Properties of the (fermionic) gradient squared of the Gaussian free field

Alessandra Cipriani
UCL

Based on jww L. Chiarini Medeiros (U Durham), R. S. Hazra (U Leiden), A. Rapoport \& W. Ruszel (U Utrecht)

October 30, 2023

Section 1

Motivation

Abelian sandpile model (ASM)

The height-one field

1. Choose at time zero a function $\mathrm{s}: \Lambda \rightarrow \mathbb{N}, \Lambda \Subset \mathbb{Z}^{\mathrm{d}}$

Abelian sandpile model (ASM)

The height-one field

1. Choose at time zero a function $\mathrm{s}: \Lambda \rightarrow \mathbb{N}, \Lambda \Subset \mathbb{Z}^{\mathrm{d}}$
2. Choose a site x uniformly at random

Abelian sandpile model (ASM)

The height-one field

1. Choose at time zero a function $\mathrm{s}: \Lambda \rightarrow \mathbb{N}, \Lambda \Subset \mathbb{Z}^{\mathrm{d}}$
2. Choose a site x uniformly at random
3. $s(x) \rightsquigarrow s(x)+1$

Motivation

Abelian sandpile model (ASM)

The height-one field

1. Choose at time zero a function $\mathrm{s}: \wedge \rightarrow \mathbb{N}, \Lambda \Subset \mathbb{Z}^{\mathrm{d}}$
2. Choose a site x uniformly at random
3. $s(x) \rightsquigarrow s(x)+1$
4. If $s(x)>2 d$ (instability), topple x sending one "grain" to each neighbor

Abelian sandpile model (ASM)

The height-one field

1. Choose at time zero a function $s: \wedge \rightarrow \mathbb{N}, \Lambda \Subset \mathbb{Z}^{\mathrm{d}}$
2. Choose a site x uniformly at random
3. $s(x) \rightsquigarrow s(x)+1$
4. If $s(x)>2 d$ (instability), topple x sending one "grain" to each neighbor

- If other sites become unstable, topple them as well

Abelian sandpile model (ASM)

The height-one field

1. Choose at time zero a function $s: \wedge \rightarrow \mathbb{N}, \Lambda \Subset \mathbb{Z}^{\mathrm{d}}$
2. Choose a site x uniformly at random
3. $s(x) \rightsquigarrow s(x)+1$
4. If $s(x)>2 d$ (instability), topple x sending one "grain" to each neighbor

- If other sites become unstable, topple them as well
- Grains outside Λ are lost

Abelian sandpile model (ASM)

The height-one field

1. Choose at time zero a function $s: \wedge \rightarrow \mathbb{N}, \Lambda \Subset \mathbb{Z}^{\mathrm{d}}$
2. Choose a site x uniformly at random
3. $s(x) \rightsquigarrow s(x)+1$
4. If $s(x)>2 d$ (instability), topple x sending one "grain" to each neighbor

- If other sites become unstable, topple them as well
- Grains outside Λ are lost

5. Go to 2 .

Abelian sandpile model (ASM)

The height-one field

1. Choose at time zero a function $s: \wedge \rightarrow \mathbb{N}, \wedge \Subset \mathbb{Z}^{\mathrm{d}}$
2. Choose a site x uniformly at random
3. $s(x) \rightsquigarrow s(x)+1$
4. If $s(x)>2 d$ (instability), topple x sending one "grain" to each neighbor

- If other sites become unstable, topple them as well
- Grains outside Λ are lost

5. Go to 2.

This Markov chain has a unique stationary measure \mathbb{P}.
Definition (Height-one field)
$h_{\Lambda}(x):=\mathbf{1}_{\{s(x)=1\}}$ under \mathbb{P}

An example

$$
s(x)=15 \delta_{x=0}+2 \delta_{x=(1,0)}
$$

An example

Model 1
Results model 1
Model 2
Results model 2

An example

Stable configuration!

Abelian sandpile

Ingredients

- Let $\mathrm{U} \subset \mathbb{R}^{2}$ be smooth connected bounded and $\Lambda:=\mathrm{U}_{\epsilon}:=\mathrm{u} / \epsilon \cap \mathbb{Z}^{2}$

Abelian sandpile

Ingredients

- Let $\mathrm{U} \subset \mathbb{R}^{2}$ be smooth connected bounded and $\Lambda:=\mathrm{U}_{\epsilon}:=\mathrm{u} / \epsilon \cap \mathbb{Z}^{2}$
- Let

$$
\mathrm{U} \ni \mathfrak{u} \mapsto \mathfrak{u}_{\epsilon}=\lfloor\mathfrak{u} / \epsilon\rfloor \in \mathrm{U}_{\epsilon}
$$

Abelian sandpile

Ingredients

- Let $\mathrm{U} \subset \mathbb{R}^{2}$ be smooth connected bounded and $\Lambda:=\mathrm{U}_{\epsilon}:=\mathrm{u} / \epsilon \cap \mathbb{Z}^{2}$
- Let

$$
\mathrm{U} \ni \mathfrak{u} \mapsto \mathrm{u}_{\epsilon}=\lfloor\mathfrak{u} / \epsilon\rfloor \in \mathrm{U}_{\epsilon}
$$

- Let $\mathrm{gu}_{\mathrm{u}}(\cdot, \cdot)$ be the harmonic Green's function on U with Dirichlet boundary conditions

Abelian sandpile

- Let $\mathrm{U} \subset \mathbb{R}^{2}$ be smooth connected bounded and

$$
\Lambda:=\mathrm{U}_{\varepsilon}:=\mathrm{u} / \varepsilon \cap \mathbb{Z}^{2}
$$

- Let

$$
\mathrm{U} \ni \mathfrak{u} \mapsto \mathrm{u}_{\epsilon}=\lfloor\mathfrak{u} / \epsilon\rfloor \in \mathrm{U}_{\varepsilon}
$$

- Let $\mathrm{gu}(\cdot, \cdot)$ be the harmonic Green's function on U with Dirichlet boundary conditions
- Joint cumulants k for r. v.'s $\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}$ are defined by

$$
E\left[\prod_{i=1}^{n} X_{i}\right]=\sum_{\pi \text { partition of }\{1, \ldots, n\}} \prod_{B \in \pi} k\left(X_{i}: i \in B\right)
$$

Eg. $k(X)=E[X], k(X, Y)=\operatorname{cov}(X, Y)$.

Abelian sandpile

Theorem (Dürre (2009))

Theorem 2 (Scaling Limit for the Height One Joint Cumulants). Let V be as in Theorem 1 and suppose $|V| \geq 2$. Then as $\epsilon \rightarrow 0$ the rescaled joint cumulant $\epsilon^{-2|V|_{K}}\left(h_{U_{\epsilon}}\left(v_{\epsilon}\right): v \in V\right)$ converges to

$$
\kappa_{U}(v: v \in V):=-C^{|V|} \sum_{\sigma \in S_{\mathrm{cyc}}(V)} \sum_{\left(k^{v}\right)_{v \in V} \in\{x, y\}^{V}} \prod_{v \in V} \partial_{k^{v}}^{(1)} \partial_{k^{\sigma}(v)}^{(2)} g_{U}(v, \sigma(v)) .
$$

Here $C:=(2 / \pi)-\left(4 / \pi^{2}\right)$. That is, if we write $\kappa_{U}(v):=0$ for all $v \in V$, then

$$
\lim _{\epsilon \rightarrow 0} \epsilon^{-2|V|} \mathbb{E}\left[\prod_{v \in V}\left(h_{U_{\epsilon}}\left(v_{\epsilon}\right)-\mathbb{E}\left[h_{U_{\epsilon}}\left(v_{\epsilon}\right)\right]\right)\right]=\sum_{\Pi \in \Pi(V)} \prod_{B \in \Pi} \kappa_{U}(v: v \in B) .
$$

Abelian sandpile

The connection to GFF
Let Ψ be a Gaussian free field with 0-boundary conditions:
Definition (GFF)
Ψ is the centered Gaussian random distribution with

$$
\mathbb{E}[\Psi(u) \Psi(v)]=\mathrm{g}_{\mathrm{u}}(\mathrm{u}, v), \quad u \neq v \in \mathrm{u}
$$

Abelian sandpile

The connection to GFF
Let Ψ be a Gaussian free field with 0-boundary conditions:
Definition (GFF)
Ψ is the centered Gaussian random distribution with

$$
\mathbb{E}[\Psi(u) \Psi(v)]=\mathrm{g}_{\mathrm{u}}(\mathrm{u}, v), \quad u \neq v \in \mathrm{u}
$$

Formal computations show that

$$
\lim _{\epsilon \rightarrow 0} \epsilon^{-2|\mathrm{~V}|} \mathrm{K}\left(\mathrm{~h}_{\mathrm{u}_{\epsilon}}(v) v \in \mathrm{~V}\right)=\kappa\left(:\|\nabla \Psi(v)\|^{2}:, v \in \mathrm{~V}\right)
$$

Abelian sandpile

The connection to GFF
Let Ψ be a Gaussian free field with 0-boundary conditions:
Definition (GFF)
Ψ is the centered Gaussian random distribution with

$$
\mathbb{E}[\Psi(u) \Psi(v)]=\mathrm{g}_{\mathrm{u}}(\mathrm{u}, v), \quad u \neq v \in \mathrm{u}
$$

Formal computations show that

$$
\begin{gathered}
\lim _{\epsilon \rightarrow 0} \epsilon^{-2|\mathrm{~V}|} \mathrm{K}\left(\mathrm{~h}_{\mathrm{U}_{\epsilon}}(v) v \in \mathrm{~V}\right)=\kappa\left(:\|\nabla \Psi(v)\|^{2}:, v \in \mathrm{~V}\right) \\
:\|\nabla \Psi(v)\|^{2}:=\sum_{i=1}^{2} \partial_{i} \Psi(v)^{2}-\mathbb{E}\left[\partial_{i} \Psi(v)^{2}\right]
\end{gathered}
$$

Section 2

Model 1

Grad squared DGFF

Definition (DGFF)

Let $\left(\Gamma_{\epsilon}(v): v \in \mathrm{U}_{\epsilon}\right)$ be the discrete GFF on U_{ϵ} :

$$
\mathbb{E}\left[\Gamma_{\epsilon}(v)\right]=0, \quad \mathbb{E}\left[\Gamma_{\epsilon}(v) \Gamma_{\epsilon}(u)\right]=\mathcal{G}_{\mathrm{u}_{\epsilon}}(u, v)
$$

where $\mathrm{Gu}_{\epsilon}(\cdot, \cdot)$ is the discrete harmonic Green's function with Dirichlet b.c.

Grad squared DGFF

Definition (DGFF)

Let $\left(\Gamma_{\epsilon}(v): v \in \mathrm{U}_{\epsilon}\right)$ be the discrete GFF on U_{ϵ} :

$$
\mathbb{E}\left[\Gamma_{\epsilon}(v)\right]=0, \quad \mathbb{E}\left[\Gamma_{\epsilon}(v) \Gamma_{\epsilon}(u)\right]=\mathcal{G}_{u_{\epsilon}}(u, v)
$$

Motivation

Model 1
Results model 1

Model 2

where $\mathrm{Gu}_{\epsilon}(\cdot, \cdot)$ is the discrete harmonic Green's function with Dirichlet b.c.

Definition (Grad squared DGFF)

The field ($\Phi_{\epsilon}(v), v \in \mathrm{U}_{\epsilon}$) is defined as

$$
\Phi_{\epsilon}(v):=\sum_{i=1}^{d}: \nabla_{i} \Gamma_{\epsilon}(x)^{2}:=\sum_{i=1}^{d}:\left(\Gamma_{\epsilon}\left(v+e_{i}\right)-\Gamma_{\epsilon}(v)\right)^{2}:
$$

Grad squared DGFF

Definition (DGFF)

Let $\left(\Gamma_{\epsilon}(v): v \in \mathrm{U}_{\epsilon}\right)$ be the discrete GFF on U_{ϵ} :

$$
\mathbb{E}\left[\Gamma_{\epsilon}(v)\right]=0, \quad \mathbb{E}\left[\Gamma_{\epsilon}(v) \Gamma_{\epsilon}(u)\right]=\mathcal{G}_{u_{\epsilon}}(u, v)
$$

where $\mathrm{Gu}_{\mathrm{e}}(\cdot, \cdot)$ is the discrete harmonic Green's function with Dirichlet b.c.

Definition (Grad squared DGFF)

The field ($\Phi_{\epsilon}(v), v \in \mathrm{U}_{\epsilon}$) is defined as

$$
\Phi_{\epsilon}(v):=\sum_{i=1}^{d}: \nabla_{i} \Gamma_{\epsilon}(x)^{2}:=\sum_{i=1}^{d}:\left(\Gamma_{\epsilon}\left(v+e_{i}\right)-\Gamma_{\epsilon}(v)\right)^{2}:
$$

We will work in $d \geqslant 2$

Grad squared DGFF

Covariances

Motivation

Model 1
Results model 1

Model 2

Call [d] :=\{1, $\ldots, d\}$.

$$
\mathbb{E}\left[\Phi_{\epsilon}\left(x_{\epsilon}\right) \Phi_{\epsilon}\left(y_{\epsilon}\right)\right]=2 \sum_{i, j \in[d]}\left(\nabla_{i}^{(1)} \nabla_{j}^{(2)} G_{u_{\epsilon}}\left(x_{\epsilon}, y_{\epsilon}\right)\right)^{2}
$$

Section 3

Results model 1

Main results

Convergence of cumulants, $\mathrm{d} \geqslant 2$

Theorem (C, Hazra, Rapoport, Ruszel 2022) Let ε be the set of coordinate vectors of \mathbb{R}^{d}. Let $\left\{v^{(1)}, \ldots, v^{(k)}\right\} \subset \mathrm{U}$. Let $\mathrm{S}_{\mathrm{cycl}}^{0}(\mathrm{~B})$ be the set of cyclic permutations of a set B . If $v^{(i)} \neq v^{(\mathfrak{j})}$ for all $\mathfrak{i} \neq \mathfrak{j}$, then

Main results

Convergence of cumulants, $d \geqslant 2$

Theorem (C, Hazra, Rapoport, Ruszel 2022) Let ε be the set of coordinate vectors of \mathbb{R}^{d}. Let $\left\{v^{(1)}, \ldots, v^{(k)}\right\} \subset \mathrm{U}$. Let $\mathrm{S}_{\text {cycl }}^{0}(\mathrm{~B})$ be the set of cyclic permutations of a set B . If $\boldsymbol{v}^{(i)} \neq \boldsymbol{v}^{(\mathfrak{j})}$ for all $\mathfrak{i} \neq \mathfrak{j}$, then

$$
\begin{aligned}
& \lim _{\epsilon \rightarrow 0} \epsilon^{-\mathrm{dk}} \mathrm{k}_{k}\left(\Phi_{\epsilon}\left(v_{\epsilon}^{(j)}\right): j \in[k]\right) \\
& =2^{\mathrm{k}-1} \sum_{\sigma \in S_{c \gamma c}^{0}([k])} \sum_{\eta:[k] \rightarrow \varepsilon} \prod_{j=1}^{k} \partial_{\eta(j)}^{(1)} \partial_{\eta(\sigma(j))}^{(2)} g u\left(v_{\epsilon}^{(j)}, v_{\varepsilon}^{(\sigma(j))}\right)
\end{aligned}
$$

In $\mathrm{d}=2$ the limit is conformally covariant with scale dimension 2

Main results model 1

Comparison in $\mathrm{d}=2$

- Dürre:

$$
-C^{k} \sum_{\sigma \in S_{\text {cycl }}^{0}([k])} \sum_{\eta:[k] \rightarrow \varepsilon} \prod_{j=1}^{k} \partial_{\eta(j)}^{(1)} \partial_{\eta(\sigma(j))}^{(2)} g_{u}\left(v^{(j)}, v^{(\sigma(j))}\right)
$$

Main results model 1

Comparison in $\mathrm{d}=2$

- Dürre:

$$
-C^{k} \sum_{\left.\sigma \in S_{\text {cycl }}^{0}[k]\right)} \sum_{\eta:[k] \rightarrow \varepsilon} \prod_{j=1}^{k} \partial_{\eta(j)}^{(1)} \partial_{\eta(\sigma(j))}^{(2)} g_{u}\left(v^{(j)}, v^{(\sigma(j))}\right)
$$

- CHRR:

$$
2^{k-1} \sum_{\left.\sigma \in S_{\text {cycl }}^{0}(\mathrm{k}]\right)} \sum_{\eta:[k] \rightarrow \varepsilon} \prod_{\mathfrak{j}=1}^{k} \partial_{\mathfrak{\eta}(\mathfrak{j})}^{(1)} \partial_{\mathfrak{\eta}(\sigma(\mathfrak{j}))}^{(2)} g_{u}\left(v^{(\mathfrak{j})}, v^{(\sigma(\mathfrak{j}))}\right)
$$

Main results model 1

Comparison in $\mathrm{d}=2$

Corollary

$$
\begin{array}{r}
\lim _{\epsilon \rightarrow 0} \epsilon^{-2 \mathrm{k}} \kappa\left(h_{\mathrm{U}_{\epsilon}}\left(v_{\epsilon}^{(j)}\right): j \in[\mathrm{k}]\right) \\
=-2 \lim _{\epsilon \rightarrow 0} \epsilon^{-2 \mathrm{k}} \kappa\left(\frac{C}{2} \Phi_{\epsilon}\left(v_{\epsilon}^{(j)}\right): j \in[\mathrm{k}]\right)
\end{array}
$$

Section 4

Model 2
Results model 2

Model 2

Discrete Laplacian

Discrete Laplacian: for $\mathfrak{i}, \mathfrak{j} \in \Lambda$

$$
\Delta_{\wedge}(\mathfrak{i}, \mathfrak{j})= \begin{cases}1 & |\mathfrak{i}-\mathfrak{j}|=1 \\ -2 \mathrm{~d} & \mathfrak{i}=\mathfrak{j} \\ 0 & \text { otherwise }\end{cases}
$$

Fermionic Gaussian free field

Fermionic variables

Motivation

Definition (Grassmanian variables)
Let $\left\{\xi_{i}, \bar{\xi}_{i}: i \in \Lambda\right\}$ be symbols that satisfy

$$
\xi_{i} \xi_{j}=-\xi_{j} \xi_{i}, \quad \xi_{i} \bar{\xi}_{j}=-\bar{\xi}_{j} \xi_{i}, \quad \bar{\xi}_{i} \bar{\xi}_{j}=-\bar{\xi}_{j} \bar{\xi}_{i}
$$

Fermionic Gaussian free field

 fGFF
Definition (fGFF)

For every function F of $\left\{\xi_{i}, \bar{\xi}_{i}\right\}$ the expectation of F under the fGFF is defined as

$$
[F]=\int_{\text {Berezin }} \partial_{\bar{\xi}} \partial_{\bar{\xi}} \mathrm{e}^{\left(\xi,\left(-\Delta_{\wedge}\right) \bar{\xi}\right)} \mathrm{F}
$$

Fermionic Gaussian free field

 fGFF
Definition (fGFF)

For every function F of $\left\{\xi_{i}, \bar{\xi}_{i}\right\}$ the expectation of F under the fGFF is defined as

$$
[F]=\int_{\text {Berezin }} \partial_{\bar{\xi}} \partial_{\xi} \mathrm{e}^{\left(\bar{\xi},\left(-\Delta_{\wedge}\right) \bar{\xi}\right)} \mathrm{F}
$$

Example:

$$
[1]=\int \partial_{\bar{\xi}} \partial_{\xi} \mathrm{e}^{\left(\underline{\xi},\left(-\Delta_{\wedge}\right) \bar{\xi}\right)}=\operatorname{det}\left(-\Delta_{\Lambda}\right)
$$

Fermionic Gaussian free field

 fGFF \& USTLet \mathbf{P} be the law of the uniform spanning tree T on Λ.

Fermionic Gaussian free field

 fGFF \& USTLet \mathbf{P} be the law of the uniform spanning tree T on Λ.
Proposition
Let S be any subset of edges of Λ.

$$
\mathbf{P}(\mathrm{S} \subseteq \mathrm{~T})=\frac{1}{\operatorname{det}\left(-\Delta_{\Lambda}\right)}\left[\prod_{e \in S} \nabla_{e} \xi \nabla_{e} \bar{\xi}\right]
$$

where

$$
\nabla_{e} \xi=\xi_{e^{+}}-\xi_{e^{-}}, \quad \nabla_{e} \bar{\xi}=\bar{\xi}_{e^{+}}-\bar{\xi}_{e^{-}}
$$

is the gradient of the fGFF along the edge e.

Fermionic Gaussian free field

 UST \& ASMProposition (Dhar-Majumdar, Járai-Werning) Let $\mathrm{V} \subseteq \wedge$. Let $\eta: \vee \rightarrow[2 \mathrm{~d}]$ be a choice of a direction. Then the height-one field satisfies

$$
\mathbb{E}\left(\prod_{v \in V} h_{\wedge}(v)\right)=\mathbf{P}((v, v+e) \notin \mathrm{T} \text { if } e \neq \eta(v), v \in \mathrm{~V})
$$

Fermionic Gaussian free field

 fGFF \& ASMNow we are able to connect ASM and fGFF via the UST.

- Link height-one \Longleftrightarrow fermions conjectured in physics by Jeng, Piroux-Ruelle ('free symplectic fermion theory')

Section 5

Results model 2

Main results

Theorem (Chiarini, C, Rapoport, Ruszel, 2023)

$$
\mathbb{E}\left[\prod_{v \in V} h_{\Lambda}(v)\right]=\frac{1}{\operatorname{det}\left(-\Delta_{\Lambda}\right)}\left[\prod_{v \in V} X_{v} Y_{v}\right]
$$

where

$$
\begin{aligned}
& X_{v}=\sum_{e \ni v} \nabla_{e} \xi \nabla_{e} \bar{\xi} \\
& \mathrm{Y}_{v}=\prod_{e \ni v}\left(1-\nabla_{e} \xi \nabla_{e} \bar{\xi}\right)
\end{aligned}
$$

Proof.

Key: inclusion-exclusion principle over edges.

Main results

Theorem (CCRR, 2023) $\ln \mathrm{d}=2$

$$
\begin{aligned}
& \lim _{\epsilon \rightarrow 0} \epsilon^{-2 k} \kappa\left(-C_{2} X_{v_{\epsilon}^{(j)}}: j \in[k]\right) \\
= & \lim _{\epsilon \rightarrow 0} \epsilon^{-2 k} \kappa\left(h_{U_{\epsilon}}\left(v_{\epsilon}^{(j)}\right): j \in[k]\right), \quad C_{2}=2 / \pi-4 / \pi^{2} .
\end{aligned}
$$

Main results

Theorem (CCRR, 2023) $\ln \mathrm{d}=2$

$$
\begin{aligned}
& \lim _{\epsilon \rightarrow 0} \epsilon^{-2 \mathrm{k}} \kappa\left(-\mathrm{C}_{2} X_{v_{\epsilon}^{(j)}}: j \in[k]\right) \\
= & \lim _{\epsilon \rightarrow 0} \epsilon^{-2 \mathrm{k}}{ }_{K}\left(h_{\mathrm{U}_{\epsilon}}\left(v_{\epsilon}^{(j)}\right): j \in[k]\right), \quad C_{2}=2 / \pi-4 / \pi^{2} .
\end{aligned}
$$

We also have a closed form expression for the limiting cumulants of $-C_{d} X_{v}$ in $d \geqslant 3$.

Main results

Theorem (CCRR, 2023)
$\ln \mathrm{d}=2$

$$
\begin{aligned}
& \lim _{\epsilon \rightarrow 0} \epsilon^{-2 \mathrm{k}}{ }_{k}\left(-C_{2} X_{v_{e}^{(j)}}: j \in[k]\right) \\
= & \lim _{\epsilon \rightarrow 0} \epsilon^{-2 k_{k}}\left(h_{u_{\varepsilon}}\left(v_{\varepsilon}^{(j)}\right): j \in[k]\right), \quad C_{2}=2 / \pi-4 / \pi^{2} .
\end{aligned}
$$

We also have a closed form expression for the limiting cumulants of $-C_{d} X_{v}$ in $d \geqslant 3$.

Proof.

Wick's theorem for fermionic variables and combinatorics of partitions/permutations.

Main results

Theorem (CCRR, 2023) $\ln \mathrm{d}=2$

$$
\begin{aligned}
& \lim _{\epsilon \rightarrow 0} \epsilon^{-2 k} \kappa\left(X_{v_{\epsilon}^{(j)}} Y_{v_{\epsilon}^{(j)}}: j \in[k]\right) \\
= & \lim _{\epsilon \rightarrow 0} \epsilon^{-2 k} \kappa\left(h_{U_{\epsilon}}\left(v_{\epsilon}^{(j)}\right): j \in[k]\right) .
\end{aligned}
$$

Model 2

Results model 2

Main results

Theorem (CCRR, 2023)
$\ln \mathrm{d}=2$

$$
\begin{aligned}
& \left.\lim _{\epsilon \rightarrow 0} \epsilon^{-2 k_{k}}\left(X_{v_{\epsilon}^{(j)}} Y_{v_{\epsilon}}\right): j \in[k]\right) \\
= & \lim _{\varepsilon \rightarrow 0} \epsilon^{-2 k_{k}}\left(h_{u_{\epsilon}}\left(v_{\epsilon}^{(j)}\right): j \in[k]\right) .
\end{aligned}
$$

We also have a closed form expression for the limiting cumulants of $X_{v} Y_{v}$ in $d \geqslant 3$ and in turn those of the height-one field in $d \geqslant 3$.

Main results

Theorem (CCRR, 2023)
$\ln \mathrm{d}=2$

$$
\begin{aligned}
& \left.\lim _{\epsilon \rightarrow 0} \epsilon^{-2 k} k\left(X_{v_{\epsilon}^{(j)}} Y_{v_{\epsilon}}\right): j \in[k]\right) \\
= & \lim _{\epsilon \rightarrow 0} \epsilon^{-2 k_{k}}\left(h_{u_{\epsilon}}\left(v_{\epsilon}^{(j)}\right): j \in[k]\right) .
\end{aligned}
$$

We also have a closed form expression for the limiting cumulants of $X_{v} Y_{v}$ in $d \geqslant 3$ and in turn those of the height-one field in $\mathrm{d} \geqslant 3$.
Proof.
The proof generalizes that for X_{v}. It is alternative and independent to Dürre's. Essentially, " Y_{v} becomes -C".

Extension/1

Universality

Our proofs in the limit $\epsilon \rightarrow 0$ hold for the triangular and hexagonal lattice as well:

- translation invariance (homogeneity)
- isotropy

Extension/2

We have on $\mathbb{Z}^{\text {d }}$

$$
\mathrm{K}\left(\mathrm{X}_{v}, v \in \mathrm{~V}\right)=\mathrm{K}(\operatorname{degust}(v) / 2 \mathrm{~d}, v \in \mathrm{~V}) .
$$

- Analogous results obtained for the "degree field" in \mathbb{Z}^{d} and triangular lattice
- Other observables of UST can be studied (ongoing)

Thank you!

