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Part 0.A: Pioneering work of Eugene Wigner

(Recalling Semicircle Law for Random
Matrices)



0.A. Random matrices and nuclear physics
Slow neutron resonance cross-sections on thorium 232 & uranium 238 nuclei. Energy(eV)



0.A. Gaussian Orthogonal Ensemble (GOE)

I Ensemble: Z = (Zn), Zn is n� n matrix with random entries.

I A) GOE: Zn = (Zn(j , k)) is n� n symmetric matrix with
independent Gaussian entries in the upper triangular part:

Zn(j , k) = Zn(k, j) � N(0, 1), j 6= k,
Zn(j , j) � N(0, 2).

I B) Distribution of Zn is orthogonal invariant: ZnO> & Zn
have same distribution for each orthogonal matrix O.

I Characterization GOE: A and B holds.



0.A. Gaussian Orthogonal Ensemble (GOE)

I Joint density of eigenvalues of λ1 > ... > λn of Zn:

fλ1,...,λn (x1, ..., xn) = kn
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independence strong dependence

I Non-diagonal RM with density: eigenvalues are strongly
dependent due to Vandermonde determinant:
x = (x1, ..., xn) 2 Cn
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0.A. Wigner semicircle law
Wigner 1950s: Birth of RMT when both dimensions goes to ∞.

I A heavy nucleus is a liquid drop composed of many particles
with unknown strong interactions,

I so a random matrix would be a possible model for the
Hamiltonian of a heavy nucleus.

I Which random matrix should be used?

I λ1 > ... > λn eigenvalues of scaled GOE: Xn = Zn/
p
n.

I Sample Spectral Distribution bFXnn
I Limiting Spectral Distribution (LSD): bFXnn goes, as n! ∞,
to Semicircle distribution on (�2, 2)

w(x) =
1
2π

p
4� x2, jx j � 2.

I Semicircle distribution is also called free Gaussian distribution



0.A. Simulation of Wigner semicircle law



0.A. Precise statement of Wigner semicircle law

Semicircle distribution approximates the spectral distribution

Theorem: For each continuous bounded function f and ε > 0,

lim
n!∞

P

�����Z f (x)dbFXnn (x)� Z f (x)w(dx)���� > ε

�
= 0

where w(x) is the density of semicircle distribution on (�2, 2)

w(x) =
1
2π

p
4� x2, jx j � 2

I Good predictions for moderate dimension n

I Breakthrough work by Eugene Wigner: Ann. Math., 1955,
1957, 1958



0.A. Gaussian Unitary Ensemble (GUE)
Wigner law also holds

I GUE: Zn = (Zn(j , k)) is n� n Hermitian with independent
Gaussian entries:

Z =

0BB@
Zn(1, 1) Zn(1, 2) ... Zn(1, n)
Z n(1, 2) Zn(2, 2)

Z n(1, n) Zn(n, n)

1CCA
Re (Zn(j , k)) � Im (Zn(j , k)) � N(0, (1+ δjk ))/2),

Re (Zn(j , k)) , Im (Zn(j , k)) , 1 � j � k � n,
are independent random variables

I Distribution of Zn is unitary invariant: ZnU� & Zn have same
distribution for each unitary non-random matrix U



0.A. Universality

I Wigner semicircle law holds for Wigner ensembles:

Xn(k, j) = Xn(j , k) =
1p
n

�
Zj ,k , if j < k
Yj , if j = k

fZj ,kgj�k , fYjgj�1 independent sequences of i.i.d. r.v. with

EZ1,2 = EY1 = 0,EZ 21,2 = 1,EY
2
1 < ∞

I Whatever values the random entries take, the LSD
(Semicircle) has bounded support

I Joint density of eigenvalues of a Wigner matrix is not easy



0. The Marchenko-Pastur Law

B. For Sample Covariance Matrix

Both, data dimension and sample size large



0.B. Marchenko-Pastur law
Marchenko-Pastur (1967), Mat. Sb.

I H = Hp�n = (Zj ,k : j = 1, .., p, k = 1, ..., n) i.i.d. r.v.

E(Z1,1) = 0, E( jZ1,1j2) = 1, E( jZ1,1j4) < ∞

I Sample covariance matrix Sn = 1
nHH

�, ESD bF Snp = bF 1
nHH

�
p

I If p/n! c > 0, bF Snp goes to MP distribution:

µc (dx) =
�
fc (x)dx , if 0 < c < 1
(1� c)δ0(dx) + fc (x)dx , if c � 1

fc (x) =
c
2πx

q
(x � a)(b� x)1[a,b](x)

a = (1�
p
c)2, b = (1+

p
c)2



0.B. Simulation Marchenko-Pastur law



0. Random matrices have been used in many �elds

I Statistics
I Physics
I Number theory
I Biology
I Finances
I Engineering
I Computer vision
I Machine learning
I ......
I Prominently...together with free probability in wireless
communications:



Time-varying random matrices: why?

Couillet & Debbah (2011), Random Matrix Methods for Wireless
Communications. Chapter 19, Perspectives:

I Performance analysis of a typical network with users in motion
according to some stochastic behavior, is not accessible to this
date in the restrictive framework of random matrix theory.

I It is to be believed that random matrix theory for wireless
communications may move on a more or less long-term basis
towards random matrix process theory for wireless
communications. Nonetheless, these random matrix processes
are nothing new and have been the interest of several
generations of mathematicians.

I The work was initiated by Dyson in 1962



Part I: From Matrix Bm to Free Bm

(Time-varying random matrix models for the
Free Brownian motion)



I. Hermitian Brownian motion ensemble

I B(t) = (Bn(t))n�1, t � 0.

I Bn(t) is n� n Hermitian Brownian motion:

Bn(t) = (bij (t)), t � 0,

Re(bij (t)) � Im(bij (t)) � N(0, t(1+ δij ))/2,

where Re(bij (t)), Im(bij (t)), 1 � i � j � n are independent
one-dimensional Brownian motions

I (λ1(t), ...,λn(t))t�0 process of eigenvalues of fBn(t)gt�0

λ1(t) � λ2(t) � ... � λn(t)



I. Dyson-Brownian motion
Time dynamics of the eigenvalues, dimension n �xed

Dyson (1962):

a) If eigenvalues start at di¤erent positions, they never collide

P (λ1(t) > λ2(t) > ... > λn(t) 8t > 0) = 1

b) They satisfy the Stochastic Di¤erential Equation (SDE)

λi (t) = λi (0) +Wi (t) +∑
j 6=i

Z t

0

ds
λj (s)� λi (s)

, i = 1, ..., n

8t > 0, where W1, ...,Wn are 1-dimensional independent Bms

I Brownian part + repulsion force (at any time t)

I Proof uses classical stochastic calculus and martingale
techniques (Anderson, Guionnet, Zeitouni, 2010, Tao, 2012)



I. Key ideas for the proof
Where does the noncoliding force come from?

1. Eigenvalues are smooth functions of entries:

λi (t) = F (Bn(t)) = F ((bjk (t)))

2. Itô formula from classical stochastic calculus: b = (bt )t�0
1-dimensional Bm

F (bt ) =
Z t

0
Fx (bs )dbs +

1
2

Z t

0
Fxx (bs )ds

3. Hadamard second variational formula: For a matrix A = A(x)
depending smoothly on x , and Aui = λiui , u�i ui = 1

d2

dx2
λi = u�i Axxui + 2∑

j 6=i

1
λi � λj

��u�j Axuj ��
4. Existence of independent Bms W1, ...,Wn from Lévy�s
characterization of Bm



I. Time-varying Wigner theorem and law of Free Bm

I Consider the Dyson spectral measure-valued processes

µ
(n)
t =

1
n

n

∑
j=1

δfλj (t)/
p
ng, t � 0, n � 1

I Notation: For f µ-integrable function hµ, f i =
R
f (x)µ(dx)

I Uniform Wigner theorem

P

�
lim
n!∞

sup
0�t�T

���Dµ
(n)
t , f

E
� hwt , f i

��� = 0, 8f 2 Cb(R)� = 1
I The family of probability measures fwtgt�0 is the Law of the
Free Brownian motion,

wt (dx) =
1
2πt

p
4t � x21[�2pt ,2pt ](x)dx



I. Smooth vs non smooth SDE
Interacting systems

I SDE with both smooth drift & di¤usion coe¢ cients β and
α are of the form

Xn,i (t) = Xn,i (0) +
1p
n ∑
j 6=i

Z t

0
β(Xn,j (s),Xn,i (s))dW

(n)
i (t)

+
1
n ∑
j 6=i

Z t

0
α(Xn,j (s),Xn,i (s))ds.

I While Dyson-Brownian motion has very non smooth drift

Xn,i (t) = Xn,i (0)+
1p
n
W (n)
i (t)+

1
n ∑
j 6=i

Z t

0

1
Xn,i (s)� Xn,j (s)

ds.

I Empirical measure valued processes

µ
(n)
t =

1
n

n

∑
j=1

δXn,j (t), t � 0, n � 1



I. Smooth vs non smooth SDE

1. For Interacting SDE with both smooth drift & di¤usion
coe¢ cients:

I McKean (Lect. Series Di¤er. Equat. 1967):
n

µ(n)
o
t�0

converges weakly in probability to fµtgt�0, which is the law
of a Itô stochastic di¤erential equation.

2. Interacting SDE with non-colliding forces arise from
eigenvalue processes of matricial processes:

I [Bru (1989), Rogers & Shi (1993), Konig & O´Connell
(2001), Cabanal-Duvillard & Guionnet (2001), Katori &
Tanemura (2004)].

I The family of probabilities fwt , t � 0g is not the law of a
SDE equation, but the law of a noncommutative process: Free
Brownian motion



I. Fluctuations limit: Another di¤erence
1. Interacting SDE with smooth drift & di¤usion coe¢ cients:

I Limits of �uctuations (CLT): S (n)t =
p
n(µ(n)t � µt ).

I Hitsuda and Mitoma (JMA, 1986): S (n)t converges to
Gaussian process in nuclear space (Kallianpur &
Pérez-Abreu (AMO, 1988), Kallianpur & Xiong (LNS, 1995))

I Gaussian �uctuations for interacting particle systems with a
class of singular kernels, Wang, Zhao & Zhu (2021)

2. Interacting SDE with non-colliding eigenvalues:

I Due to noncoliding forces, need to consider �uctuations

Y (n)t = n
�

µ
(n)
t �wt

�
I Israelson (SPA, 2001), Bender (SPA, 2008): Y (n)t converges
to Gaussian process in nuclear space

I Unterbergerg (SPA, 2018): Global �uctuations for 1D log-gas
dynamics (generalized Dyson-Brownian motion)



What is free Brownian motion?

What is the law of free Brownian motion?



I. Notation

I Let P(R) be the set of probability measures on R.

I Let C (R+,P(R)) be the spaces of continuous functions from
R+ ! P(R), with the topology of uniform convergence on
compact intervals of R+

I For µ 2 P(R) and a function f : R ! R that is µ-integrable
we write

hµ, f i =
Z

R
f (x)µ(dx)

I Cauchy transform of µ 2 P(R) : Gµ(z) : C+ ! C�

Gµ(z) =
Z

R

1
z � x µ(dx), z 2 C+



I. Law of free Bm as limiting measure valued process

Theorem (Cabanal-Duvillard & Guionnet (2001))
If µ

(n)
0 ! δ0, the family

�
µ
(n)
t

�
t�0

of measure valued-processes

converges weakly in C (R+,P(R)) to a unique continuous
probability-measure valued function such that 8 f 2 C 2b (R)

hµt , f i = f (0) +
1
2

Z t

0
ds
Z

R2

f 0(x)� f 0(y)
x � y µs (dx)µs (dy).

Moreover, µt = wt , t � 0
Well known fact: The family of laws (wt )t�0 is characterized by
its Cauchy transforms (Gt )t�0, being the unique solution of

∂Gt (z)
∂t

= Gt (z)
∂Gt (z)

∂z
, t > 0

G0(z) = �
1
z
, z 2 C+,

Gt (z) 2 C+ for z 2 C+ & limη!∞ η jGt (iη)j < ∞ 8 t > 0



Part II:

Free Brownian motion

and

Non-commutatitve fractional Brownian
motion



II. Non-commutatitve probability spaces
A non-commutatitve probability space (A, ϕ) is a unital algebra
A over C with a linear functional ϕ : A ! C with ϕ(1A) = 1.

Elements of A are called non-commutatitve random variables

I Examples

1. A =Md (C) d � d matrices with complex entries

ϕ(�) = trd (�) =
1
d

tr(�)

2. A = L∞(Ω,F ,P),
ϕ(�) = E(�)

3. A = Md (L∞(Ω,F ,P)),

ϕ(�) = Etrd (�)

4. A = L(H) algebra of linear operators on a Hilbert space,
u 2 H, kuk = 1

ϕ(�) = h�u, ui



I We should think of ϕ as playing the role of the expectation in
classical probability theory

I We talk about the moments of a, referring to the values of
ϕ
�
ak
�
, k � 0

I More generally, for a tuple a1, . . . , an 2 A, the values

ϕ(am1i1 ...a
mk
ik
)

for k � 0, 1 � i1, . . . , ik � n, m1, . . .mk � 0, are known as
the joint moments of a1, . . . , an

I When an algebraic distribution is given by an analytic
distribution?



II. Non-commutatitve probability spaces
Generality needed to deal with free probability

Remember classical case: A real random variable R has
distribution µ on R i¤

Ef (R) =
Z

R
f (x)µ(dx), 8f 2 Bb(R)

Non-commutatitve case needs:
(i) Given a p.m. µ on R with bounded support, there exist a
C �-probability space (A, ϕ) and a self-adjoint a 2 A with

ϕ(f (a)) =
Z

R
f (x)µ(dx), 8f 2 Cb(R)

(ii) Given a p.m. µ on R, there exists a W �-probability space
(A, ϕ) and self-adjoint operator a on a Hilbert space H such that

f (a) 2 A 8f 2 Bb(R), (1)

ϕ(f (a)) =
Z

R
f (x)µ(dx), 8f 2 Bb(R)

If (1) holds, it is said that a is a¢ liated with A



II. Free Random Variables

De�nition
A family of subalgebras fAigi2I � A in a non-commutatitve
probability space is free (freely independent) if

ϕ(a1a2 � � � an) = 0

whenever ϕ(aj ) = 0, aj 2 Aij , and i1 6= i2, i2 6= i3, ..., in�1 6= in

De�nition
If a1, a2 are freely independent, with distributions µa1 and µa2 , the
distribution of a1 + a2 is the free convolution µa1 � µa2

I Recall: If a1, a2 are classical independent, the distribution of
a1 + a2 is the classical convolution µa1 � µa2

I If ϕ = E and there is commutativity

E(a1a2 � � � an) = E(a1) � � �E(an) = 0



II. Free independence allows to compute joint moments
Example

Computation of ϕ(abab) when a & b are freely independent:
Suppose fa1, a3g and fa2, a4g are freely independent. Since

ϕ(ai � ϕ(ai )1A) = 0,

ϕ(a1� ϕ(a1)1A)ϕ(a2� ϕ(a2)1A)ϕ(a3� ϕ(a3)1A)ϕ(a4� ϕ(a4)1A) = 0

Computations yield

ϕ(a1a2a3a4) = ϕ(a1a3)ϕ(a2)ϕ(a4) + ϕ(a1)ϕ(a3)ϕ(a2a4)
� ϕ(a1)ϕ(a2)ϕ(a3)ϕ(a4)

In particular if a1 = a3 = a and a2 = a4 = b

ϕ(abab) = ϕ(a)2ϕ(b2)+ ϕ(a2)ϕ(b)2� ϕ(a)2ϕ(b)2 6= ϕ(a2)ϕ(b2)



II. Application: Free Central Limit Theorem
Theorem
Let a1, a2,... be a sequence of independent free random variables
with the same distribution with all moments. Assume that
ϕ(a1) = 0 and ϕ(a21) = t. Then the distribution of

Zm =
1p
m
(a1 + ...+ am)

converges, as m! ∞, to the semicircle distribution

wt (x) =
1
2π

p
4t � x2, jx j � 2

p
t

with moments m2k+1 = 0 and m2k = t2k (
2k
k )/(k + 1).

I Semicircle or Wigner distribution plays the role of
classical Gaussian in free probability

I Marchenko-Pasture distribution (free Poisson) plays the
role of Poisson distribution



II. RMT and Free Probability: Why useful?
From the Blog of Terence Tao (Free Probability):

I The signi�cance of free probability to random matrix theory
lies in the fundamental observation that random matrices
which are independent in the classical sense, also tend to be
independent in the free probabilistic sense, in the large limit.

I Because of this, many tedious computations in random matrix
theory, particularly those of an algebraic or enumerative
combinatorial nature, can be done more quickly and
systematically by using the framework of free probability.

I Voiculescu (1991), Limit Laws for random matrices and free
products. Invent. Math.

I Books on random matrices and wireless communications
include free probability.



II. RMT and Free Probability: Why useful?

I Knowing eigenvalues of n� n random matrices Xn & Yn,
what are the eigenvalues of Xn + Yn? XnYn?

I In general if Xn and Yn do not commute,

λ(Xn + Yn) 6= λ(Xn) + λ(Yn)

I However, if Xn & Yn are asymptotically free, LSD of Xn + Yn
can be computed as (free convolution)

LSD(Xn + Yn) = LSD(Xn)� LSD(Yn)

I The problem is similar to the computation to the distribution
of the sum of two independent random variables: product of
characteristic functions or moment generating functions
(classical convolution)



II. Free Brownian motion
A non-commutatitve process

A Free Brownian motion is a family S = fStgt�0 of self-adjoint
random variables in a non-commutatitve probability space (A, ϕ)
such that:

1. S0 = 0

2. For t2 � t1 � 0, St2 � St1 has law wt2�t1

3. For all n � 1 and tn > � � � > t1 > 0, the increments
Stn � Stn�1 , ...,St2 � St1 ,St1 are freely independent with
respect to ϕ

I For every t � 0, St has semicircle law wt of zero mean and
variance t > 0

I One has Stochastic calculus for the free Brownian motion
(Anshelevich, JFA, 2002; Biane, FICAMS, 1997; Biane &
Speicher, PTRF, 1998); Kemp, Nourdin, Peccati, Speicher,
AP, 2012)



II. Semicircular process
I Free Brownian motion is an example of a Semicircular process
X = fXtgt�0 � A, self-adjoint random variables: For every
k � 1, t1, ..., tk 2 [0,∞) and θ1, .., θk 2 R, the
non-commutatitve random variable θ1Xt1 + � � �+ θkXtk has
Semicircle law

wm,σ2(dx) =
1

2πσ2

q
4σ2 � (x �m)21[m�2σ,m+2σ](x)dx

for some m 2 R, σ2 > 0

I The law of a centered semicircular processes (ϕ(Xt ) = 0 for
every t > 0) is uniquely determined by its covariance function

Γ(s, t) = ϕ(XtXs )

I Centered semicircular X = fXtgt�0 has stationary increments

Γ(s, t) = Γ(jt � s j) = ϕ(Xjt�s j)



II. Non-commutatitve Fractional Brownian Motion
Nourdin and Taqqu (JTP, 2104)

I Let H 2 (0, 1). A noncommutative fractional Brownian
motion (ncfBm) of Hurst parameter H is a centered
semicircular process SH =

�
SHt
	
t�0 in a non-commutatitve

probability space (A, ϕ) with covariance function

ϕ(SHt S
H
s ) =

1
2

�
t2H + s2H � jt � s j2H

�
I For each t > 0, SHt has the semicircle law wH

t on (�2tH , 2tH )

wH
t (dx) =

1
2πt2H

p
4t2H � x2dx , jx j � 2tH

I ncfBm has stationary increments: For every t, s > 0

ϕ(
�
SHt � SHs

�2
) = jt � s j2H



Part III: Extensions to other matrix and
non-commutatitve processes

III.A. From matrix fractional Bm to
non-commutatitve fractional Bm

(Time-varying random matrix models for the
non-commutatitve fractional Bm)



III.A. One-dimensional fractional Brownian motion

A one-dimensional fractional Brownian motion bH =
�
bH (t)

	
t�0

is a zero-mean classical Gaussian process with covariance

E(bH (t)bH (s)) =
1
2

�
t2H + s2H � jt � s j2H

�
I Stationary increments: For s, t > 0

E

���bH (t)� bH (s))���2 = jt � s j2H
I Self-similarity: (a�HbH (at))t�0

law
= (bH (t))t�0

I H = 1/2 is 1-dimensional Bm (independent increments)
I Itô stochastic calculus cannot be used for H 6= 1/2
I Need classical fractional stochastic calculus: Skorohod, Young



III.A. Matrix fractional Brownian motion

Consider n(n+ 1)/2 independent 1-dimensional fractional
Brownian motions with H 2 (1/2, 1)

ffbHi ,j (t), t � 0g, 1 � i , j � ng

I n� n symmetric matrix fractional Brownian motion:

BHn (t) = (B
H
ij (t))

n
i ,j=1

BHij (t) = b
H
i ,j if i < j

BHii (t) =
p
2bHi ,i (t)

I For 0 < t1 < � � � < tp , the increments (BHn (tk � tk�1))n�1,
k = 1, ..., p are not independent

I Let λ1(t) � λ2(t) � ... � λn(t) be the eigenvalues of BHn (t)



III.A. Matrix fractional Brownian motion
Nualart and Pérez-Abreu (SPA, 2014): no collision

H > 1/2

1. If λ1(0) > λ2(0) > ... > λn(0)) the eigenvalues never collide:

P (λ1(t) > λ2(t) > ... > λn(t) 8t > 0) = 1 (*)

2. For any t > 0 and i = 1, ..., n

λi (t) = λi (0) + Yi (t) + 2H∑
j 6=i

Z t

0

1
λi (s)� λj (s)

ds

Yi (t) = ∑
k�h

Z t

0

∂λi (s)
∂bHkh(s)

δbHkh(s) (**)

I Stochastic integral in (**) is in the sense of Skorohod.
Classical Itô stochastic calculus cannot be used for H 6= 1/2

I Proof of (*) uses the Young stochastic integral
I Yi (t) is not a fractional Brownian motion, but it is a

self-similar process: 8 a > 0, (a�HYi (at))t�0 law= (Yi (t))t�0



III.A. Matrix fractional Brownian motion
Jaramillo and Nualart (RMTA, 2021) and others: colliding case!!

Case H < 1/2

I For T > 0

P (λi (t) = λj (t) for some t 2 (0,T ), and 1 � i , j � n) = 1

I Tools: Hitting probabilities for Gaussian processes and
capacity of Hausdor¤ dimension for measurable sets

General framework and some results of Jaramillo and Nualart:

I Matrix-valued Gaussian processes with a covariance R
I fBm real case: eigenvalues do not collide if H > 1/2 and
collide if H < 1/2. Case H = 1/2 is Mckean (1969) method

I fBm complex case: eigenvalues do not collide if H > 1/3 and
collide if H < 1/3

I Case H = 1/3, no collision: Lee, Song, Xiao and Yuan, 2023
I Collision of k eigenvalues: Song, Xiao and Yuan (2021)



III.A. Time-varying Wigner theorem
Pardo, Pérez G, Pérez-Abreu (JTP, 2016)

Let H > 1/2. Consider the empirical spectral measure-valued
processes of the re-scaled matrix fractional Bm BHn (t)/

p
n

µ
(n)
t =

1
n

n

∑
j=1
1fλj (t)/

p
ng, t � 0, n � 1

1. Fix T > 0. For all continuous bounded function f and ε > 0

lim
n!∞

P

�
sup

0�t�T

����Z f (x)dµ
(n)
t (x)�

Z
f (x)wH

t (x)dx
���� > ε

�
= 0

where wH
t is the semicircle distribution on (�2tH , 2tH )

2. The family of measure-valued processes f(µ(n)t )t�0 : n � 1g
converges to (wH

t )t�0, the law of a non-commutatitve
fractional Bm of Hurst parameter H 2 (1/2, 1)

3. Proof needs non collinding eigenvalues



III.A. Precise statement
Pardo, Pérez G, Pérez-Abreu (JTP, 2016): Functional Wigner

1. The family of measure-valued empirical spectral processes
f(µ(n)t )t�0 : n � 1g converges weakly in C (R+,P(R)) to the
unique continuous probability-measure valued function
(µt )t�0 satisfying, for each t � 0, f 2 C 2b (R),

hµt , f i = hµ0, f i+H
Z t

0
ds
Z

R2

f 0(x)� f 0(y)
x � y s2H�1µs (dx)µs (dy)

Moreover µt = wH
t

2. The Cauchy transform Gt (z) =
R

R

µt (dx )
z�x of µt is the unique

solution to the initial value problem(
∂
∂tGt (z) = Ht

2H�1Gt (z) ∂
∂zGt (z), t > 0,

G0(z) =
R

R

µ0(dx )
z�x , z 2 C+

Extensions: Matrices built from independent 1-dimensional SDE
driven by fBm, H > 1/2 (Song, Yao, Yuan, 2020).



III.B. Other Gaussian matrix processes
Jaramillo, Pardo, Pérez-G (JTP, 2019): Functional Wigner

Symmetric matrix built from independent Gaussian processes with
regular covariance R
Includes fractional Brownian motion with index 0 < H < 1/2
Proof does not need non-colliding eigenvalues and uses extended
Skorohod integral

1. f(µ(n)t )t�0 : n � 1g converges weakly in C (R+,P(R)) to
(µt )t�0 satisfying, t � 0, f 2 C 2b (R),

hµt , f i = hµ0, f i+
1
2

Z t

0
ds
Z

R2

f 0(x)� f 0(y)
x � y R 0(s, s)µs (dx)µs (dy)

2. The Cauchy transform Gt of µt satis�es Gt (z) = FR (t ,t)(z),
t > 0, z 2 C+, with F the solution of

d
dτ
Ft (z) = Ft (z)

d
dz
Ft (z),

F0(z) the Cauchy transform of µ0, t > 0, z 2 C+



III.B. Other Gaussian matrix processes
Diaz, Jaramillo, Pardo (AIHPB, 2022): Gaussian �uctuations

Symmetric matrix from independent Gaussian processes with
regular covariance R

ZΦ
(n)(t) =

�
(Z (n)φ1

(t), ...,Z (n)φr
(t)); t > 0

�
Φ = (φ1, ..., φr ), r > 1, φi in a large class of test functions

Z (n)φ (t) = n
�Z

R
φ(t)µ(n)t (dx)�E

�Z
R

φ(t)µ(n)t (dx)
��

1. There exists a continuous Rr -valued centered Gaussian
process ΛΦ(t) =

�
(Λφ1(t), ...,Λφr (t)); t > 0

�
such that

Z (n)φ (t) converges stably to ΛΦ(t), in the topology of uniform

convergence over compact sets
2. An explicit expression for covariance of ΛΦ(t) is found

3. An upper bound for the total variation distance between the
laws of ZΦ

(n)(t) and ΛΦ(t) is established



III.B. Other Gaussian matrix processes
Diaz, Jaramillo, Pardo (AIHPB, 2022): Gaussian �uctuations

Proof uses

I CLT in the Wiener chaos (related to Fourth Moment Problem
of Nualart & Peccati (Ann Probab, 2005))

I Free independence and multiple Wigner integrals

I Weak convergence results

I Stein methods

I Malliavan Calculus
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III.B. Other Gaussian matrix processes
Diaz, Jaramillo, Pardo (AIHPB, 2022): Gaussian �uctuations

Proof uses

I CLT in the Wiener chaos (related to Fourth Moment Problem
of Nualart & Peccati (Ann Probab, 2005))

I Free independence and multiple Wigner integrals

I Weak convergence results

I Stein methods

I Malliavan Calculus



Part III.B: From Fractional Wishart process
to Non-commutatitve Wishart process

Extensions of free Wishart process



III.B. Fractional Wishart process
I m, n � 1,m� n matrix process

fBm,n(t)gt�0 =
��
bj ,km,n(t)

�
1�j�m,1�k�n

�
t�0

,

n
Re
�
bj ,km,n (t)

�o
t�0

&
n
Im
�
bj ,km,n (t)

�o
t�0

independent

1-dimensional fractional Bm of parameter H 2 [1/2, 1).

I Fractional Laguerre, fractional Wishart process: n� n
matrix-valued process

Lm,n(t) = B�m,n(t)Bm,n(t), t � 0

I 0 � λn(t) � � � � � λ1(t) eigenvalues of Lm,n(t)/n

I For H 2 [1/2, 1) the noncoliding property holds

P (λ1(t) > λ2(t) > ... > λn(t) > 0 8t > 0) = 1



III.B. Fractional Wishart process

I H = 1/2:
I Bru (JMA, 1989): noncoliding property and stochastic
dynamics

dλi (t)= λi (0) +
1p
n

q
2λi (t)Wi (t)

+
1
n

Z t
0

 
m+ ∑

j 6=i

λi (s)+λj (s)
λi (s)�λj (s)

!
ds, 1 � i � n

I Cabanal-Duvillard & Guionnet (AP, 2001), Pérez-Abreu &
Tudor (EJP, 2009): limiting measure-valued process, when
n/m! c > 0, is dilation of free Poisson law

I H 2 (1/2, 1): Pardo, Pérez G., Pérez-Abreu (JFA, 2017):
I Noncoliding, stochastic dynamics of eigenvalues
I Limiting measure valued process is fractional dilation of free
Poisson law



III.B. Dilation rather than the law of free Poisson
Law of non-commutatitve fractional Wishart process

The limit, when n/m! c > 0, of µ
(n)
t = 1

n ∑n
j=1 δλj (t), t � 0 ,

I is not the law of a Free Poisson process fmct ,bgt�0 ,

ma,b(dx) =
�

fa,b(x)dx , a � 1
(1� a)δ0(dx) + fa,b(x)dx , 0 � a < 1,

fa,b(x) =
1

2πbx

q
4ab2 � (x � b(1+ a))21[b(1�pa)2,b(1+pa)2 ](x)

I rather fractional dilations of mc ,1: µHc (t) = mc ,1 � h�1t , for
ht (x) = t2Hx , i.e.

µHc (t) = mc ,t2H



III.B. Characterization of the law

Cabanal-Duvillard & Guionnet (AP, 2001): H = 1/2

Pardo, Pérez G, Pérez-Abreu (JFA, 2017): H 2 (1/2, 1)

Theorem
The family (µHc (t), t � 0) is characterized by the property that its
Cauchy transform Gc ,H is the unique solution to

∂Gc ,H
∂t

(t, z) = 2Ht2H�1
"

G 2c ,H (t, z)+
(1� c + 2zGc ,1/2(t, z))

∂Gc ,H
∂z (t, z)

#
, t > 0

Gc ,H (0, z) =
Z

R

µc ,H (0)(dx)
x � z

Extensions: Wishart matrices built from independent
1-dimensional SDE driven by fBm, H > 1/2 (Song, Yao, Yuan,
2021).
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