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Preparing the ground

Mean estimation problem: Given Xi,...,X, i.i.d. real random
variables with distribution P, we want to estimate up = Ex.p[X].
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Why choose the arithmetic mean? On certain natural conditions, when

n — 0o,

ﬁn — Up.



Preparing the ground
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Question: Given § € (0,1), what is the smallest € = ¢(n, d, 0%, up)
such that for any P with up and o?:
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Central Limit theorem
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lim P <|,L’Zn — pp| > 0\/210g(2/5)) < é.

We would like similar inequalities in a non-asymptotic setting.



Why Sub-Gaussian?

For any M > 0,a € (0,1],4 > 2e "% for any mean estimator, there
exist a distribution E[| X — E[X]|'™%] = M such that:
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with probability greater than é.

"Sub-Gausssian mean estimators." Devroye, Lerasle, Lugosi, Oliveira (2016).



The sample mean is not optimal

4 )
If Xq,...,X, are ii.d. on R with mean p and variance o? < 400,

Catoni showed that Chebyshev's inequality is essentially tight for
some data distribution:
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If the distribution is not sub-Gaussian, we only have Chevychev's

inequality.

Are there better estimators?



There are better estimators!

The median-of-means. Nemirovsky, Yudin (1983), Birgé (1984) and
Valiant and Vazirani (1986).
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Catoni. Let 9 : R — R be an antisymmetric increasing function and a a
parameter. Then, we define Catoni's mean estimator Han as the unique

value y such that

Rna(y) = )_(a(Xi —y)) =0.



Robustness

Probabilistic contamination (Huber, 1964): There is an
uncontaminated distribution P. But data comes from a

contaminated law (1 — )P + nQ@ with @Q unknown.

Assumption 1. A set of random variables Yi,...,Y,, defined over the
same probability space as the X;, is called an m-contamination of

(XY, if #{i € [n] : ¥ # Xi} < nn.



Trimmed means

Let X3y <--- < X(;) denote the order statistics of the X;.,,. Given
k € (0,n/2), the k-trimmed-mean is given by:

Our first result.- Make Assumption 1. Given é € (0,1). Choose k =
|nn] + [8log(1/§)] and n > Ck, then with probability > 1 — é:
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"A new look at the trimmed mean", Roberto I. Oliveira, Paulo Orenstein, R' (2023)



Trimmed means

See Lugosi and Mendelson (2021) for generalizations.

Also works when the variance is infinite. If E [|X — pp|'™®| = M for
some « < 1. Then with probability > 1 — §:
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Nearly optimal constant. Assume v, < +00,e =0. Let be Mjy:
vy/o > 1, there exists ¢ > 0 such that for any h € (0, 1), if log(4/4) <
(¢ My)™1 n, then

P [Xn,k—,ui < (1+h)‘7\/

210g(4/5)‘ 16,
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Sub-Gaussian confidence intervals.



Higher dimensions

What is sub-Gaussian? Take Pgausy := { all Gaussian P : ¥p = 3}.

Then the sample mean
1y
= > X
i—1

satisfies for all P € Pgaus.y :

oo (17— e < 50 [PECIIREY




Robustness in higher dimensions

Assume p > 2 and vp(p) := sup, gt [Exp|(X — ,up,'uﬂp]l/p < +o00.

Goal: forall P € P,, p > 2:forall 6 € (0,1)
Pp (\1En(Yi,...,Yn) — pp| < ceb(8,n) +crp(n)) >1-4

e ¢*(d,n) = @/@ 4+ \/210g(2{15)||213\|,
vp(p)n'7 .

o m,(n) =




Results in higher dimensions

Hsu and Sabato (2016) generalized median-of-means.

Minsker ~ (2015) presents the geometric median-of-means:

computationally feasible, dimension free and almost sub-Gaussian.
Joly, Lugosi and Oliveira (2017): sub-Gaussian performance.

Lugosi and Mendelson (2017) generalized MoM: median-of-means

tournaments. It was made computationally tractable by Hopkins
(2020) O(nd + (dk)?), it achieve 7,(n) < 1/||Z||n for p = 2.



Results in higher dimensions

Other estimators are computable but do not do better for p > 2. See
Diakonikolas Kane et al. (2019).

Depersin and Lecué (2022) O(n).

Trimmed mean of Lugosi and Mendelson (2021) is optimal for p > 2,

but it is not computable.

Resende and Oliveira (2023) present the best posible result when there

1S contamination.

What is missing? We want a computationally efficient method.



Covariance estimation

Kannan, Lovész and Simonovits (1997).

K. Tikhomirov (2018): the optimal rate of convergence \/g for for the

sample covariance matrix assuming only the existence of p >4

moments.

Bai and Yin provide convergence rates in the asymptotic setting.

Given Y3,...,Y, an n—contamination of X;,...,X,. We want to
estimate ¥ = E(X; X/ ).



Covariance estimation

Denote the effective rank of the covariance matrix as

o tr(X)
") = el

Assumption 2. (L? — L? norm equivalence)

Let X1,...,X, be i.id. random vectors in R? with E[|| X||P] < +oo for
p>4.Forallv e R?and 2 < ¢ < p,
(E|(X1,0)| )" < k(q) (El(X1,v)[*)V/2.



Sub-Gaussian Bounds

We want a measurable function E,, 5(X1,...,X,) : (RY)" — R4 such

that:

1Bus(Xrs 2 ) — By < () [ (\/ i)y \/lgﬂi/‘”>

with probability at least 1 — §. Above ¢ > 0 is uniform in n and 4.




Overview of known results

Koltchinskii and Lounici (2017).
Minsker (2018).
Catoni (2016) and Catoni and Giulini (2017). Mean estimation of

matrices from a random sample.



Overview of known results

Mendelson and Zhivotovskiy (2019). For n =0, their estimator
requires a sample size n > C(r(X)log(r(X)) + log(1/§)) and achieves
the following bound with probability > 1 — 4 :

1205 — Zpllop < 3112 |op (\/r(Z) log(r(X)) n \/10g(1/5)>.

n n

Parallel work by Abdalla and Zhivotovskiy (2022).



Theorem 1. The main result

Fixé € (0,1),n € Nand n € [0,1/2). Then, there is a constant C > 0 and
an estimator E, such that, whenever Assumptions 1 and 2 hold, n >
C(r(X) + log(1/6)) and n < 1/Ckj; then

—~ [r(2 log(1/6 _
1B — Zlop < Cﬂg“EHOp ( (n) + \/%) @;||2|‘opnl>

with probability at least 1 — 4.
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Key ideas

Sample trimming.
Truncation.

PAC- Bayesian techniques for empirical processes.



Proof ideas

1. Estimate (v, ¥v) uniformly over all v € S 1,

2. Consider the following trimmed mean estimator for (v, Xv):

ér(v) = ! inf Z(K—,@Z.

n — k Scn],#S=n—k Py




Proof ideas

1. Estimate (v, ¥v) uniformly over all v € S 1,

2. Consider the following trimmed mean estimator for (v, Xv):

ér(v) = ! inf Z(K—,@Z.

n — k Scn],#S=n—k Py

3. Show the following result under a counting condition:
VoeS* s #{ien] : (X;—pp,v)? > B} <t
we have an aproximation
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Proof ideas

1. Estimate (v, ¥v) uniformly over all v € S 1,

2. Consider the following trimmed mean estimator for (v, Xv):

ér(v) = ! inf Z(K—,@Z.

n — k Scn],#S=n—k Py

3. Show the following result under a counting condition:
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Proof ideas

4. PAC-Bayesian techniques.
5. Show that the estimator is good for a range of values k.

6. Choose a "good value" of k and output &;(v) forall v € S 1.



Proof ideas

Proposition 1.

There exists a random element Ej, of RE such that:

FE} € argmin ( sup |(v, Av) — ék(v)|) :

AcRadxd veSd-1

sym

Moreover, ||Ey, — Z|| < 2sup,cgis |(v, Av) — & (v)|.

Proof.- Kuratowski- Ryll-Nardzewski theorem.

Let Hy(A) := sup,cgat |(v, Av) — é;(v)|, then
|Bx — 2| = sup [(v, Exv) — (v, Tv)| < Hy(Ey) + Hi(3).

veSd-1



PAC-Bayes

Assumption 3. {Z;(0);cq1,.. nypere } 15 a family of random variables
defined on a common probability space (2, F,P).

1. (w,0) — Z;(w)(9) € Ris (F ® B(R?))/B(R)-measurable.

2. Given ~ > 0, we denote by ', , the Gaussian probability measure
over R? with mean v and covariance matrix vI,.4. We also assume
that for all w € ) the integrals

(ConZe)@) = [ Zu(@)Lysd(6)

R4
are well defined for all w and depend continuously on v.

3. For each 6 € R, {Z;(8)} are independent with bounded second
moment, and Z;(0) — E[Z;(0)] < M for some constant M > 0.



PAC-Bayes

Denote: fiy := sup,cse1 I'y E[Z1(0)] and G, := sup,ge1 ['y ,Var[Z;(6)].

Lemma 1. PAC-Bayesian version of Bernstein's inequality

Make Assumption 3. Then, with probability at least 1 — 9 :

sup 3Ty, (Zi(0) — E[Zi(0)]) < nfiy +5,v/n(y% + 2log(1/6))

’UESd_l i=1 5 5
M (3[[o]? + 2 log(1/9))
+ 6 :




A counting lemma

Counting condition:
Count(B,t) := {Vv € S* ! : #{i € [n] : (X;,v)? > B} <t}.

Lemma 2. Counting lemma over the unit sphere

Under Assumption 1 and 2, pick t € N and set:

cn\
B, (t) := ||Z]]op [cnﬁ <T) \/cmir(E)W] :

Then:
P(Count(B,(t),t)) > 1 —e "




Empirical process

e(B) = sup |~ Y (Xi,0)2 A B — E((X;,0)2 A B)

-1 T

& (B) := sup |—er ((Xi,0)> A B —E((X;,6)> A B)) |

peSd-1



Empirical process

Lemma 3. (Gaussian version)

Make Assumption 1 and 2. Consider v, B > 0. Then

£,(B) < c(m) (ISl + tr(®)) | 0BG Blogl1/d) 1775

7 n
with probability at least 1 — 4.

Lemma 4. (Bound difference)

Make Assumption 1 and 2. Consider -y, B > 0. Then

% > ((PIX:ll*) A B — El(v*[1X:[I*) A B) | + BTk ‘

e(B) — &/(B)| <

with probability at least 1 — e*.




Putting everything together

Make Assumption 1 and 2. Consider ko= |nn]| + [enn + (%) +

log(32/36)| < nand p > 4, then

h {||IE: — 2| < C\|2|\%i\/r(2) +log(1/6) + (k — ko)

n
k:ko 1_2
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with probability > 1 — §/2.




The final estimator

1. Define T := infgc(n #5—nt =% 2 ies ||Yil[?. It follows with

probability at least 1 — /2
tr(X)

2. Under Assumptions 1 and 2. Set n > DxZ(log(1/d) + (X)) and
k* = |n/D|. Then, with high probability:
U=l _ 5 s 3z

2 2
+ log(32/39) .

3. Therefore, we set k = [nm | + HE [



The final estimator

1. Define T := infgc(n 45—t =% 2 ses ||Yil|?. It follows with
probability at least 1 — §/2

tr(2) 3tr(2)

<2T <

2. Under Assumptions 1 and 2. Set n > Dk (log(1/6) + r(X)) and
k* = |n/D]. Then, with high probability:

3|1l

I3
< [|Ex || <
2 2

3. Therefore, we set k = |nn| +

G230 _f.

!IE |



Our current work

r

Computationally efficient mean estimator for vectors under
heavy tails and adversarial contamination setting.

Sparse framework.

Linear regression.

Regression Covariance




Obrigada!




