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Motivation

Suppose a binary exposure denoted by Z and assume that the observed
outcome data are generated according to the structural model

Yi = X0iξ + Ziτ + ϵi , ϵi
ind.∼ N (0, σ2) (1)

where for p-dimensional parameter ξ the term X0iξ defines the true
treatment-free mean model

The goal is to estimate τ under the experimental model design in (1).
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Motivation

Suppose that the available data are derived from a observational design
with Xi representing a set of confounders

• In the observational data generating process, Xi affects the generation
of Yi and Zi , simultaneously, for each i

Consider that the following semi-parametric model is adjusted

Yi = h(Xi ;ϕ) + Ziτ + ϵi (2)

where h(Xi ;ϕ) represents how do we perform confounding adjustment in
this particular linear case
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Frequentist solution

An estimate τ solves
n∑

i=1

(Zi − b(Xi))(Yi − τZi) = 0

where b(Xi) = P(Zi = 1 | Xi) is the propensity score. In a frequentist
setting, b(Xi) is replaced with b(Xi ; γ̂), where γ̂ is the solution of

n∑
i=1

X⊤
i (Zi − b(Xi ; γ)) = 0p
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Frequentist solution

The estimator

τ̂ =
n∑

i=1

(Zi − b(Xi ; γ̂))Yi

(Zi − b(Xi ; γ̂))Zi

is consistent if the model b(Xi ; γ̂) is correctly specified.

An equivalent result is obtained based on the OLS estimator when
performing propensity score regression

Yi = b(Xi ; γ̂)ϕ+ Ziτ + ϵi
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Bayesian Inference under Exchangeability

– Joint probability model

fX ,Z ,Y (x , z, y) = fX (x)fZ |X (z|x)fY |Z ,X (y |z, x)

– de Finetti’s representation

pX (x1:n) =

∫ n∏
i=1

fX (xi ; η)π0(η)dη,

pZ |X (z1:n|x1:n) =

∫ n∏
i=1

fZ |X (zi |xi ; γ)π0(γ)dγ, (3)

pY |X ,Z (y1:n|x1:n, z1:n) =

∫ n∏
i=1

fY |X ,Z (yi |xi , zi ; β)π0(β)dβ.
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Bayesian solution

• Implication 1: considering a parametric representation fX (x) ≡ fX (x ; η),
fZ |X (z|x) ≡ fZ |X (z|x ; γ) and fY |Z ,X (y |z, x) ≡ fY |Z ,X (y |z, x ; β), the triples
(yi , zi , xi) are independent given φ = (η, γ, β)

• Implication 2: after specify a prior model for φ, by standard
assumptions, the posterior distribution of φ converges to the degenerate
point φ0 = (η0, γ0, β0) with

fX ,Z ,Y (x , z, y) ≡ fX ,Z ,Y (x , z, y ;φ0) = fX (x ; η0)fZ |X (z|x ; γ0)fY |Z ,X (y |z, x ; β0)

corresponding to the true (presuming) data generating model

• Implication 3: when performing regression with propensity score
adjustment, the proposed model does not match
fX (x ; η0)fZ |X (z|x ; γ0)fY |Z ,X (y |z, x ; β0)
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Bayesian solution

Different proposed solutions for the problem

▶ Joint Bayesian propensity score model: Inference is based on the
joint likelihood (McCandless et al, 2009):

ℓ(γ, β) =
n∏

i=1

fZ |X (zi |xi , γ)fY |Z ,X ,E(yi |zi ,xi ,e(xi ; γ), β). (4)

▶ Two-step cutting feedback

▶ Two-step plug-in

What should we do?
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Bayesian solution

▶ The joint specification results in structural bias for any sample size

▶ Two-step cutting feedback results in measurement error-like bias

b(l)
i ≏ bi + ḃ(xi ; γ0)(γ

(l) − γ0) = bi + u(l)
i (xi)

▶ Two-step plug-in is the best answer, although there is an issue
involving coverage rates
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Illustrative Example

Consider the following data generating mechanism with Normal outcome
and binary treatment models.

Suppose the outcome model is specified as

Yi = β0 + β1Xi1 + β2Xi2 + β3Xi3 + τZi + ϵi (5)

with τ = 5 and (β0, β1, β2, β3) = (3,−2,10,6), and ϵi ∼ Normal(0,1).
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Illustrative Example

In the treatment assignment model, suppose that we have

Zi |Xi = xi ; γ0 ∼ Bernoulli(pi), with logit(pi) = γ00+γ01xi01+γ02xi2+γ03xi3,

for γ0 = (2,−2,−2,1)⊤.

Confounders are simulated from a trivariate normal distribution with
mean (2,−1,0.5)⊤ and Cov(Xj ,Xk) = 0.8|j−k | for j , k = 1,2,3.
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Illustrative Example

The propensity score regression model is implemented by first fitting a
Bayesian model for Z given X , obtaining the predicted values
b̂i = γ̂0 + γ̂1xi1 + γ̂2xi2 + γ̂3xi3, and then fitting the regression model

E[Y |X = x ,Z = z,B = b̂; β, ϕ, τ ] = β0 + ϕb̂ + τz (6)

which is mis-specified in its treatment-free component, but correctly
specified in terms of the treatment-effect component.
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Illustrative Example

Table 1: Frequentist properties of Bayesian estimators:
√

n times the standard
deviation, and coverage (Cov.) of 95% interval, in 2000 replicate samples using the
exact regression model (Exact), a two-step propensity score regression model (PSR).

n Exact PSR√
n × s.d. Cov.

√
n × s.d. Cov.

200 2.623 95.12 4.075 81.64
500 2.589 94.92 4.032 81.27

1000 2.569 95.38 3.985 81.34
2000 2.589 95.35 3.981 81.27
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Goals

The mis-specification renders poorly coverage rates

Two main goals of the paper:
▶ Justify the two-step plug-in approach as fully Bayesian procedure,

ie., a Bayesian inference that uses probabilistic arguments and
prior-to-posterior updating using Bayes Theorem.

▶ Correct the coverage rates due to mdoel mis-specification.
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Bayesian decision-theoretic inference

Suppose that data are generated according to some likelihood model
fO(. ; θ0) which we cannot and do not need to specify correctly.

The Bayes estimate is a function of the observed data that minimizes the
Bayes risk, or the posterior expected loss for some loss function
ℓ(t , θ) : Θ×Θ −→ R+, that is

θ̂ = argmin
t∈Θ

Eπn [ℓ(t , θ)] = argmin
t∈Θ

∫
ℓ(t , θ)πn(θ) dθ.
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Bayesian decision-theoretic inference

If the loss function can be written

ℓ(t , θ) =
∫

u(s, t)fO(s; θ) ds = EfO [u(S, t); θ] (7)

for some function u(s, t) : X ×Θ −→ R+, then the estimation problem
can be rewritten

θ̂ = argmin
t∈Θ

∫
u(s, t)

{∫
fO(s; θ)πn(θ) dθ

}
ds = argmin

t∈Θ
Epn [u(S, t)] (8)

where pn(s) is the posterior predictive distribution implied by the
Bayesian specification.

16/32



Bayesian decision-theoretic inference

For example, if, for t ∈ Θ, u(s, t) = − log fO(s; t), then we have that

θ̂ = argmax
t∈Θ

∫ {∫
log fO(s; t)fO(s; θ) ds

}
πn(θ) dθ. (9)

In particular, assuming fO(s; t) ≡ Normal(t ,1), the calculation becomes

argmin
t∈Θ

∫∫
(s − t)2ϕ(s − θ) dsπn(θ) dθ =

∫ {∫
sϕ(s − θ) ds

}
πn(θ) dθ

=

∫
θπn(θ) dθ
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Bayesian inference under Mis-Specification

Suppose that, while assuming the data are generated by fO, we wish to
perform inference in an alternative model with density f with support X ,
parameterized by ϑ ∈ Θ′.

The decision theoretic framework can still be followed defining a loss
function ℓ(t ′, θ) : Θ′ ×Θ −→ R+ as

ℓ(t ′, θ) = K(fO(. ; θ), f (. ; t ′)) =
∫

log

(
fO(s; θ)
f (s; t ′)

)
fO(s; θ) ds = EfO [uθ(S, t ′); θ]

where uθ(s, t ′) = log (fO(s; θ)/f (s; t ′)).
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Bayesian inference under Mis-Specification

By arguments equivalent to those leading to (9), we have that

ϑ̂ = arg max
t ′∈Θ′

∫ {∫
log f (s; t ′)fO(s; θ) ds

}
πn(θ) dθ, (10)

where the maximization over t ′ may not depend on θ.

Therefore, if there is a standard method to sample θ from its posterior
distribution, we may convert it to obtain a sample from ϑ as

ϑ(l) = arg max
t ′∈Θ′

∫
log f (s; t ′)fO(s; θ(l)) ds (11)

Monte Carlo methods can be used to perform the above integration.
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The Bayesian Bootstrap

Posterior samples of ϑ through

ϑ = arg max
t ′∈Θ′

n∑
i=1

ωi log f (oi ; t ′) (12)

where ω = (ω1, . . . , ωn) ∼ Dirichlet(1,1, . . . ,1).

A posterior sample formed by repeatedly sampling the Dirichlet weights
to yield ω(1), . . . , ω(L), with subsequent transformations to yield
ϑ(1), . . . , ϑ(L) is an exact sample from the posterior distribution for ϑ.
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Bayesian inference for the structured causal model

Mis-specified model
y = zτ + b(x)ϕ+ ϵi

The Bayesian inference procedure with loss function

u((y , z, x); τ, ϕ) = (y − zτ − b(x)ϕ)2

yields to πn(τ) concentrated at right value as n grows.
If b(x) is unknown, then the following loss function can be assumed

u((y , z, x); τ, ϕ, γ) = − log fY |X ,Z (y |x , z;ϕ, τ, γopt)− log fZ |X (z|x ; γ)

where γopt = argmaxt
∫
log fZ |X (z|x ; γ) dF0(z|x)
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Bayesian inference for the structured causal model

If b(x) is known, the Bayesian Bootstrap yields a inference procedure
that relies on

(τ, ϕ) = argmin
t1,t2

n∑
i=1

ωi(yi − zi t1 − b(xi)t2)2

This proposed solution is inspired in the frequentist theory, and aims to
correct the under coverage associated with model mis-specification.
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Bayesian inference for the structured causal model

Table 2: Frequentist properties of Bayesian estimators:
√

n times the standard
deviation, and coverage (Cov.) of 95% interval, in 2000 replicate samples using the
exact regression model (Exact), a two-step propensity score regression model (PSR),
a PSR with frequentist bootstrap, and a PSR with Bayesian bootstrap.

n Exact PSR Boot PSR Bayesian Boot.√
n × s.d. Cov.

√
n × s.d. Cov.

√
n × s.d. Cov.

√
n × s.d. Cov.

200 2.623 95.12 4.075 81.64 3.924 95.60 3.958 94.30
500 2.589 94.92 4.032 81.27 3.955 94.60 3.913 94.10

1000 2.569 95.38 3.985 81.34 3.974 94.60 3.890 94.75
2000 2.589 95.35 3.981 81.27 3.929 94.65 3.925 94.65
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Further Simulation Studies

In the data generating mechanism assumes p = 3 confounders, with
x = (x1, x2, x3)

⊤ ∼ Normal((−1,2,0.5)⊤,Σ), with
Σij = Cov(Xi ,Xj) = 0.8|i−j|, for i , j = 1,2,3, and simulate a continuous
treatment Zi and continuous outcome Yi from Normal distributions with
unit variance and means

µZ = 1 − x1 + x2 + 2x3 − x1x2 + 2x2x3,

µY = 1 + 5z + x1 + x2 + x3 + 5x2x3.

respectively. For each sample size, we generate 1000 datasets under
the above scheme. For the exposure model, we fit the mean model
µZ = x̃γ, where the linear predictor is based on row vector
x̃ = (1, x1, x2, x3, x1x2, x1x3, x2x3, x1x2x3), using linear regression.
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Further Simulation Studies

▶ ‘Unadjusted (UN)’: unadjusted for confounding;

UN : β0 + τz

UN-ext : β0 + x1β1 + x2β2 + x3β3 + τz
▶ ‘Joint (JT)’: the joint model from equation (4);

JT : β0 + ϕx̃γ + τz

JT-ext : β0 + x1β1 + x2β2 + x3β3 + ϕx̃γ + τz
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Further Simulation Studies

▶ ‘Cutting feedback (CF)’: the cut feedback approach

CF : β0 + ϕb̃ + τz

CF-ext : β0 + x1β1 + x2β2 + x3β3 + τz + ϕb̃
▶ ‘Two-step (2S)’:

2S : β0 + ϕb̂ + τz

2S-ext : β0 + x1β1 + x2β2 + x3β3 + ϕb̂ + τz
▶ ‘Correct’: a correct specification of the linear regression model.
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Conventional Bayesian methods

Table 3: Summary of the conventional Bayesian estimates of τ under a normal
exposure. The rows correspond to mean bias of the point estimates of the posterior
95% credible intervals of τ .

n
Outcome 200 500 1000 2000

B
ia

s
UN 2.084 2.092 2.093 2.089
UN-ext 2.401 2.448 2.444 2.444
JT -0.355 -0.345 -0.344 -0.345
JT-ext -0.092 -0.088 -0.089 -0.090
CF 0.059 0.027 0.013 0.006
CF-ext 0.045 0.021 0.011 0.005
2S -0.002 0.001 0.001 0.000
2S-ext -0.002 0.001 0.001 0.000
Correct -0.002 0.001 -0.001 0.000
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Conventional Bayesian methods

Table 4: Summary of the conventional Bayesian estimates of τ under a normal
exposure. The rows correspond to the RMSE of the posterior 95% credible intervals of
τ .

n
Outcome 200 500 1000 2000

R
M

S
E

UN 2.086 0.093 2.093 2.089
UN-ext 2.416 2.454 2.447 2.445
JT 0.365 0.349 0.346 0.346
JT-ext 0.117 0.100 0.095 0.093
CF 0.092 0.054 0.035 0.024
CF-ext 0.084 0.051 0.034 0.023
2S 0.071 0.047 0.033 0.023
2S-ext 0.071 0.047 0.033 0.023
Correct 0.056 0.036 0.025 0.018

28/32



Conventional Bayesian methods

Table 5: Summary of the conventional Bayesian estimates of τ under a normal
exposure. The rows correspond to the coverage rates of the posterior 95% credible
intervals of τ .

n
Outcome 200 500 1000 2000

C
ov

er
ag

e
UN 0.0 0.0 0.0 0.0
UN-ext 0.0 0.0 0.0 0.0
JT 0.1 0.0 0.0 0.0
JT-ext 75.0 49.7 19.8 2.1
CF 100.0 100.0 100.0 100.0
CF-ext 100.0 100.0 100.0 100.0
2S 100.0 100.0 100.0 100.0
2S-ext 100.0 100.0 100.0 100.0
Correct 94.1 94.5 94.1 94.0
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Estimation via the Bayesian bootstrap

Table 6: Summary of the estimates of τ under a normal exposure using the Bayesian
bootstrap in the outcome model, and different approaches to the propensity score
model parameters posterior: True indicates the true value of γ is used; Parametric
indicates a parametric Normal model is used; Linked (LBB) indicates that common
Dirichlet weights were used in the two model components.

n
Outcome πn(γ) 200 500 1000 2000

C
ov

er
ag

e

PS True 94.2 94.0 95.0 96.0
PS-ext True 93.1 92.8 94.1 94.8
CF Parametric 100.0 100.0 100.0 100.0
CF-ext Parametric 100.0 100.0 100.0 100.0
2S Parametric 100.0 100.0 100.0 100.0
2S-ext Parametric 100.0 100.0 100.0 100.0
2S Linked BB 94.2 92.8 94.7 94.1
2S-ext Linked BB 94.2 92.8 94.7 94.1
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Discussion

▶ Justified the use of two-step plug-in approach as fully Bayesian
inference procedure

▶ Proposed approach has good Bayesian and frequentist properties

▶ A future avenue of research is to address mis-specification under
dependent data
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Muito obrigado pela atenção
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