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Introduction

Outline

@ Random cutting (Fortuitous failures)
@ Targeted cutting (Malicious attack)
© Results

@ Coupling

© Work in progress
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Introduction

Increasing trees

@ Edges directed towards root

@ Labels [n] ={1,2,...,n}

@ Labels increase away from root
@ degr,(v), A(Ty)
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Introduction

Building a random recursive tree

A random recursive tree on n vertices is a tree chosen uniformly at random on the
class of increasing trees on [n].

@ T, is a tree with a single vertex
For i > 1 build T; from T;_; by adding

@ vertex i

@ arrow /i — j

S 1
P(i—JITr) = ]
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Introduction

Building a RRT

Figure: Obtaining Tg from T7
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Introduction

Characteristics

D := degr,(1) = Z B;, where B; is a Bernoulli <$)

i=2

ED = Hn_1 ~ In(n)
Goh and Schmutz [2002]. Let A(T,) be the maximum degree in T,. Then
A(Ty) ~ logy(n) =~ 1.41n(n)
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Goh and Schmutz [2002]. Let A(T,) be the maximum degree in T,. Then

A(Ty) ~ logy(n) =~ 1.41n(n)
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Zi(n) == #{1 <j < n| degr,(j) = i},

EZ(n) noee 1
n_  ont

oo for << logy(n)
EZ(n) =% {1
0

for i —log,(n) =©(1)
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D := degr,(1) = Z B;, where B; is a Bernoulli <$)

i=2

ED = Hn_1 ~ In(n)
Goh and Schmutz [2002]. Let A(T,) be the maximum degree in T,. Then

A(Ty) ~ logy(n) =~ 1.41n(n)
Na and Rapoport [1970]

Zi(n) .= #{1 <j < n| degr,(j) = i}, Addario-Berry and Eslava [2017]

Zi(n) = #{1 <j < n|degr,(j) > i}.
EZ(1) noee 1 >i(n) = #{1 <j < n| degr,(j) > i}
n_ ont ]
EZ>kct gy () (1) "= o
. for k € Nand k = k(n) in a suitable
oo for << logy(n) range
EZ(n) =% {1 for i—log,(n)=0(1) /
0 1 :
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Introduction

Random cutting

Introduced by Meir and Moon [1974]

@ Choose an edge uniformly at random and

delete it @
@ Discard the subtree not containing the root / \

@ Repeat this procedure until the root is isolated @ @
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Random cutting
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Random cutting
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Random cutting
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delete it
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Introduction

Random cutting

Introduced by Meir and Moon [1974]
@ Choose an edge uniformly at random and delete it
@ Discard the subtree not containing the root
@ Repeat this procedure until the root is isolated

@ @
t i

? ®
/N / @ ®
® @ ® @ /

A A @

® ® O ® O

Let J, = # cuts needed to destroy a random recursive tree with n vertices.
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Introduction

Jn
Key property: After each cut the remaining tree is a RRT. Used to obtain
n
]EJn ~ m
Meir and Moon [1974]
n
B0 o)
Panholzer [2004]
(1), # 4

Drmota et al. [2009]
2
@Jn —1In(n) = In(In (M)
converges weakly to a random variable Y with characteristic function

wy(N) =exp {i/\ln Al — %}
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Introduction

Our proposal: Targeted cutting

@ List the vertices from highest T
to lowest degree

@ Sequentially remove the
vertex in the listed order,
discarding the subtrees not

containing the root

o End when the root is removed /@ /@\
(® (5) @
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Introduction

Our proposal: Targeted cutting

@

@ List the vertices from highest
to lowest degree

@ Sequentially remove the

vertex in the listed order,
discarding the subtrees not
containing the root

@ End when the root is removed

4,2,3,1,7,6,5 / / \
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Our proposal: Targeted cutting

C}D

@ @
/N

/

® @ ®
VAN /
® & @ ®

4,2,3,1,7,6,5
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Our proposal: Targeted cutting

We lose properties that were known in the random cutting procedure, including
@ The distribution of the remaining tree

@ The number of vertices deleted after each cut

Let K, = # targeted cuts needed to delete a random recursive tree with n vertices.
Recall

@ Z-i(n) = #{1 <j < n|degr,(j) > i}
@ D = degr,(1)
Note
Kn < Z>p(n).

Sergio |. Lopez (joint work with Laura Eslava, Marco L. Qctober 16, 2023. 23/40



Introduction

Results

Lety:=1—1In(2) = 0.307

Theorem (Moments)
For any positive integer kK,

E(In(Zsp))* = (In(n")) (1 + 0(1)).

Theorem (Convergence in probability)

In(ZZ ) P
In(n)D -

Theorem (Growth order)

Foranye >0,
Kn = Op(n’Y+E).
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Proof strategy

Conditioned on the event

(1=¢)in(n) <D< (1+4¢)In(n),

which we denote D € (1 & ¢) In(n), we have that
Zs1(14e)in(m+1] < 25D < Z>|(1—e) n(n)] -

Moments of the upper bound can be controlled [Addario-Berry and Eslava, 2017].
Lower bound can be approximated with a Poisson random variable [Eslava, 2020].
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Coupling

The idea is to build simultaneously T,, a RRT, and T}, a RRT conditioned on
D € (1 +¢)In(n).

® B= (B, ..., B,) with indepent entries where B; is Bernoull (5)

e B® = (B, ..., B{Y) with the law of B conditioned on 37, B € (1 +¢)In(n).
@ Y, uniformin {2,3,...,i—1}fori> 3.
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Coupling

Ys=2,Y,=2,Ys=4,Ys=3,Y, =4

B=(1,0,0,0,0,0) B =(1,0,1,0,0,0)
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Coupling

Ys=2,Yi=2,Ys =4 Y =3, Y, =4

B=(1,0,0,0,0,0) B =(1,0,1,0,0,0)

@ @

Sergio |. Lopez (joint work with Laura Eslava, Marco L.



Coupling

Ya=2,Y4=2,Ys=4,Y=3,Y7 =

B=(1,0,0,0,0,0) B®) =(1,0,1,0,0,0)

@ @
| |

@ @
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Coupling

Ys=2,Y,=2Ys=4,Ys=3,Y, =4

B=(1,0,0,0,0,0) B =(1,0,1,0,0,0)

@ )

! f
® ®
f !
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Coupling

Ys=2,Y,=2,Ys=4,Ys=3,Y, =4

B=(1,0,0,0,0,0) B =(1,0,1,0,0,0)

@/® @/®\@
N\ /
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Coupling

Ya=2,Y4=2,Y5=4,Y=3,Y7=4

B=(1,0,0,0,0,0)
O B = (1,0,1,0,0,0)

/ ®
@/ © O
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Coupling

Ys=2,Y,=2,Ys=4,Ys =3, Y, =4

B=(1,0,0,0,0,0) B‘f’—(1,o,1,o,o,0)

/@ /\

/\ / /
/ / /
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Coupling

Ys=2,Y,=2,Ys=4,Ys =3, Y, =4

B=(1,0,0,0,0,0) B —(1,0,1,0,0,0)

/® /\

/\ / /\

/ /\ @/
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Coupling

Ys=2,Y,=2,Ys=4,Ys=3,Y, =4

B=(1,0,0,0,0,0) B _(1,0,1,0,0,0)

/® /\

/\ / /\
/ /\ /

T T
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Under this coupling

1+25)(n)
©)(n) = <j< ) > i = —=L =
Let ZZ7(n) = #{1 <j < n| deg,«(j) = i}, Wa T4 Zoa(n)
Proposition (Similitud en razén)
Lete € (0,1/3), 6 € (0,1). There exists 3 € (0,2/12) , C constant y ny = no(e, 6)
such that0 < d < (1 + ¢) In(n) under the coupling
P(Wye(1+48)>1—Cn .

for each n > ng

Proposition
Lete € (0,1/3), k € N. For0 < d < (1+ ¢) In(n) under the coupling

‘E(In(Wd))k‘ <2C(In(n+1))<n~%.
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Introduction

Work in progress: Degree biased random cutting

@ Choose an edge uniformly at random and delete the vertex closest to the root.
@ Keep the subtree having the root.
@ The process is finished when the root is deleted.

@/®\ ; @/®
@/ @/ \@ @/

@E(Zn) 1.
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Introduction

Open problems

@ j—atack: Generalized cutting process. Let 6 € (0,1) and T, a RRT.

o List the vertices by their degree.
o Remove a vertex uniformly from {vy, ..., Visn] 1.
e End the process when the root is removed.

Cased>1-— 15 is the random atack, case § < 15 is targeted cutting.
Interesting case: § = n~* for some « > 0.

@ Weighted random trees.
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Introduction

Recapitulation

@ Number of random cuts needed to destroy a RRT of size n:

n
]EJn ~ m

In(m) 4, 24,
n

WJH —In(n)—In(In(n) Y.

@ Number of targeted cuts needed to destroy a RRT Kj:
Forany e > 0,

Ky = Op (n1—|n(2)+6> .
o K, < ZZD(H)I

In(Zsp(n) p
W—H—In&).

E(In (ZZD(n)))k ~ (In (n1—'n(2)))k.
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