Survival of Renewal Contact Process

Rafael Souza dos Santos (IM - UFRJ)

Joint work with Maria Eulalia Vares (IM - UFRJ)

Probability Seminar - IM - UFRJ August, 14 - 2023

< ロ > < 同 > < 回 > < 回 > < 回 > <

Summary

- **1** Contact Process (Classic).
 - Model description
 - Critical parameter
- 2 Renewal Contact Process.
 - Model description
 - Some important results
- **3** Some proof ideas

4 References

- This is a model to describe the spread of infectious diseases introduced by Harris in 1974.
- Consider a connected graph G = (V, E). For example, V = Z or Z^d and E equal to the set of nearest neighbors in Z or Z^d.
- The vertices of V represent individuals that can be healthy or infected.
- Begin with some infected individuals (usually only the origin) at time t = 0.
- Infected individuals become healthy at a rate of 1.
- Healthy individuals become sick at a rate equal to a given parameter λ times the number of infected neighbors.
- The state of the population at time t is described by a configuration $\xi_t \in \{0,1\}^V$, where $\xi_t(x) = 0$ means that the individual x is healthy at time t and $\xi_t(x) = 1$ means that the individual x is infected at time t.

・ コット (雪) マイロット (日) しょう

Figure: Graphical Representation of the Contact Process

∃ ► < ∃ ►</p>

Figure: Graphical Representation of the Contact Process

• • = • • = •

Figure: Graphical Representation of the Contact Process

• • = • • = •

Contact Process - Critical Parameter

- Depending on the position of the cure times and the transmission times, the infection can be extinct or not. Higher values of λ favor the survival of the infection.
- Critical parameter:

$$\lambda_{c} := \inf\{\lambda : P(\tau^{\{0\}} = \infty) > 0\},\$$

where $\tau^{\{0\}} := \inf\{t : \xi_t^{\{0\}} \equiv 0\}$ and $\xi_t^{\{0\}}$ denotes the configuration of the Contact Process at time t when only the origin is infected at time 0.

- If $\lambda < \lambda_c$, the Contact Process is subcritical.
- If $\lambda > \lambda_c$, the Contact Process is supercritical.
- Is $0 < \lambda_c(\mathbb{Z}^d) < \infty$?

イロト 不得 トイヨト イヨト 三日

Initial bounds for λ_c :

- $\lambda_c(\mathbb{Z}^d) \geq \frac{1}{2d}$ (comparison with branching process).
- $\lambda_c(\mathbb{Z}) \leq 2$ (Holley and Liggett in 1978).
- $\lambda_c(\mathbb{Z}^d) \leq \frac{2}{d}$ (comparison with a Contact Process in \mathbb{Z} with parameter λd).

Best bounds for $\lambda_c(\mathbb{Z})$ in the literature so far:

- $\lambda_c(\mathbb{Z}) > 1,539$ (Grillenberger and Ziezold in 1988).
- $\lambda_c(\mathbb{Z}) \leq 1,942$ (Liggett in 1995).

・ロト ・四ト ・ヨト ・ヨト ・ヨ

Some other results and facts about the critical parameter:

- If $d_1 < d_2$, then $\lambda_c(\mathbb{Z}^{d_1}) \geq \lambda_c(\mathbb{Z}^{d_2})$.
- If V is finite, then the infection will be extinct with probability one for any value of λ .
- If $P_{\lambda}(\tau^{\{0\}} = \infty) = 0$, then $P_{\lambda}(\tau^{\{A\}} = \infty) = 0$ for any $A \subset V$ with $|A| < \infty$.
- The infection in \mathbb{Z}^d is extinct with probability one when $\lambda = \lambda_c(\mathbb{Z}^d)$ (Bezuidenhout and Grimmett in 1990)

・ロット (雪) (日) (日) (日)

Renewal Contact Process - Model Description

- Consider $V = \mathbb{Z}^d$ and \mathcal{E} equal to the set of nearest neighbors in \mathbb{Z}^d .
- The Renewal Contact Process (RCP) extends the Classical Contact Process by allowing the cure times to be determined according to a more general renewal process. Introduced by Fontes, Marchetti, Mountford and Vares in 2019.
- Given a probability measure μ on $[0, \infty)$, let $\{T_{x,i}\}_{x \in \mathbb{Z}^d, i \in \mathbb{N}}$ be i.i.d. random variables with distribution μ and $S_{x,n} = T_{x,1} + \ldots + T_{x,n}$. The times $S_{x,n}$ will be the position of the cure marks in the RCP.
- Transmission attempts work in the same way as in the Classical Contact Process, i.e, healthy individuals become sick at a rate equal to a given parameter λ times the number of infected neighbors.
- The state of the population at time t is described by a configuration $\xi_t \in \{0,1\}^{\mathbb{Z}^d}$, where $\xi_t(x) = 0$ means that the individual x is healthy at time t and $\xi_t(x) = 1$ means that the individual x is infected at time t.

・ロン ・四 と ・ 田 と ・ 田

Renewal Contact Process - Model Description

Advantage:

• More flexible models

Disadvantage:

• The process is no longer Markovian

Important problems:

- Identify sufficient conditions on μ to have λ_c(μ) = 0 or to have λ_c(μ) > 0
- Identify sufficient conditions on μ to have $\lambda_c(\mu) < \infty$

イロト 不得 トイヨト イヨト 三日

Theorem 1: [Fontes, Marchetti, Mountford, Vares (2019)]

If the distribution μ satisfies $\mu([t,\infty)) > t^{-\alpha}$ for all large t and some $\alpha < 1$ (plus some regularity conditions), then the RCP(μ) survives with positive probability for any $\lambda > 0$ (valid for any $d \ge 1$)

・ロッ ・雪 ・ ・ ヨ ・ ・

Renewal Contact Process - Some important results

Theorem 2: [Fontes, Mountford, Vares (2020)]

If the distribution μ satisfies

$$\int t^2 \mu(dt) < \infty,$$

then the RCP(μ) has $\lambda_c(\mu) > 0$ (valid for any $d \ge 1$)

Theorem 3: [Fontes, Mountford, Vares (2020)]

If μ has density f and distribution function F satisfying

(i)
$$\int t^{\alpha} \mu(dt) < \infty$$
, for some $\alpha > 1$;

(ii) the hazard rate
$$\displaystyle rac{f(t)}{1-F(t)}$$
 is decreasing in t,

then the RCP(μ) has $\lambda_c(\mu) > 0$ (valid only for d = 1)

イロト 不得 トイヨト イヨト 三日

Theorem 4: [Fontes, Mountford, Ungaretti, Vares (2023)]

If the distribution μ satisfies

$$\int_{1}^{\infty} t \exp\left[\theta \sqrt{\log(t)}\right] \mu(dt) < \infty \quad \textit{for some} \quad \theta > 4 \sqrt{d \log(2)},$$

then the RCP(μ) has $\lambda_c(\mu) > 0$. In particular, $\lambda_c(\mu) > 0$ whenever $\int t^{\alpha} \mu(dt) < \infty$ for some $\alpha > 1$ (valid for any $d \ge 1$).

くロ と く 同 と く ヨ と 一

So, we already have some results regarding conditions on μ to have $\lambda_c = 0$ or $\lambda_c > 0$. But what about conditions on μ to have $\lambda_c < \infty$ or $\lambda_c = \infty$?

So, we already have some results regarding conditions on μ to have $\lambda_c = 0$ or $\lambda_c > 0$. But what about conditions on μ to have $\lambda_c < \infty$ or $\lambda_c = \infty$?

If μ has a density and a hazard rate that is bounded and decreasing, then $\lambda_c(\mu) < \infty$ (Fontes, Mountford, Ungaretti and Vares (2023)).

イロト 不得 トイヨト イヨト 三日

Theorem 5: [Santos, Vares (to appear)]

If μ is a continuous distribution satisfying $\mu[0, b] = 1$ for some $b < \infty$, then $\lambda_c(\mu) < \infty$ (valid for any $d \ge 1$).

Theorem 6: [Santos, Vares (to appear)]

If μ is an absolutely continuous distribution on $[0, \infty)$ with density f and distribution function F such that its hazard rate $\frac{f(t)}{1-F(t)}$ is decreasing in t, then $\lambda_c(\mu) < \infty$ (valid for any $d \ge 1$).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Renewal Contact Process - Proof ideas

- Both proofs involve coupling the RCP(μ) with supercritical oriented percolation.
- We create some convenient vertical and horizontal boxes in Z⁺ × R⁺. The boxes will be classified as "good" or "bad" depending if there is a path that allows the infection to cross the box in the desired direction.
- These boxes will be chosen in such a way that if we can find an infinite path constructed only using good boxes, then the RCP(μ) survives.
- For any fixed $\epsilon > 0$, we can find $\tilde{\lambda}(\epsilon) < \infty$ such that the probability of any box (vertical or horizontal) to be good is greater than 1ϵ if we take $\lambda \geq \tilde{\lambda}(\epsilon)$.
- Events involving boxes with edges in the same vertical line are not independent. We deal with this problem in each Theorem with a different approach.

イロト イポト イヨト イヨト 三日

Renewal Contact Process - Proof ideas

Figure: Event "The box is good"

Rafael Santos

Survival of RCP

18/20

э

ヨト ・ヨト

Contact Process - References

- C. Bezuidenhout, G. Grimmett: The critical contact process dies out, *The Annals of Probability* **18**, 1462-1482 (1990).
- C. Grillenberger and H. Ziezold: On the critical infection rate of the one dimensional basic contact process: numerical results, *J. Appl. Probab.* Chapter 25, 1–8 (1988).
- T. E. Harris: Contact interactions on a lattice. *The Annals of Probability*, **2**(6) 969–988 (1974).
- T. E. Harris: Aditive Set-Valued Markov Process and Graphical Methods. *The Annals of Probability*, **6**(3) 355–378 (1978).
- R. Holley and T.M. Liggett: The survival of contact processes. *The Annals of Probability* **6**, 198–206 (1978).
- T. M. Liggett: Interacting Particle Systems. *Grundlehren der Mathematischen Wissenschaften* **276**, New York: Springer (1985)
- T. M. Liggett: Stochastic Interacting Systems: Contact, Voter and Exclusion Processes. *Grundlehren der Mathematischen Wissenschaften* **324**, Springer-Verlag (1999).
- T. M. Liggett: Improved upper bounds for the contact process critical value. The Annals of Probability 23, No 2, 697–723 (1995).

イロト 不得 トイヨト イヨト 二日

Renewal Contact Process - References

- L. R. Fontes, D.H.U. Marchetti, T.S. Mountford, M. E. Vares: Contact process under renewals I. Stoch. Proc. Appl., 129(8), 2903–2911 (2019).
- L. R. Fontes, P. Gomes, R. Sanchis: Contact process under heavy-tailed renewals on finite graphs. *Bernoulli*, 27(3), 1745–1763 (2020).
- L. R. Fontes, T.S. Mountford, M. E. Vares: Contact process under renewals II. Stoch. Proc. Appl., 130(2), 1103–1118 (2020).
- L. R. Fontes, T.S. Mountford, D. Ungaretti, M. E. Vares: Renewal Contact Processes: phase transition and survival. *Stoch. Proc. Appl.*, **161**, 102–136 (2023).
- M. Hilário, D. Ungaretti, D. Valesin, M. E. Vares: Results on the contact process with dynamic edges or under renewals. *Electron. J. Probab.* 27 article no. 91, 31pp (2022).
- T. Liggett, R. Schonmann, A. Stacey: Domination by product measures. The Annals of Probability, 25(1), 71-95 (1997).
- R. Santos, M. E. Vares: Survival of one dimensional renewal contact process. preprint arXiv:2306.06718 (2023).

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●