Targeted cutting of random recursive trees.

Sergio I. López

joint work with Laura Eslava, Marco L. Ortiz.
(Universidad Nacional Autónoma de México),

Probability Seminar, Instituto de Matemática, Universidade Federal do Rio de Janeiro

Outline

1. Random cutting (Fortuitous failures)
2. Targeted cutting (Malicious attack)
3. Results
4. Coupling
5. Work in progress
Increasing trees

- Edges directed towards root
- Labels $[n] = \{1, 2, \ldots, n\}$
- Labels increase away from root
- $\deg_{T_n}(v), \Delta(T_n)$
A random recursive tree on n vertices is a tree chosen uniformly at random on the class of increasing trees on $[n]$.

- T_1 is a tree with a single vertex
- For $i > 1$ build T_i from T_{i-1} by adding
 - vertex i
 - arrow $i \to j$

\[P(i \to j | T_{i-1}) = \frac{1}{i-1} \]
Figure: Obtaining T_8 from T_7
Characteristics

\[D := \deg_{T_n}(1) = \sum_{i=2}^{n} B_i, \text{ where } B_i \text{ is a Bernoulli } \left(\frac{1}{i-1} \right) \]

\[\mathbb{E}D = H_{n-1} \sim \ln(n) \]

Goh and Schmutz [2002]. Let \(\Delta(T_n) \) be the maximum degree in \(T_n \). Then

\[\Delta(T_n) \sim \log_2(n) \approx 1.4 \ln(n) \]
Characteristics

\[D := deg_{T_n}(1) = \sum_{i=2}^{n} B_i, \text{ where } B_i \text{ is a Bernoulli } \left(\frac{1}{i-1} \right) \]

\[\mathbb{E} D = H_{n-1} \sim \ln(n) \]

Goh and Schmutz [2002]. Let \(\Delta(T_n) \) be the maximum degree in \(T_n \). Then

\[\Delta(T_n) \sim \log_2(n) \approx 1.4 \ln(n) \]

Na and Rapoport [1970]

\[Z_i(n) := \# \{ 1 \leq j \leq n \mid deg_{T_n}(j) = i \}, \]

\[\frac{\mathbb{E} Z_i(n)}{n} \xrightarrow{n \to \infty} \frac{1}{2^{i+1}}, \]

\[\mathbb{E} Z_i(n) \xrightarrow{n \to \infty} \begin{cases} \infty & \text{for } i << \log_2(n) \\ \frac{1}{2} & \text{for } i - \log_2(n) = \Theta(1) \\ 0 & \text{for } i >> \log_2(n) \end{cases} \]
Introduction

Characteristics

\[D := \deg_{T_n}(1) = \sum_{i=2}^{n} B_i, \text{ where } B_i \text{ is a Bernoulli } \left(\frac{1}{i-1} \right) \]

\[\mathbb{E} D = H_{n-1} \sim \ln(n) \]

Goh and Schmutz [2002]. Let \(\Delta(T_n) \) be the maximum degree in \(T_n \). Then

\[\Delta(T_n) \sim \log_2(n) \approx 1.4 \ln(n) \]

Na and Rapoport [1970]

\[Z_i(n) := \#\{1 \leq j \leq n \mid \deg_{T_n}(j) = i\}, \]

\[\frac{\mathbb{E} Z_i(n)}{n} \xrightarrow{n \to \infty} \frac{1}{2^{i+1}}, \]

\[\mathbb{E} Z_i(n) \xrightarrow{n \to \infty} \begin{cases} \infty & \text{for } i << \log_2(n) \\ \frac{1}{2} & \text{for } i - \log_2(n) = \Theta(1) \\ 0 & \text{for } i >> \log_2(n) \end{cases} \]

Addario-Berry and Eslava [2017]

\[Z_{\geq i}(n) = \#\{1 \leq j \leq n \mid \deg_{T_n}(j) \geq i\}. \]

\[\mathbb{E} Z_{\geq k + \lfloor \log_2(n) \rfloor}(n) \xrightarrow{n \to \infty} \frac{1}{2^k} \]

for \(k \in \mathbb{N} \) and \(k = k(n) \) in a suitable range.
Random cutting

Introduced by Meir and Moon [1974]

- Choose an edge uniformly at random and delete it
- Discard the subtree not containing the root
- Repeat this procedure until the root is isolated
Random cutting

Introduced by Meir and Moon [1974]

- Choose an edge uniformly at random and delete it
- Discard the subtree not containing the root
- Repeat this procedure until the root is isolated
Random cutting

Introduced by Meir and Moon [1974]

- Choose an edge uniformly at random and delete it
- Discard the subtree not containing the root
- Repeat this procedure until the root is isolated
Random cutting

Introduced by Meir and Moon [1974]

- Choose an edge uniformly at random and delete it
- Discard the subtree not containing the root
- Repeat this procedure until the root is isolated
Random cutting

Introduced by Meir and Moon [1974]

- Choose an edge uniformly at random and delete it
- Discard the subtree not containing the root
- Repeat this procedure until the root is isolated
Random cutting

Introduced by Meir and Moon [1974]

- Choose an edge uniformly at random and delete it
- Discard the subtree not containing the root
- Repeat this procedure until the root is isolated
Random cutting

Introduced by Meir and Moon [1974]

- Choose an edge uniformly at random and delete it
- Discard the subtree not containing the root
- Repeat this procedure until the root is isolated
Random cutting

Introduced by Meir and Moon [1974]

- Choose an edge uniformly at random and delete it
- Discard the subtree not containing the root
- Repeat this procedure until the root is isolated

Let $J_n = \#$ cuts needed to destroy a random recursive tree with n vertices.
Key property: After each cut the remaining tree is a RRT. Used to obtain

\[\mathbb{E} J_n \sim \frac{n}{\ln n} \]

Meir and Moon [1974]

\[\mathbb{E} J_n \sim \frac{n}{\ln(n)} \]

Panholzer [2004]

\[\frac{\ln (n)}{n} J_n \overset{P}{\rightarrow} 1 \]

Drmota et al. [2009]

\[\frac{(\ln (n))^2}{n} J_n - \ln (n) - \ln (\ln (n)) \]

converges weakly to a random variable \(Y \) with characteristic function

\[\varphi_Y(\lambda) = \exp \left\{ i\lambda \ln |\lambda| - \frac{\pi |\lambda|}{2} \right\} \]
Our proposal: Targeted cutting

- List the vertices from highest to lowest degree
- Sequentially remove the vertex in the listed order, discarding the subtrees not containing the root
- End when the root is removed
Our proposal: Targeted cutting

- List the vertices from highest to lowest degree
- Sequentially remove the vertex in the listed order, discarding the subtrees not containing the root
- End when the root is removed

4, 2, 3, 1, 7, 6, 5
Our proposal: Targeted cutting

- List the vertices from highest to lowest degree
- Sequentially remove the vertex in the listed order, discarding the subtrees not containing the root
- End when the root is removed

4, 2, 3, 1, 7, 6, 5
Our proposal: Targeted cutting

- List the vertices from highest to lowest degree
- Sequentially remove the vertex in the listed order, discarding the subtrees not containing the root
- End when the root is removed

4, 2, 3, 1, 7, 6, 5
Our proposal: Targeted cutting

- List the vertices from highest to lowest degree
- Sequentially remove the vertex in the listed order, discarding the subtrees not containing the root
- End when the root is removed

4, 2, 3, 1, 7, 6, 5
Our proposal: Targeted cutting

- List the vertices from highest to lowest degree
- Sequentially remove the vertex in the listed order, discarding the subtrees not containing the root
- End when the root is removed

4, 2, 3, 1, 7, 6, 5
Our proposal: Targeted cutting

1, 2, 3, 1, 7, 6, 5

4, 2, 3, 1, 7, 6, 5
Our proposal: Targeted cutting

We lose properties that were known in the random cutting procedure, including

- The distribution of the remaining tree
- The number of vertices deleted after each cut

Let $K_n = \# \text{ targeted cuts needed to delete a random recursive tree with } n \text{ vertices.}$

Recall

- $Z_{\geq i}(n) = \# \{1 \leq j \leq n \mid \text{deg}_{T_n}(j) \geq i\}$
- $D = \text{deg}_{T_n}(1)$

Note

$$K_n \leq Z_{\geq D}(n).$$
Let $\gamma := 1 - \ln(2) \approx 0.307$

Theorem (Moments)

For any positive integer k,

$$\mathbb{E}\left(\ln \left(Z_{\geq D} \right) \right)^k = (\ln(n^\gamma))^k (1 + O(1)).$$

Theorem (Convergence in probability)

$$\frac{\ln(Z_{\geq D})}{\ln(n)} \xrightarrow{p} \gamma.$$

Theorem (Growth order)

For any $\varepsilon > 0$,

$$K_n = O_p(n^{\gamma + \varepsilon}).$$
Proof strategy

Conditioned on the event

$$(1 - \varepsilon) \ln(n) \leq D \leq (1 + \varepsilon) \ln(n),$$

which we denote $D \in (1 \pm \varepsilon) \ln(n)$, we have that

$$Z \geq \lceil (1 + \varepsilon) \ln(n) + 1 \rceil \leq Z_D \leq Z \geq \lfloor (1 - \varepsilon) \ln(n) \rfloor.$$

Moments of the upper bound can be controlled [Addario-Berry and Eslava, 2017]. Lower bound can be approximated with a Poisson random variable [Eslava, 2020].
The idea is to build simultaneously T_n, a RRT, and $T_n^{(\varepsilon)}$, a RRT conditioned on $D^{(\varepsilon)} \in (1 \pm \varepsilon) \ln(n)$.

- $B = (B_2, \ldots, B_n)$ with independent entries where B_i is Bernoulli $\left(\frac{1}{i-1}\right)$.
- $B^{(\varepsilon)} = (B_2^{(\varepsilon)}, \ldots, B_n^{(\varepsilon)})$ with the law of B conditioned on $\sum_{i=2}^{n} B_i^{(\varepsilon)} \in (1 \pm \varepsilon) \ln(n)$.
- Y_i uniform in $\{2, 3, \ldots, i - 1\}$ for $i \geq 3$.
Coupling

$Y_3 = 2, Y_4 = 2, Y_5 = 4, Y_6 = 3, Y_7 = 4$

$B = (1, 0, 0, 0, 0, 0)$

$B^{(\varepsilon)} = (1, 0, 1, 0, 0, 0)$
Coupling

\[Y_3 = 2, \ Y_4 = 2, \ Y_5 = 4, \ Y_6 = 3, \ Y_7 = 4 \]

\[B = (1, 0, 0, 0, 0, 0) \quad B^{(e)} = (1, 0, 1, 0, 0, 0) \]
Coupling

$Y_3 = 2, \ Y_4 = 2, \ Y_5 = 4, \ Y_6 = 3, \ Y_7 = 4$

$B = (1, 0, 0, 0, 0, 0)$

$B^{(\varepsilon)} = (1, 0, 1, 0, 0, 0)$

\[1 \quad \uparrow \quad 2 \]

\[1 \quad \uparrow \quad 2 \]
Coupling

\[Y_3 = 2, \ Y_4 = 2, \ Y_5 = 4, \ Y_6 = 3, \ Y_7 = 4 \]

\[B = (1, 0, 0, 0, 0, 0) \]

\[B^{(\varepsilon)} = (1, 0, 1, 0, 0, 0) \]
Coupling

\[Y_3 = 2, \ Y_4 = 2, \ Y_5 = 4, \ Y_6 = 3, \ Y_7 = 4 \]

\[B = (1, 0, 0, 0, 0, 0) \]

\[B^{(\varepsilon)} = (1, 0, 1, 0, 0, 0) \]
Coupling

\[Y_3 = 2, \ Y_4 = 2, \ Y_5 = 4, \ Y_6 = 3, \ Y_7 = 4 \]

\[B = (1, 0, 0, 0, 0, 0) \]

\[B^{(e)} = (1, 0, 1, 0, 0, 0) \]
Y_3 = 2, Y_4 = 2, Y_5 = 4, Y_6 = 3, Y_7 = 4

\[B = (1, 0, 0, 0, 0, 0) \]

\[B^{(\varepsilon)} = (1, 0, 1, 0, 0, 0) \]
Coupling

\[Y_3 = 2, \ Y_4 = 2, \ Y_5 = 4, \ Y_6 = 3, \ Y_7 = 4 \]

\[B = (1, 0, 0, 0, 0, 0) \]

\[B^{(\epsilon)} = (1, 0, 1, 0, 0, 0) \]
Coupling

\[Y_3 = 2, \ Y_4 = 2, \ Y_5 = 4, \ Y_6 = 3, \ Y_7 = 4 \]

\[B = (1, 0, 0, 0, 0, 0) \]

\[B^{(\varepsilon)} = (1, 0, 1, 0, 0, 0) \]
Under this coupling

Let \(Z^{(\varepsilon)}_{\geq i}(n) = \#\{1 \leq j \leq n \mid \deg_{T_{\varepsilon}^{(n)}}(j) \geq i\} \), \(W_d = \frac{1 + Z^{(\varepsilon)}_{\geq d}(n)}{1 + Z_{\geq d}(n)} \)

Proposition (Similitud en razón)

Let \(\varepsilon \in (0, 1/3), \delta \in (0, 1) \). There exists \(\beta_3 \in (0, \varepsilon^2/12) \), \(C \) constant and \(n_0 = n_0(\varepsilon, \delta) \) such that \(0 < d < (1 + \varepsilon) \ln(n) \) under the coupling

\[
P \left(W_d \in (1 \pm \delta) \right) \geq 1 - Cn^{-\beta_3}.
\]

for each \(n > n_0 \)

Proposition

Let \(\varepsilon \in (0, 1/3), k \in \mathbb{N} \). For \(0 < d < (1 + \varepsilon) \ln(n) \) under the coupling

\[
\left| \mathbb{E}(\ln(W_d))^k \right| \leq 2C(\ln(n + 1))^k n^{-\beta_3}.
\]
Choose an edge uniformly at random and delete the vertex closest to the root.
Keep the subtree having the root.
The process is finished when the root is deleted.

\[
\frac{(\ln n)^2}{n} \mathbb{E}(Z_n) \to 1.
\]
\[\delta - \text{attack: Generalized cutting process. Let } \delta \in (0, 1) \text{ and } T_n \text{ a RRT.} \]

- List the vertices by their degree.
- Remove a vertex uniformly from \(\{v_1, \ldots, v_{\lceil \delta n \rceil} \} \).
- End the process when the root is removed.

Case \(\delta \geq 1 - \frac{1}{n} \) is the random attack, case \(\delta \leq \frac{1}{n} \) is targeted cutting.

Interesting case: \(\delta = n^{-\alpha} \) for some \(\alpha > 0 \).

- Weighted random trees.
References

Recapitulation

- Number of random cuts needed to destroy a RRT of size n:
 \[\mathbb{E} J_n \sim \frac{n}{\ln(n)}. \]
 \[\frac{\ln(n)}{n} J_n \overset{p}{\rightarrow} 1. \]
 \[\frac{(\ln(n))^2}{n} J_n - \ln(n) - \ln(\ln(n)) \overset{d}{\rightarrow} Y. \]

- Number of targeted cuts needed to destroy a RRT K_n:
 For any $\varepsilon > 0$,
 \[K_n = O_p \left(n^{1-\ln(2)+\varepsilon} \right). \]

- $K_n \leq Z_{\geq D}(n)$:
 \[\frac{\ln(Z_{\geq D}(n))}{\ln(n)} \overset{p}{\rightarrow} 1 - \ln(2). \]
 \[\mathbb{E} \left(\ln(Z_{\geq D}(n)) \right)^k \sim \left(\ln(n^{1-\ln(2)}) \right)^k. \]