)+\log (1 / \delta))$ and $\eta \leq 1 / C \kappa_{4}^{4}$; then

$$
\left\|\widehat{E}_{\star}-\Sigma\right\|_{\mathrm{op}} \leq C \kappa_{2}^{2}\|\Sigma\|_{\mathrm{op}}\left(\sqrt{\frac{\mathrm{r}(\Sigma)}{n}}+\sqrt{\frac{\log (1 / \delta)}{n}}\right)+C \kappa_{p}^{2}\|\Sigma\|_{\mathrm{op}} \eta^{1-\frac{2}{p}}
$$

with probability at least $1-\delta$.

Key ideas

Sample trimming.

Truncation.
PAC- Bayesian techniques for empirical processes.

Proof ideas

1. Estimate $\langle v, \Sigma v\rangle$ uniformly over all $v \in \mathbb{S}^{d-1}$.
2. Consider the following trimmed mean estimator for $\langle v, \Sigma v\rangle$:

$$
\hat{\mathrm{e}}_{k}(v)=\frac{1}{n-k} \inf _{S \subset[n], \# S=n-k} \sum_{i \in S}\left\langle Y_{i}, v\right\rangle^{2} .
$$

Proof ideas

1. Estimate $\langle v, \Sigma v\rangle$ uniformly over all $v \in \mathbb{S}^{d-1}$.
2. Consider the following trimmed mean estimator for $\langle v, \Sigma v\rangle$:

$$
\hat{\mathrm{e}}_{k}(v)=\frac{1}{n-k} \inf _{S \subset[n], \# S=n-k} \sum_{i \in S}\left\langle Y_{i}, v\right\rangle^{2} .
$$

3. Show the following result under a counting condition:

$$
\forall v \in \mathbb{S}^{d-1}: \#\left\{i \in[n]:\left\langle X_{i}-\mu_{P}, v\right\rangle^{2}>B\right\} \leq t
$$

we have an aproximation

$$
\sup _{v \in \mathbb{S}^{d-1}}\left|\hat{\mathrm{e}}_{k}(v)-\langle v, \Sigma v\rangle\right| \approx \sup _{v \in \mathbb{S}^{d-1}}\left|\frac{1}{n} \sum_{i=1}^{n}\left\langle X_{i}, v\right\rangle^{2} \wedge B-\mathbb{E}\left(\left\langle X_{i}, v\right\rangle^{2} \wedge B\right)\right|
$$

Proof ideas

1. Estimate $\langle v, \Sigma v\rangle$ uniformly over all $v \in \mathbb{S}^{d-1}$.
2. Consider the following trimmed mean estimator for $\langle v, \Sigma v\rangle$:

$$
\hat{\mathrm{e}}_{k}(v)=\frac{1}{n-k} \inf _{S \subset[n], \# S=n-k} \sum_{i \in S}\left\langle Y_{i}, v\right\rangle^{2} .
$$

3. Show the following result under a counting condition:

$$
\forall v \in \mathbb{S}^{d-1}: \#\left\{i \in[n]:\left\langle X_{i}-\mu_{P}, v\right\rangle^{2}>B\right\} \leq t
$$

we have an aproximation

$$
\sup _{v \in \mathbb{S}^{d-1}}\left|\widehat{\mathrm{e}}_{k}(v)-\langle v, \Sigma v\rangle\right| \approx \underbrace{\sup _{v \in \mathbb{S}^{d-1}}\left|\frac{1}{n} \sum_{i=1}^{n}\left\langle X_{i}, v\right\rangle^{2} \wedge B-\mathbb{E}\left(\left\langle X_{i}, v\right\rangle^{2} \wedge B\right)\right|}_{\varepsilon(B)}
$$

Proof ideas

4. PAC-Bayesian techniques.
5. Show that the estimator is good for a range of values k.
6. Choose a "good value" of \widehat{k} and output $\widehat{\mathrm{e}}_{\widehat{k}}(v)$ for all $v \in \mathbb{S}^{d-1}$.

Proof ideas

Proposition 1.

There exists a random element \widehat{E}_{k} of $\mathbb{R}_{\text {sym }}^{d \times d}$ such that:

$$
\begin{array}{r}
\widehat{E}_{k} \in \underset{A \in \mathbb{R}_{\text {sym }}^{d x d}}{\arg \min }\left(\sup _{v \in \mathbb{S}^{d-1}}\left|\langle v, A v\rangle-\widehat{e}_{k}(v)\right|\right) . \\
\text { Moreover, } \| \widehat{E}_{k}-\Sigma| | \leq 2 \sup _{v \in \mathbb{S}^{d-1}}\left|\langle v, A v\rangle-\widehat{e}_{k}(v)\right|
\end{array}
$$

Proof.- Kuratowski- Ryll-Nardzewski theorem.
Let $H_{k}(A):=\sup _{v \in \mathbb{S}^{d-1}}\left|\langle v, A v\rangle-\hat{e}_{k}(v)\right|$, then

$$
\left\|\widehat{E}_{k}-\Sigma\right\|=\sup _{v \in \mathbb{S}^{d-1}}\left|\left\langle v, \widehat{E}_{k} v\right\rangle-\langle v, \Sigma v\rangle\right| \leq H_{k}\left(\widehat{E}_{k}\right)+H_{k}(\Sigma)
$$

PAC-Bayes

Assumption 3. $\left\{Z_{i}(\theta)_{i \in\{1, \ldots, n\}, \theta \in \mathbb{R}^{d}}\right\}$ is a family of random variables defined on a common probability space $(\Omega, \mathcal{F}, \mathbb{P})$.

1. $(\omega, \theta) \rightarrow Z_{i}(\omega)(\theta) \in \mathbb{R}$ is $\left(\mathcal{F} \otimes \mathcal{B}\left(\mathbb{R}^{d}\right)\right) / \mathcal{B}(\mathbb{R})$-measurable.
2. Given $\gamma>0$, we denote by $\Gamma_{v, \gamma}$ the Gaussian probability measure over \mathbb{R}^{d} with mean v and covariance matrix $\gamma I_{d \times d}$. We also assume that for all $\omega \in \Omega$ the integrals

$$
\left(\Gamma_{v, \gamma} Z_{\theta}\right)(\omega)=\int_{\mathbb{R}^{d}} Z_{\theta}(\omega) \Gamma_{v, \gamma} d(\theta)
$$

are well defined for all ω and depend continuously on v.
3. For each $\theta \in \mathbb{R}^{d},\left\{Z_{i}(\theta)\right\}$ are independent with bounded second moment, and $Z_{i}(\theta)-\mathbb{E}\left[Z_{i}(\theta)\right] \leq M$ for some constant $M>0$.

PAC-Bayes

Denote: $\bar{\mu}_{\gamma}:=\sup _{v \in \mathbb{S}^{d-1}} \Gamma_{v, \gamma} \mathbb{E}\left[Z_{1}(\theta)\right]$ and $\bar{\sigma}_{\gamma}:=\sup _{v \in \mathbb{S}^{d-1}} \Gamma_{v, \gamma} \operatorname{Var}\left[Z_{1}(\theta)\right]$.

Lemma 1. PAC-Bayesian version of Bernstein's inequality

Make Assumption 3. Then, with probability at least $1-\delta$:

$$
\begin{aligned}
\sup _{v \in \mathbb{S}^{d-1}} \sum_{i=1}^{n} \Gamma_{v, \gamma}\left(Z_{i}(\theta)-\mathbb{E}\left[Z_{i}(\theta)\right]\right) & \leq n \bar{\mu}_{\gamma}+\bar{\sigma}_{\gamma} \sqrt{n}\left(\gamma^{-2}+2 \log (1 / \delta)\right) \\
& +\frac{M\left(\gamma^{-2}\|v\|^{2}+2 \log (1 / \delta)\right)}{6}
\end{aligned}
$$

A counting lemma

Counting condition:
$\operatorname{Count}(B, t):=\left\{\forall v \in \mathbb{S}^{d-1}: \#\left\{i \in[n]:\left\langle X_{i}, v\right\rangle^{2}>B\right\} \leq t\right\}$.

Lemma 2. Counting lemma over the unit sphere
Under Assumption 1 and 2, pick $t \in \mathbb{N}$ and set:

$$
B_{p}(t):=\|\Sigma\|_{\mathrm{op}}\left[c \kappa_{p}^{2}\left(\frac{c n}{t}\right)^{\frac{2}{p}} \vee c \kappa_{4}^{2} \mathrm{r}(\Sigma) \frac{\sqrt{n}}{t^{3 / 2}}\right]
$$

Then:

$$
\mathbb{P}\left(\operatorname{Count}\left(B_{p}(t), t\right)\right) \geq 1-e^{-t}
$$

Empirical process

$$
\begin{aligned}
& \varepsilon(B):=\sup _{v \in \mathbb{S}^{d-1}}\left|\frac{1}{n} \sum_{i=1}^{n}\left\langle X_{i}, v\right\rangle^{2} \wedge B-\mathbb{E}\left(\left\langle X_{i}, v\right\rangle^{2} \wedge B\right)\right| \\
& \tilde{\varepsilon}_{\gamma}(B): \left.=\sup _{v \in \mathbb{S}^{d-1}} \frac{1}{n} \sum_{i=1}^{n} \Gamma_{\gamma, v}\left(\left\langle X_{i}, \theta\right\rangle^{2} \wedge B-\mathbb{E}\left(\left\langle X_{i}, \theta\right\rangle^{2} \wedge B\right)\right) \right\rvert\,
\end{aligned}
$$

Empirical process

Lemma 3. (Gaussian version)

Make Assumption 1 and 2. Consider $\gamma, B>0$. Then
$\tilde{\varepsilon}_{\gamma}(B) \leq c(\kappa)\left(\|\Sigma\|_{\mathrm{op}}+\gamma^{2} \operatorname{tr}(\Sigma)\right) \sqrt{\frac{2 \log (2 / \delta)+\gamma^{-2}}{n}}+\frac{B\left(2 \log (1 / \delta)+\gamma^{-2}\right)}{n}$ with probability at least $1-\delta$.

Lemma 4. (Bound difference)

Make Assumption 1 and 2. Consider $\gamma, B>0$. Then

$$
\left|\varepsilon(B)-\tilde{\varepsilon}_{\gamma}(B)\right| \leq\left|\frac{1}{n} \sum_{i=1}^{n}\left(\left(\gamma^{2}\left\|X_{i}\right\|^{2}\right) \wedge B-\mathbb{E}\left[\left(\gamma^{2}\left\|X_{i}\right\|^{2}\right) \wedge B\right]\right)\right|+\frac{B k}{n} c
$$

with probability at least $1-e^{-k}$.

Putting everything together

Lemma 5.

Make Assumption 1 and 2. Consider $k_{0}=\lfloor\eta n\rfloor+\lceil c \eta n+\mathrm{r}(\Sigma)+$ $\log (32 / 3 \delta)\rceil<n$ and $p \geq 4$, then

$$
\begin{aligned}
\bigcap_{k=k_{0}}^{n-1}\left\{\left\|\widehat{\mathrm{E}}_{k}-\Sigma\right\|\right. & \leq C\|\Sigma\| \kappa_{4}^{2} \sqrt{\frac{\mathrm{r}(\Sigma)+\log (1 / \delta)+\left(k-k_{0}\right)}{n}} \\
& \left.+C \kappa_{p}^{2}\|\Sigma\|\left(\frac{k}{n}\right)^{1-\frac{2}{p}}\right\}
\end{aligned}
$$

with probability $\geq 1-\delta / 2$.

The final estimator

1. Define $\widehat{\mathrm{T}}:=\inf _{S \subset[n], \# S=n-k} \frac{1}{n-k} \sum_{i \in S}\left\|Y_{i}\right\|^{2}$. It follows with probability at least $1-\delta / 2$

$$
\frac{\operatorname{tr}(\Sigma)}{2} \leq 2 \widehat{\mathrm{~T}} \leq \frac{3 \operatorname{tr}(\Sigma)}{2} .
$$

2. Under Assumptions 1 and 2 . Set $n>D \kappa_{p}^{2}(\log (1 / \delta)+\mathrm{r}(\Sigma))$ and $k^{*}=\lfloor n / D\rfloor$. Then, with high probability:

$$
\frac{\|\Sigma\|}{2} \leq\left\|\widehat{\mathrm{E}}_{k^{*}}\right\| \leq \frac{3\|\Sigma\|}{2}
$$

3. Therefore, we set $\widehat{k}=\lfloor\eta n\rfloor+\left\lceil\frac{3 \widehat{\mathrm{~T}}}{\left\|\mathrm{E}_{k^{*}}\right\|}+\log (32 / 3 \delta)\right\rceil$.

The final estimator

1. Define $\widehat{\mathrm{T}}:=\inf _{S \subset[n], \# S=n-k} \frac{1}{n-k} \sum_{i \in S}\left\|Y_{i}\right\|^{2}$. It follows with probability at least $1-\delta / 2$

$$
\frac{\operatorname{tr}(\Sigma)}{2} \leq 2 \widehat{\mathrm{~T}} \leq \frac{3 \operatorname{tr}(\Sigma)}{2} .
$$

2. Under Assumptions 1 and 2 . Set $n>D \kappa_{p}^{2}(\log (1 / \delta)+\mathrm{r}(\Sigma))$ and $k^{*}=\lfloor n / D\rfloor$. Then, with high probability:

$$
\frac{\|\Sigma\|}{2} \leq\left\|\widehat{\mathrm{E}}_{k^{*}}\right\| \leq \frac{3\|\Sigma\|}{2}
$$

3. Therefore, we set $\widehat{k}=\lfloor\eta n\rfloor+\left\lceil\frac{3 \widehat{\widehat{k}}}{\left\|\widehat{\mathrm{E}}_{k^{*}}\right\|}+\log (32 / 3 \delta)\right\rceil . \quad \widehat{\mathrm{E}}_{\star}=\widehat{\mathrm{E}}_{\widehat{k}}$.

Our current work

Computationally efficient mean estimator for vectors under heavy tails and adversarial contamination setting.
Sparse framework.
Linear regression.

Regression

Covariance
I

theminemy

\qquad

4，mantions
\qquad

$=$

Obrigada！

（

