Properties of the (fermionic) gradient
squared of the Gaussian free field

Alessandra Cipriani

UCL

Based on jww L. Chiarini Medeiros (U Durham), R. S. Hazra (U Leiden),

A. Rapoport & W. Ruszel (U Utrecht)

October 30, 2023

fGFF gradient
squared

A. C.




fGFF gradient
squared

A. C.

Motivation

Section 1

Motivation




. . fGFF gradient
Abelian sandpile model (ASM) i

The height-one field A. C.

Motivation

1. Choose at time zero a function s: A — N, A € Z¢




. . fGFF gradient
Abelian sandpile model (ASM) i

The height-one field s

Motivation

1. Choose at time zero a function s: A — N, A € Z¢
2. Choose a site x uniformly at random




. . fGFF gradient
Abelian sandpile model (ASM) i

The height-one field s

Motivation

1. Choose at time zero a function s: A — N, A € Z¢
2. Choose a site x uniformly at random
3. s(x) ~s(x)+1




. . fGFF gradient
Abelian sandpile model (ASM) i

The height-one field

sl o e

A. C.

Motivation

Choose at time zero a function s: A — N, A € Z¢
Choose a site x uniformly at random
s(x) ~ s(x)+1

If s(x) > 2d (instability), topple x sending one
“grain” to each neighbor




. . fGFF gradient
Abelian sandpile model (ASM) i

The height-one field

sl o e

A. C.

Motivation

Choose at time zero a function s: A — N, A € Z¢
Choose a site x uniformly at random
s(x) ~ s(x)+1
If s(x) > 2d (instability), topple x sending one
“grain” to each neighbor

> If other sites become unstable, topple them as well




. . fGFF gradient
Abelian sandpile model (ASM) i

The height-one field A. C.

Motivation

Choose at time zero a function s: A — N, A € Z¢
Choose a site x uniformly at random

s(x) ~ s(x)+1

If s(x) > 2d (instability), topple x sending one
“grain” to each neighbor

> If other sites become unstable, topple them as well
» Grains outside A are lost

sl o e




. . fGFF gradient
Abelian sandpile model (ASM) i

The height-one field

sl o e

A. C.

Motivation

Choose at time zero a function s: A — N, A € Z¢
Choose a site x uniformly at random

s(x) ~ s(x)+1

If s(x) > 2d (instability), topple x sending one
“grain” to each neighbor

> If other sites become unstable, topple them as well
» Grains outside A are lost

Go to 2.




. . fGFF gradient
Abelian sandpile model (ASM) i

The height-one field A. C.

Motivation

1. Choose at time zero a function s: A — N, A € Z¢
2. Choose a site x uniformly at random
3. s(x) ~s(x)+1
4. If s(x) > 24 (instability), topple x sending one
“grain” to each neighbor
> If other sites become unstable, topple them as well
» Grains outside A are lost
5. Go to 2.

This Markov chain has a unique stationary measure P.
Definition (Height-one field)
h/\(X) = l{s(x)zl} under P
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s(x) =15 8x—0 + 28x—(1,0)
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Stable configuration!
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Motivation

» Let U C R? be smooth connected bounded and
Ai=U :=U/e NnZz?
> Let
UBU}—)Ue - |_u/€J eue

» Let gy(-, -) be the harmonic Green's function on U
with Dirichlet boundary conditions

» Joint cumulants k for r. v.'s X;, ..., X,, are defined
by
n
E]]X| = > [[«Xi:ieB)
i=1 7t partition of {1,...,n} Bem

Eg. k(X) = E[X], k(X, Y) =cov(X, Y).




Abelian sandpile

Height-one field in d =2

Theorem (Durre (2009))

Theorem 2 (Scaling Limit for the Height One Joint Cumulants). Let V be as in Theorem 1
and suppose |V| = 2. Then as € — O the rescaled joint cumulant ¢ =3V (hu, (o) v e V)
converges to

N
ky:veVv)=—cll Z E l—I ;j‘:lllh\::zvh"“ (v, 0(v)).
ESeya (V) (k) ey elx.y)V vEV

Here C := (2/m) — (4/7%). That is, if we write ky(v) := 0 forall v € V, then

lime 2VIE |:l__[ (ho, (ve) _Elhﬂ,(ve)l)] = E l__[ ky(v:veB).

€0 veV Mell(v) Bell
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Motivation

Let ¥ be a Gaussian free field with 0-boundary
conditions:

Definition (GFF)

Y is the centered Gaussian random distribution with
EY(uwWY¥YW)] =gulu,v), u#vel
Formal computations show that

lim e 2Vik(hy, (V) v e V) =«(: [|[VYW)|?:, veEV)

e—0

VY W)|? = Zaw E[0:¥(v)?]
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Definition (DGFF)
Let (T'e(v): v € Ue) be the discrete GFF on U,: Model 1

Ele()] =0, ElM)le(u)] =Gy, (u, v)

where Gy_(+, -) is the discrete harmonic Green's function
with Dirichlet b.c.

Definition (Grad squared DGFF)
The field (O (v), v € U,) is defined as

d
:Z:V
i=1

c(v+ey) — Fe(v))2 :

|v|g

i=1

We will work in d > 2
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Let & be the set of coordinate vectors of RY. Let

v UL Let S 4 (B) be the set of cyclic

permutations of a set B. If v(Y) £v0) for all i #j, then
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Convergence of cumulants, d > 2

Theorem (C, Hazra, Rapoport, Ruszel 2022) Results model 1

Let € be the set of coordinate vectors of R, Let
U, v UL Let Scyd( ) be the set of cyclic

permutatlons of a set B. If vV £v0) for all i # i, then

lim e_dkK((De(v(ej)) j e [k])

e—0

N D DY Ha B2 gud) vy

oes? (k) m:lk]—&j=1

In d =2 the limit is conformally covariant with scale
dimension 2
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» Ddrre:

<) > 11

0es? ([k])n:[k]=€ j=1

cycl

» CHRR:

2D NI J L

0eS? ([k]) n:[kl—¢& j=1

cycl
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Discrete Laplacian: for i, j € A

1 fi—jl=1

0 otherwise
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Fermionic variables

Definition (Grassmanian variables)
Let {&;, & : i€ A} be symbols that satisfy

L& =&, &&= —§&, &iE=-§&
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Definition (fGFF)

For every function F of {&;, £} the expectation of F
under the fGFF is defined as

[F] :J 0;0¢ NEACYINIAR -
Berezin
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Let P be the law of the uniform spanning tree T on A.

Proposition
Let S be any subset of edges of A.

Hv EVe E]

P(SCT) = det

where
Vel =8t — &y, VeE=Eor — &

is the gradient of the fGFF along the edge e.
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Proposition (Dhar-Majumdar, Jarai-Werning)

Let VC A. Letn:V — [2d] be a choice of a direction.
Then the height-one field satisfies

A. C.

(Hh,\ ) (v, v+e) g Tife#n(v),veV).

veVv

v n(v) = East
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Now we are able to connect ASM and fGFF via the
UST.
» Link height-one <= fermions conjectured in
physics by Jeng, Piroux—Ruelle (‘free symplectic
fermion theory’)
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Theorem (Chiarini, C, Rapoport, Ruszel, 2023)

E HhA(V)

HXY
vev

vev det Results model 2
where
Xv == Z VeEVez
esv
Yy = H (1 - Veﬁvei)
esv
Proof.

Key: inclusion-exclusion principle over edges. O




Main results

Theorem (CCRR, 2023)
Ind=2

Hn1e_2kK<——C2X¢n:j E[H)

e—0

m

= lim ek (hy, (v0)) 1 € ), Co=%n— ¥

e—0
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Ind=2
. —2k . Results model 2
linoe K(— szvg) NS [k]>
. 2k DY .o _
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We also have a closed form expression for the limiting
cumulants of —C4X, in d > 3.
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Ind=2
. —2k . Results model 2
linoe K(— szvg) NS [k]>
. 2k DY .o _
= lim ek (hy, (v0)) 1 € ), Co=%n— ¥

We also have a closed form expression for the limiting
cumulants of —C4X, in d > 3.

Proof.
Wick's theorem for fermionic variables and combinatorics
of partitions/permutations. L]
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Theorem (CCRR, 2023)
Ind=2
[im eisz<Xv(€j)Y G) : ] S [k])

e—0

::Hn1€_2kK<hu€0ﬂ”):j e[ko.

e—0

Results model 2
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Ind=2
€|i1>n0 672kK<Xv(€i)Yv(€j) : j S [k]> Results model 2
T —2k G)Y . s
= lim e |<(hue (Vo) :je [k]>-

We also have a closed form expression for the limiting
cumulants of XY, in d > 3 and in turn those of the
height-one field in d > 3.
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Theorem (CCRR, 2023)

Ind=2
€|i1>n0 672kK<Xv(€i)Yv(€j) : j S [k]> Results model 2
T —2k G)Y . s
= lim e |<(hue (Vo) :je [k]>-

We also have a closed form expression for the limiting
cumulants of XY, in d > 3 and in turn those of the
height-one field in d > 3.

Proof.

The proof generalizes that for X,,. It is alternative and
independent to Diirre's. Essentially, “Y, becomes

—C" [
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Our proofs in the limit € — 0 hold for the triangular and
hexagonal lattice as well:

» translation invariance (homogeneity)

P isotropy
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We have on Z¢
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K (Xy, vE V)=« (deustv)/24, v € V).

» Analogous results obtained for the “degree field” in
Z* and triangular lattice

» Other observables of UST can be studied (ongoing)
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Thank you!
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