Law of large numbers for ballistic random walks in dynamic random environments under lateral decoupling

Weberson da Silva Arcanjo - IME UFF

Joint work with R. Baldasso, M. Hilário, R. dos Santos

May 22, 2023
Model the motion of a particle in an inhomogeneous media.
Random walks on random environments in \mathbb{Z}

- Model the motion of a particle in an inhomogeneous media.
- Example:

\[1 - p(z) \quad p(z) \]

In the static case, the random environment remains fixed as time elapses. Solomon, 1975. Recurrence vs. transience criteria, laws of large numbers, central limit theorems, large deviation principles.
Random walks on random environments in \mathbb{Z}

- Model the motion of a particle in an inhomogeneous media.
- Example:

In the static case, the random environment remains fixed as times elapses.
Random walks on random environments in \mathbb{Z}

- Model the motion of a particle in an inhomogeneous media.
- Example:

$$1 - p(z) \quad \quad \quad \quad p(z)$$

- In the static case, the random environment remains fixed as times elapses.
 Solomon, 1975.
Random walks on random environments in \mathbb{Z}

- Model the motion of a particle in an inhomogeneous media.
- Example:

\[
1 - p(z) \quad \mathbb{Z} \quad p(z)
\]

- In the static case, the random environment remains fixed as times elapses.
Solomon, 1975.
Recurrence vs. transience criteria, laws of large numbers, central limit theorems, large deviation principles.
In the dynamic case, the random environment also evolves stochastically in time.
In the dynamic case, the random environment also evolves stochastically in time.

Dynamic random environments given by a stochastic particle systems.
In the dynamic case, the random environment also evolves stochastically in time.

Dynamic random environments given by a stochastic particle systems.

Exclusion process, contact process, systems of independent random walks, etc.
• In the dynamic case, the random environment also evolves stochastically in time.
• Dynamic random environments given by a stochastic particle systems.
• Exclusion process, contact process, systems of independent random walks, etc.
• Laws of large numbers, central limit theorems, large deviation estimates, among others.
Our model

- Dynamic random environment
Our model

- Dynamic random environment
 - $(\Omega, \mathcal{F}, \mathbb{P})$ a probability space.
 - (E, \mathcal{E}) a measurable space.
 - $\eta = (\eta_t)_{t \in \mathbb{R}^+}$ on $(\Omega, \mathcal{F}, \mathbb{P})$ where $\eta_t = (\eta_t(x))_{x \in Z \in E}$ for each $t \in \mathbb{R}^+$. We assume that η invariant by space-time translations.
Our model

- Dynamic random environment
 - $(\Omega, \mathcal{F}, \mathbb{P})$ a probability space.
 - (E, \mathcal{E}) a measurable space.
Our model

- Dynamic random environment
 - $(\Omega, \mathcal{F}, \mathbb{P})$ a probability space.
 - (E, \mathcal{E}) a measurable space.
 - $\eta = (\eta_t)_{t \in \mathbb{R}^+}$ on $(\Omega, \mathcal{F}, \mathbb{P})$ where $\eta_t = (\eta_t(x))_{x \in \mathbb{Z}} \in E^\mathbb{Z}$ for each $t \in \mathbb{R}^+$. We assume that η invariant by space-time translations.
Our model

- Dynamic random environment
 - $(\Omega, \mathcal{F}, \mathbb{P})$ a probability space.
 - (E, \mathcal{E}) a measurable space.
 - $\eta = (\eta_t)_{t \in \mathbb{R}_+}$ on $(\Omega, \mathcal{F}, \mathbb{P})$ where $\eta_t = (\eta_t(x))_{x \in \mathbb{Z}} \in E^\mathbb{Z}$ for each $t \in \mathbb{R}_+$.
 - We assume that η invariant by space-time translations.
Our model

- Assumption DEC (Lateral Decoupling)

 \(f_1 \) and \(f_2 \) two non-negative functions, \(\| f_1 \|_\infty \leq 1, \| f_2 \|_\infty \leq 1 \).
Our model

- Assumption DEC (Lateral Decoupling)

 \(f_1\) and \(f_2\) two non-negative functions, \(\|f_1\|_\infty \leq 1, \|f_2\|_\infty \leq 1\).

 \(f_i\) supported on \(B_i\).
Assumption DEC (Lateral Decoupling)

\(f_1 \) and \(f_2 \) two non-negative functions, \(\|f_1\|_\infty \leq 1, \|f_2\|_\infty \leq 1. \)

\(f_i \) supported on \(B_i \).
Our model

- **Assumption DEC (Lateral Decoupling)**

 \(f_1 \) and \(f_2 \) two non-negative functions, \(\|f_1\|_\infty \leq 1, \|f_2\|_\infty \leq 1 \).

 \(f_i \) supported on \(B_i \).

If \(d_H \geq v \circ d_V + C_1 s + C_2 \), \(v \circ, C_1, C_2 \), positive constants,
Assumption DEC (Lateral Decoupling)

f_1 and f_2 two non-negative functions, $\|f_1\|_\infty \leq 1$, $\|f_2\|_\infty \leq 1$. f_i supported on B_i.

If $d_H \geq \nu d_V + C_1 s + C_2$, ν, C_1, C_2, positive constants, then
Our model

- Assumption DEC (Lateral Decoupling)

 \(f_1 \) and \(f_2 \) two non-negative functions, \(\|f_1\|_\infty \leq 1, \|f_2\|_\infty \leq 1 \).

 \(f_i \) supported on \(B_i \).

 If \(d_H \geq v_\circ d_V + C_1 s + C_2 \), \(v_\circ, C_1, C_2 \), positive constants, then

 \[\mathbb{E}[f_1 f_2] \leq \mathbb{E}[f_1] \mathbb{E}[f_2] + C_\circ e^{-\kappa_\circ (\log d_H)^{\gamma_\circ}}, \quad C_\circ, \kappa_\circ \in \mathbb{R}_+, \gamma_\circ > 1. \]
Our model

- The random walk

 - $\alpha, \beta : E \to \mathbb{R}_+$.
Our model

- The random walk

 \[\alpha, \beta : E \to \mathbb{R}_+ . \]

 Continuous-time random walk \(X = (X_t)_{t\geq 0} . \)
Our model

The random walk

- $\alpha, \beta : E \rightarrow \mathbb{R}_+$.
- Continuous-time random walk $X = (X_t)_{t \geq 0}$.
- $X_0 = 0$.

The random walk

- \(\alpha, \beta : E \rightarrow \mathbb{R}_+ \).
- Continuous-time random walk \(X = (X_t)_{t \geq 0} \).
- \(X_0 = 0 \).
- If \(X_t = x \), then \(X \) jumps to the right with rate \(\alpha(\eta_t(x)) \) and jumps to the left with rate \(\beta(\eta_t(x)) \).
Our model

The random walk

- $\alpha, \beta : E \rightarrow \mathbb{R}_+$.
- Continuous-time random walk $X = (X_t)_{t \geq 0}$.
- $X_0 = 0$.
- If $X_t = x$, then X jumps to the right with rate $\alpha(\eta_t(x))$ and jumps to the left with rate $\beta(\eta_t(x))$.

\[\sup_{\xi \in E} \{\alpha(\xi) + \beta(\xi)\} \leq \Lambda. \]
Assumption BAL (Ballisticity)
Assumption BAL (Ballisticity)

There exist constants $\nu_\star, \kappa_\star, C_\star > 0$ and $\gamma_\star > 1$ such that

$$\mathbb{P}(X_t \leq \nu_\star t) \leq C_\star e^{-\kappa_\star \log t} \gamma_\star$$

for all $t \geq 0$.
Main theorem

Theorem

Assume that Assumptions DEC and BAL hold with $v_* > v_\circ$. Then there exists a speed $v \geq v_*$ such that

$$\lim_{t \to \infty} \frac{X_t}{t} = v \quad \mathbb{P}\text{-almost surely.}$$
Notations and definitions

- $L = \mathbb{Z} \times \mathbb{R}_+$
Notations and definitions

- \(L = \mathbb{Z} \times \mathbb{R}_+ \)
- \(\lambda = 2\Lambda \)
Notations and definitions

- \(L = \mathbb{Z} \times \mathbb{R}_+ \)
- \(\lambda = 2\Lambda \)
- \(H \geq 1, \, v \in \mathbb{R}, \, w \in \mathbb{R}^2 \)

\[
A_{H,w}(v) = \left[\exists \, y \in I_H(w) \cap L \text{ s.t. } X_H^y - \pi_1(y) \geq vH \right],
\]

where \(I_H(w) = w + [0, \lambda H) \times \{0\} \).
Notations and definitions

- \(L = \mathbb{Z} \times \mathbb{R}_+ \)
- \(\lambda = 2\Lambda \)
- \(H \geq 1, \; \nu \in \mathbb{R}, \; w \in \mathbb{R}^2 \)

\[
A_{H,w}(\nu) = \left\{ \exists \; y \in I_H(w) \cap \mathbb{L} \; \text{s.t.} \; X^y_H - \pi_1(y) \geq \nu H \right\},
\]

where \(I_H(w) = w + [0, \lambda H) \times \{0\} \).
Notations and definitions

- \(p_H(v) := \sup_{w \in \mathbb{R}^2} \mathbb{P}[A_{H,w}(v)] \)

- \(v^- := \sup \{ v \in \mathbb{R} : \lim \inf_{H \to \infty} \tilde{p}_H(v) = 0 \} \)

- \(v^-, v^+ \in [v^\star, \lambda] \)

- Probability goes to zero
Notations and definitions

- $p_H(v) := \sup_{w \in \mathbb{R}^2} \mathbb{P}[A_{H,w}(v)]$
- $v_+ := \inf \{ v \in \mathbb{R} : \liminf_{H \to \infty} p_H(v) = 0 \}$.
Notations and definitions

- \(p_H(v) := \sup_{w \in \mathbb{R}^2} \mathbb{P}[A_{H,w}(v)] \)
- \(v_+ := \inf \{ v \in \mathbb{R} : \lim \inf_{H \to \infty} p_H(v) = 0 \} \)
- \(\tilde{A}_{H,w}(v), \quad \tilde{p}_H(v) \).
Notations and definitions

- \(p_H(v) := \sup_{w \in \mathbb{R}^2} \mathbb{P}[A_{H,w}(v)] \)
- \(v_+ := \inf \{ v \in \mathbb{R} : \liminf_{H \to \infty} p_H(v) = 0 \} \).
- \(\tilde{A}_{H,w}(v), \quad \tilde{p}_H(v) \).
- \(v_- := \sup \{ v \in \mathbb{R} : \liminf_{H \to \infty} \tilde{p}_H(v) = 0 \} \).
Notations and definitions

- \(p_H(v) := \sup_{w \in \mathbb{R}^2} \mathbb{P}[A_{H,w}(v)] \)
- \(v_+ := \inf \{ v \in \mathbb{R} : \lim \inf_{H \to \infty} p_H(v) = 0 \} \)
- \(\tilde{A}_{H,w}(v) \), \(\tilde{p}_H(v) \)
- \(v_- := \sup \{ v \in \mathbb{R} : \lim \inf_{H \to \infty} \tilde{p}_H(v) = 0 \} \)
- \(v_-, v_+ \in [v_*, \lambda] \)
Notations and definitions

- \(p_H(v) := \sup_{w \in \mathbb{R}^2} \mathbb{P}[A_{H,w}(v)] \)
- \(v_+ := \inf \{ v \in \mathbb{R} : \liminf_{H \to \infty} p_H(v) = 0 \} \)
- \(\tilde{A}_{H,w}(v), \quad \tilde{p}_H(v) \)
- \(v_- := \sup \{ v \in \mathbb{R} : \liminf_{H \to \infty} \tilde{p}_H(v) = 0 \} \)
- \(v_-, v_+ \in [v_*, \lambda] \)

probability goes to zero

\(v_- \)

\(v_+ \)

positive probability

\(v_- \)

\(v_+ \)

probability goes to zero
Proposition 1

∀ε > 0, ∃c₁ = c₁(ε) > 0 such that

\[p_H(v_+ + \varepsilon) \leq c₁ e^{-3\kappa \log \gamma H} \quad \text{and} \quad \tilde{p}_H(v_- - \varepsilon) \leq c₁ e^{-3\kappa \log \gamma H}, \]

for all \(H \geq 1 \).
Proposition 1

∀ε > 0, ∃c₁ = c₁(ε) > 0 such that

\[p_H(v_+ + \varepsilon) \leq c_1 e^{-3\kappa \log^{\gamma} H} \]

and

\[\tilde{p}_H(v_+ - \varepsilon) \leq c_1 e^{-3\kappa \log^{\gamma} H}, \]

for all \(H \geq 1 \).

- Proposition 1 implies that \(v_- \leq v_+ \).
Proposition 1

∀ε > 0, ∃c₁ = c₁(ε) > 0 such that

\[p_H(v_+ + ε) \leq c₁ e^{-3κ \log^\gamma H} \quad \text{and} \quad \tilde{p}_H(v_- - ε) \leq c₁ e^{-3κ \log^\gamma H}, \]

for all \(H \geq 1 \).

- Proposition 1 implies that \(v_- \leq v_+ \).

\[\begin{array}{ccc}
 & v_+ & \\
\text{hard} & \downarrow & \text{hard} \\
\text{hard} & \downarrow & \text{hard} \\
 & v_- \\
\end{array} \]
Proposition 1

\(\forall \varepsilon > 0, \exists c_1 = c_1(\varepsilon) > 0 \text{ such that} \)

\[p_H(v_+ + \varepsilon) \leq c_1 e^{-3\kappa \log \gamma H} \quad \text{and} \quad \tilde{p}_H(v_- - \varepsilon) \leq c_1 e^{-3\kappa \log \gamma H}, \]

for all \(H \geq 1. \)

- Proposition 1 implies that \(v_- \leq v_+ \).

Proposition

We have

\[v_+ = v_- . \]
Proof of Proposition 1 - Multiscale renormalization

- Define \((L_k)_{k \geq 0}\) inductively as

\[
L_0 := 10^{10} \quad \text{and} \quad L_{k+1} := \ell_k L_k, \quad \text{for } k \geq 0,
\]
Proof of Proposition 1 - Multiscale renormalization

- Define \((L_k)_{k \geq 0}\) inductively as

\[L_0 := 10^{10} \quad \text{and} \quad L_{k+1} := \ell_k L_k, \quad \text{for} \ k \geq 0, \]

where \(\ell_k := \lfloor L_k^\nu \rfloor\) and \(\nu \in (0, 1)\) is chosen properly.

- \(h \geq 1\)

\[B_{L_k}^h := [-4\lambda h L_k, 5\lambda h L_k] \times [0, h L_k) \subset \mathbb{R}^2, \]
Proof of Proposition 1 - Multiscale renormalization

- Define $(L_k)_{k \geq 0}$ inductively as

\[L_0 := 10^{10} \quad \text{and} \quad L_{k+1} := \ell_k L_k, \quad \text{for} \ k \geq 0, \]

where \(\ell_k := \lfloor L_k^\nu \rfloor \) and \(\nu \in (0, 1) \) is chosen properly.

- \(h \geq 1 \)

\[B^h_{L_k} := [-4\lambda hL_k, 5\lambda hL_k) \times [0, hL_k) \subset \mathbb{R}^2, \]

- For \(w \in \mathbb{R}^2 \), we write

\[B^h_{L_k}(w) := w + B^h_{L_k} \]
Proof of Proposition 1 - Multiscale renormalization

- Define \((L_k)_{k \geq 0}\) inductively as
 \[
 L_0 := 10^{10} \quad \text{and} \quad L_{k+1} := \ell_k L_k, \quad \text{for } k \geq 0,
 \]
 where \(\ell_k := \lfloor L_k^{\nu} \rfloor\) and \(\nu \in (0, 1)\) is chosen properly.

- \(h \geq 1\)

 \[
 B^h_{L_k} := [-4\lambda hL_k, 5\lambda hL_k] \times [0, hL_k) \subset \mathbb{R}^2,
 \]

- For \(w \in \mathbb{R}^2\), we write

 \[
 B^h_{L_k}(w) := w + B^h_{L_k}
 \]

- \(m = (h, k, w)\)

 \[
 B_m := B^h_{L_k}(w), \quad A_m(v) := A_{hL_k, w}(v) \quad \text{and} \quad \tilde{A}_m(v) := \tilde{A}_{hL_k, w}(v).
 \]
Proof of Proposition 1 - Multiscale renormalization

- Increasing Sequence $(v_k)_{k \geq 0}$.
Proof of Proposition 1 - Multiscale renormalization

- Increasing Sequence \((v_k)_k\geq 0\).
- How to estimate \(p_{hL_{k+1}}(v_{k+1})\)?
Proof of Proposition 1 - Multiscale renormalization

- Increasing Sequence \((v_k)_{k \geq 0}\).
- How to estimate \(p_{hL_{k+1}}(v_{k+1})\)?
- \(\mathbb{P}[A_m(v_{k+1})], m \in M_{k+1}^h\).
Proof of Proposition 1 - Multiscale renormalization

- Increasing Sequence \((v_k)_{k\geq 0}\).
- How to estimate \(p_{hL_{k+1}}(v_{k+1})\)?
- \(\mathbb{P}[A_m(v_{k+1})], \ m \in M_{k+1}^h\).
Proof of Proposition 1 - Multiscale renormalization

- Increasing Sequence \((v_k)_{k \geq 0}\).
- How to estimate \(p_{hL_{k+1}}(v_{k+1})\)?
- \(\mathbb{P}[A_m(v_{k+1})], \ m \in M^h_{k+1}\).

\[y + hL_{k+1}(v_{k+1}, 1) \]

\[9\lambda hL_{k+1} \]

\[B_{m_2} \]

\[5\lambda hL_k \]

\[B_{m_1} \]

\[5\lambda hL_k \]

\[hL_k \]

\[d_H \]

\[d_V \]
Proof of Proposition 1 - Multiscale renormalization

- $d_H > v \circ d_V + (\lambda + C_1 + C_2) hL_k \geq v \circ d_V + C_1 hL_k + C_2$

- The other case is similar
Proof of Proposition 1 - Multiscale renormalization

- $d_H > \nu \circ d_V + (\lambda + C_1 + C_2) hL_k \geq \nu \circ d_V + C_1 hL_k + C_2$

- $p_{hL_{k+1}} \leq c \ell_k^4 p_{hL_k}^2(v_k) + e^{-8\kappa (\log hL_k)^\gamma}$
Proof of Proposition 1 - Multiscale renormalization

- \(d_H > \nu \circ d_V + (\lambda + C_1 + C_2) hL_k \geq \nu \circ d_V + C_1 hL_k + C_2 \)
- \(p_{hL_{k+1}} \leq c\ell_k^4 p_{hL_k}(v_k) + e^{-8\kappa(\log hL_k)^\gamma} \)
- **Recurrence**

 if \(p_{hL_k}(v_k) \leq e^{-4\kappa \log^\gamma L_k} \) then \(p_{hL_{k+1}}(v_{k+1}) \leq e^{-4\kappa \log^\gamma L_{k+1}} \).
Proof of Proposition 1 - Multiscale renormalization

- $d_H > v \circ d_V + (\lambda + C_1 + C_2) hL_k \geq v \circ d_V + C_1 hL_k + C_2$
- $p_{hL_{k+1}} \leq c \ell_k^4 p_{hL_k}^2(v_k) + e^{-8\kappa (\log hL_k)^\gamma}$
- **Recurrence**

 if $p_{hL_k}(v_k) \leq e^{-4\kappa \log^\gamma L_k}$ then $p_{hL_{k+1}}(v_{k+1}) \leq e^{-4\kappa \log^\gamma L_{k+1}}$.

- **Triggering:**

 $$p_{c_2 L_k} (v) \leq e^{-4\kappa \log^\gamma L_k} \quad \text{for all } k \geq k_0.$$
\begin{itemize}
\item $d_H > v \circ d_V + (\lambda + C_1 + C_2) hL_k \geq v \circ d_V + C_1 hL_k + C_2$
\item $p_{hL_{k+1}} \leq c \ell_k^4 p_{hL_k}^2(v_k) + e^{-8\kappa (\log hL_k)^\gamma}$
\item **Recurrence**

\[\text{if } p_{hL_k}(v_k) \leq e^{-4\kappa \log^\gamma L_k} \text{ then } p_{hL_{k+1}}(v_{k+1}) \leq e^{-4\kappa \log^\gamma L_{k+1}}.\]
\item **Triggering:**

\[p_{c_2 L_k}(v) \leq e^{-4\kappa \log^\gamma L_k} \text{ for all } k \geq k_0.\]
\item **Interpolation:** $\epsilon > 0, H \geq 1$
\end{itemize}
Proof of Proposition 1 - Multiscale renormalization

- \(d_H > v_0 d_V + (\lambda + C_1 + C_2) h L_k \geq v_0 d_V + C_1 h L_k + C_2 \)
- \(p_{h L_k + 1} \leq c \ell_k^4 p_{h L_k}^2 (v_k) + e^{-8 \kappa (\log h L_k)^\gamma} \)
- **Recurrence**

 if \(p_{h L_k} (v_k) \leq e^{-4 \kappa \log \gamma L_k} \) then \(p_{h L_k + 1} (v_{k+1}) \leq e^{-4 \kappa \log \gamma L_{k+1}} \).

- **Triggering:**

 \[p_{c_2 L_k} (v) \leq e^{-4 \kappa \log \gamma L_k} \quad \text{for all } k \geq k_0. \]

- **Interpolation:** \(\epsilon > 0, \ H \geq 1 \)

 \[p_H (v_+ + \epsilon) \leq c_1 e^{-3 \kappa \log \gamma H} \]
Proof of Proposition 1 - Multiscale renormalization

- \(d_H > v \circ d_V + (\lambda + C_1 + C_2) hL_k \geq v \circ d_V + C_1 hL_k + C_2 \)
- \(p_{hL_{k+1}} \leq c \ell_k^4 p_{hL_k}^2 (v_k) + e^{-8\kappa (\log hL_k)^\gamma} \)
- **Recurrence**

 if \(p_{hL_k} (v_k) \leq e^{-4\kappa \log \gamma L_k} \) then \(p_{hL_{k+1}} (v_{k+1}) \leq e^{-4\kappa \log \gamma L_{k+1}} \).

- **Triggering:**

 \[p_{c_2 L_k} (v) \leq e^{-4\kappa \log \gamma L_k} \quad \text{for all } k \geq k_0. \]

- **Interpolation:** \(\epsilon > 0, \; H \geq 1 \)

 \[p_H (v_+ + \epsilon) \leq c_1 e^{-3\kappa \log \gamma H} \]

- The other case is similar
Zero range process

- Initial configuration η_0:
Zero range process

- Initial configuration \(\eta_0 \):
- \(g : \mathbb{N}_0 \rightarrow \mathbb{R}_+ \) with \(g(0) = 0 \).
Example of environments that satisfy DEC

Zero range process

- Initial configuration η_0:
- $g : \mathbb{N}_0 \rightarrow \mathbb{R}_+ \text{ with } g(0) = 0$.
- $\Gamma_- \leq g(k) - g(k - 1) \leq \Gamma_+$, for all $k \geq 1$.

Marginals: for $\phi \in \mathbb{R}_+$

$\nu_{\phi}(k) = \frac{1}{Z(\phi)} \phi^k g(k)!$, for all $k \in \mathbb{N}_0$ and $x \in \mathbb{Z}$.
Example of environments that satisfy DEC

Zero range process

- Initial configuration η_0:
- $g : \mathbb{N}_0 \to \mathbb{R}_+$ with $g(0) = 0$.
- $\Gamma_- \leq g(k) - g(k - 1) \leq \Gamma_+$, for all $k \geq 1$.
- Marginals: for $\phi \in \mathbb{R}_+$

$$
\nu_{\phi}(k) = \frac{1}{Z(\phi) g(k)!} \phi^k, \quad \text{for all } k \in \mathbb{N}_0 \text{ and } x \in \mathbb{Z}.
$$
The zero-range process in \mathbb{Z}

- Then, the initial configuration is given by the product measure of these marginals, which is invariant for the zero-range process.
Then, the initial configuration is given by the product measure of these marginals, which is invariant for the zero-range process.

Evolution:

Figure: The evolution of the zero-range process.
- f_1 and f_2 two non-negative functions, $\|f_1\|_\infty \leq 1$, $\|f_2\|_\infty \leq 1$.
- f_1 and f_2 two non-negative functions, $\|f_1\|_\infty \leq 1$, $\|f_2\|_\infty \leq 1$.
- f_i supported on B_i.

Other example: Asymmetric exclusion process
- f_1 and f_2 two non-negative functions, $\|f_1\|_\infty \leq 1$, $\|f_2\|_\infty \leq 1$.
- f_i supported on B_i.

\begin{itemize}
 \item \[d_H \geq C_1 (s + d_V) + C_2.\]
 \item \[E \rho [f_1 f_2] \leq E \rho [f_1] E \rho [f_2] + c_1 e^{-c_1^{-1} \log 5/4 d_H}, \gamma \circ = 5/4.\]
 \item Other example: Asymmetric exclusion process.
\begin{itemize}
\item f_1 and f_2 two non-negative functions, $\|f_1\|_{\infty} \leq 1$, $\|f_2\|_{\infty} \leq 1$.
\item f_i supported on B_i.
\item $d_H \geq C_1(s + d_V) + C_2$.
\end{itemize}
- f_1 and f_2 two non-negative functions, $\|f_1\|_\infty \leq 1$, $\|f_2\|_\infty \leq 1$.
- f_i supported on B_i.

- $d_H \geq C_1(s + d_V) + C_2$.
- $\mathbb{E}^\rho[f_1 f_2] \leq \mathbb{E}^\rho[f_1] \mathbb{E}^\rho[f_2] + c_1 e^{-c_1^{-1} \log^{5/4} d_H}$, $\gamma_o = 5/4$.
- Other example: Asymmetric exclusion process
Future works

- Law of large numbers
Future works

- Law of large numbers
- CLT
Future works

- Law of large numbers
- CLT
- higher dimensions
Future works

- Law of large numbers
- CLT
- higher dimensions
Thank You!
References

