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Random walks on random environments in Z

= Model the motion of a particle in an inhomogeneous media.

= Example:

1-p(2) TN p(z)
z z

= In the static case, the random environment remains fixed as
times elapses.
Solomon, 1975.
Recurrence vs. transience criteria, laws of large numbers,
central limit theorems, large deviation principles.
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Dynamic random environment

= In the dynamic case, the random environment also evolves
stochastically in time.
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Dynamic random environment

= In the dynamic case, the random environment also evolves
stochastically in time.

= Dynamic random environments given by a stochastic particle
systems.

= Exclusion process, contact process, systems of independent
random walks, etc.

= Laws of large numbers, central limit theorems, large deviation
estimates, among others.
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= Dynamic random environment

= (Q,F,P) a probability space.

= (E, &) a measurable space.

= = (Ne)eer, on (Q, F,P) where n; = (n¢(x))xez € EZ for
each t € R;.

= We assume that 7 invariant by space-time translations.
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= Assumption DEC (Lateral Decoupling)

fi and f, two non-negative functions, ||fi|lcc < 1, ||f2]|oc < 1.
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= Assumption DEC (Lateral Decoupling)

fi and f, two non-negative functions, ||fi|lcc < 1, ||f2]|oc < 1.

f; supported on B;.

By

If dH > Vodv + C1$ + C2,

then

Vo, C1, Cp, positive constants,

E[fif] < E[A]E[f] + Coe (8™ C, ko € Ry, 70 > 1.

5/20



= The random walk

= o, E—Ry.
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= The random walk

a,B: E—Ry.

= Continuous-time random walk X = (X;)¢>o.

= Xo =0.

= If X; = x, then X jumps to the right with rate «(7:(x)) and
jumps to the left with rate 5(n:(x)).

6/20



= The random walk

= o, E—Ry.

= Continuous-time random walk X = (X;)¢>o.

= Xo =0.

= If X; = x, then X jumps to the right with rate «(7:(x)) and
jumps to the left with rate 5(n:(x)).

B(ne(x)) {\Xffu a(ne(x))

. zgg{a(ﬁ) +B(§)} <A
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= Assumption BAL (Ballisticity)
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= Assumption BAL (Ballisticity)

There exist constants vy, ki, C, > 0 and ~, > 1 such that

P(X: < vt) < C e rir(logt)™ for all t > 0.
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Assume that Assumptions DEC and BAL hold with v, > v,.
Then there exists a speed v > v, such that

X
lim 2 = v P-almost surely.
t—oco t
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Notations and definitions

« L=Z xR,

9/20



Notations and definitions

« L=Z xR,
= A =2A

9/20



Notations and definitions

« L=Z xR,
= )\ =2A
s H>1, veR, weR?

AHw(v) = {EI y € Iy(w)NLs.t. Xy, — m(y) > VH},

where Iy(w) = w + [0, AH) x {0}.

9/20



Notations and definitions

« L=Z xR,
= )\ =2A
s H>1, veR, weR?

AHw(v) = {EI y € ly(w)NL st. X}, — m1(y) > VH},

where Iy(w) = w + [0, AH) x {0}.
y+ H(v,1)

=
-
-
-
-
= } 1
-
-
-

' .

t
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Notations and definitions
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Notations and definitions

= pr(v) = sup P[Ay (V)]

weR?
= vy =inf{v eR: liminfy_e pu(v) = 0}.
. /Z\ij(v), Pr(v).
= v :=sup{v e R: liminfy_o pu(v) =0}.
= v, vp € v, AL

v_ Vy

positive

probability
prob. goes to zero

prob. goes to zero
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Proposition

Ve >0, e = ci(e) > 0 such that
pH(vy +¢) < e 3rle"H - and Pr(v— —e) < G BT

for all H> 1.
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Proposition 1

Proposition

Ve >0, e = ci(e) > 0 such that

pH(vy +¢) < e 3rle"H - and Pr(v— —¢) < G BT

for all H> 1.

= Proposition 1 implies that v_ < vy.
V+ V_
hard
hard hard

Proposition

We have

Vi = Vv_.
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Proof of Proposition 1 - Multiscale renormalization

= Define (Lx)k>o inductively as

Lo:=10% and L1 :=/0cly, for k>0,
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= Define (Lx)k>o inductively as
Lo:=10% and L1 :=/0cly, for k>0,

where ¢; := | L}] and v € (0, 1) is chosen properly.
= h>1

Bl := [—4AhLy,5AhLy) x [0, hLy) C R?,

= For w € R2, we write

B,’_’k(w) =w+ Bfk

= m=(h k,w)

Bm = B[’k(w), Am(v) = Apt,w(v) and Ap(v) = Ap, w(v).
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Proof of Proposition 1 - Multiscale renormalization

= dy > vody + ()\ + G+ C2)th > vody + CihL, + G
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] dH > VodV + ()\+ Cl + CZ)th Z VodV + Cthk + C2
" PhLy, < CeiP%Lk(Vk) + e 8n(log hLy)?

= Recurrence

if ph, (vi) < e **'°8"Ee then ppy,. (vis1) < e

= Triggering:

Pe,, (V) < e 4nlog” L for all k > ko.
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Proof of Proposition 1 - Multiscale renormalization

dH > VodV + ()\+ C]_ + C2)th Z VodV + Cthk 4 C2
Phiey < clhphy, (vic) + e 8rlloghb)”

Recurrence
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Proof of Proposition 1 - Multiscale renormalization

] dH > VodV + ()\+ Cl + CZ)th Z VodV + Cthk + C2
" PhLy, < CeiP%Lk(Vk) + e 8n(log hLy)?

= Recurrence

i —4rlogh L —4rlog? L
if pth(Vk) S e "I98 Lk then pth+1(Vk+1) S e o8 Lit1

= Triggering:

Pe,, (V) < e 4nlog” L for all k > ko.

= Interpolation: ¢ >0, H>1
pH(V+ + 6) < Cle—3n log” H

= The other case is similar
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Example of environments that satisfy DEC

Zero range process

= Initial configuration 7g:
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Example of environments that satisfy DEC

Zero range process

Initial configuration ny:
= g: Ny — Ry with g(0) =0.
- <g(k)—glk—1)<T,, forall k>1.
Marginals: for ¢ € R
1 ¢k

=——~—-, forall k d Z.
vg(k) Z(6) 21 orall k € Ng and x €
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The zero-range process in Z

= Then, the initial configuration is given by the product measure
of these marginals, which is invariant for the zero-range
process.
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The zero-range process in Z

= Then, the initial configuration is given by the product measure
of these marginals, which is invariant for the zero-range
process.

= Evolution:

g(n:(x))
e~ —x

\
—6

I
1

| | |
3 5 6

o 03

Figure: The evolution of the zero-range process.
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Decoupling[R. Baldasso, A. Teixeira]
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Decoupling[R. Baldasso, A. Teixeira]

= fi; and f» two non-negative functions, ||fi|lcc < 1, ||f2||cc < 1.

= f; supported on B;.

L dy

Bl S

= dy > CG(s+dv)+ G.
- EP[ff] < BP[AIEC[H] + cremcr &y, = 5/4.

= Other example: Asymmetric exclusion process
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= Law of large numbers
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Thank You!
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