The impact of directly observed therapy on the efficacy of Tuberculosis treatment: A Bayesian multilevel approach

Widemberg S. Nobre

DME-IM-UFRJ

Agosto 2023

Jointly with Alexandra Schmidt, Erica Moodie and David Stephens

- Nobre, WS, Schmidt, AM, Moodie, EEM and Stephens, DA. (2023) The impact of directly observed therapy on the efficacy of Tuberculosis treatment: a Bayesian multilevel approach, Journal of the Royal Statistical Society Series C: Applied Statistics.
https://doi.org/10.1093/jrsssc/qlad034

Basics of Causal Inference

- Let Y be an outcome of interest, Z be a binary exposure, and \mathbf{X} be a set of covariates
- A dataset is a single realization of the joint process that generates the triple (Y, Z, \mathbf{X})
- Associational Inference \Rightarrow Relationships among observed quantities
- Causal Inference \Rightarrow Manipulation of the mechanism that generates the data regarding answering a causal question

Basics of Causal Inference

- What if we intervene by changing an individual exposure status? how much would the outcome change?
- What if we intervene by changing an individual medication? how much would the outcome change?
\Rightarrow When answering causal questions via observed data we aim to create a "bridge" between the observed setting and some hypothetical (or experimental) setting

Basics of Causal Inference

- Let $Y(\mathrm{z})$ be the outcome that would be observed if we intervene to set $Z=\mathrm{z}$ at a particular unit
- A causal effect is a contrast between $Y(0)$ and $Y(1)$ (or $E(Y(0))$ and $E(Y(1)))$
- A first step when investigating a causal question is to specify conditions necessary to answer it

Basics of Causal Inference

- Let $Y(\mathrm{z})$ be the outcome that would be observed if we intervene to set $Z=\mathrm{z}$ at a particular unit
- A causal effect is a contrast between $Y(0)$ and $Y(1)$ (or $E(Y(0))$ and $E(Y(1)))$
- A first step when investigating a causal question is to specify conditions necessary to answer it
- Why should we care about that?

Basics of Causal Inference

- Let $Y(\mathrm{z})$ be the outcome that would be observed if we intervene to set $Z=\mathrm{z}$ at a particular unit
- A causal effect is a contrast between $Y(0)$ and $Y(1)$ (or $E(Y(0))$ and $E(Y(1)))$
- A first step when investigating a causal question is to specify conditions necessary to answer it
- Why should we care about that? See Simpson's paradox!

Basics of Causal Inference

- Causal Effect of interest: Average Treatment Effect (ATE)

$$
\begin{aligned}
\tau & =E(Y(1))-E(Y(0)) \\
& =\int y f_{\varepsilon_{1}}(y) d y-\int y f_{\varepsilon_{0}}(y) d y \\
& =\int y \frac{f_{\varepsilon_{1}}(y)}{f_{O}(y)} f_{O}(y) d y-\int y \frac{f_{\varepsilon_{0}}(y)}{f_{O}(y)} f_{O}(y) d y
\end{aligned}
$$

- If $\frac{f_{\varepsilon_{1}}(y)}{f_{O}(y)}$ and $\frac{f_{\varepsilon_{0}}(y)}{f_{O}(y)}$ are equal to one, then τ can be computed based on f_{O} (randomized experiments)

Basics of Causal Inference

- We focus on the problem of confounding, which is a phenomenon that occurs when, in the data generating process, covariates affect both simultaneously, outcome and exposure of interest
- Under no unmeasured confounding (and other mild assumptions), it can be shown that

$$
\tau=E(Y(1))-E(Y(0))=E(Y \mid Z=1, e(X))-E(Y \mid Z=0, e(X)),
$$

where $e(X)=P(Z=1 \mid X)$ is the (correct) propensity score

- While relaxing the no unmeasured confounding assumption, we investigate the need to include random effects in propensity score and outcome regressions to account for unmeasured confounding

Motivation: Tuberculosis dataset

- Cases of Tuberculosis in the state of São Paulo, Brazil in 2016
\Rightarrow Infectious disease caused by the Mycobacterium tuberculosis bacteria
\Rightarrow In Brazil, the treatment against Tuberculosis is given by the public health system and lasts for at least six months
- One of the main challenges with the treatment of Tuberculosis is the drug resistance acquired by patients, which is usually due to mismanagement of medications

Basics of Causal Inference: Simpson's paradox

- In the early 1990s, in order to reduce the odds of treatment failure, the World Health Organization (WHO) introduced the directly observed therapy (DOT)
\Rightarrow A health professional must watch the ingestion of medications during the entire treatment process
- Multilevel structured observations: individual into municipalities

Proposed method

- Binary treatment, $Z_{j i}$, such that $Z_{j i} \mid \delta_{j i} \sim \operatorname{Bernoulli}\left(\delta_{j i}\right)$ with

$$
\begin{equation*}
\operatorname{logit}\left(\delta_{j i}\right)=\log \left(\frac{\delta_{j i}}{1-\delta_{j i}}\right)=\sum_{k=1}^{q} \gamma_{k} X_{k j i}+v_{j} \tag{1}
\end{equation*}
$$

- Binary outcome, such that $Y_{j i} \mid Z_{j i} \sim \operatorname{Bernoulli}\left(\mu_{j i}\right)$ with

$$
\begin{equation*}
\operatorname{logit}\left(\mu_{j i}\right)=\beta_{0}+\beta_{z} z_{j i}+B_{j i}+\eta_{j} \tag{2}
\end{equation*}
$$

Proposed method

- Literature Review: Proposed methods for modeling (1) and (2)

1. Joint likelihood \Rightarrow Incorrect inference because of a feedback of the outcome into the propensity score model
2. Cutting Feedback \Rightarrow Incorrect inference because of a measurement error-like problem on the outcome model
3. Two-step \Rightarrow Provide correct inference and has a fully Bayesian argument

- We follow the two-step procedure and discuss the need to include random effects in propensity score and outcome models to account for unmeasured confounders

Simulation Studies

－Two settings：
1．We consider both Z and Y to be normally distributed yielding a scenario in which bias calculations are analytically tractable

2．We consider both Z and Y to be binary as this is commonly found in epidemiological studies and is representative of our motivating example

Figure 1：DAG of the data generation mechanism for the simulation studies．

An Analytically Tractable Example: The Linear Case

- Data Generating Mechanism
- Let $X_{j i}$ be an individual-level covariate generated from a standard normal distribution for $j=1, \ldots, m$ and $i=1, \ldots, n_{j}$, and assume that

$$
\begin{align*}
z_{j i} & =\alpha_{0}+\alpha_{X} X_{j i}+T_{j}+\varepsilon_{j i}, \varepsilon_{j i} \sim \mathscr{N}\left(0, \rho^{2}\right) \tag{3}\\
Y_{j i} & =\beta_{Z} Z_{j i}+\beta_{X} X_{j i}+W_{j}+\varepsilon_{j i}, \varepsilon_{j i} \sim \mathscr{N}\left(0, \kappa^{2}\right), \tag{4}
\end{align*}
$$

- Let $\mathbf{T}=\left(T_{1}, \ldots, T_{m}\right)^{\top}$ and $\mathbf{W}=\left(W_{1}, \ldots, W_{m}\right)^{\top}$ be two cluster-level covariates whose joint distribution is given by

$$
\binom{\mathbf{T}}{\mathbf{W}} \sim \mathscr{N}\left[\binom{\mu_{T} \mathbf{1}_{m}}{\mu_{W} \mathbf{1}_{m}},\left(\begin{array}{cc}
\sigma_{T}^{2} \mathbf{I}_{m} & \rho_{T, W} \sigma_{T} \sigma_{W} \mathbf{l}_{m} \\
\cdot & \sigma_{W}^{2} \mathbf{I}_{m}
\end{array}\right)\right],
$$

where $\rho_{T, W}$ is the correlation between \mathbf{T} and \mathbf{W}. The quantities ρ in (3), κ in (4), and σ_{T} and σ_{W} in (13) are assumed to be known.

An Analytically Tractable Example: The Linear Case

- Model Adjustment
- Exposure model: For $Z_{j i}$'s generated according to Equation (3), the following model was fitted

$$
z_{j i}=\alpha_{0}+\alpha_{X} X_{j i}+v_{j}+\varepsilon_{j i}
$$

- Outcome Model: for $Y_{j i}$ generated according to Equation (4), the following model was fitted

$$
Y_{j i}=\beta_{0}+\beta_{z} Z_{j i}+B_{j i}+\eta_{j}+\varepsilon_{j i},
$$

where $B_{j i}$ indicates how the adjustment for confounding is implemented in the model.

An Analytically Tractable Example: The Linear Case

Table 1: Continuous outcome simulation: fitted models. Data generated as in (3)-(4). The quantities $\widehat{\mathbf{B S}}$ and $\widehat{\mathbf{B S}}$ are the balancing scores estimated from models described in column $E(\mathbf{Z} \mid \mathbf{X})$. The cluster-level random effects \boldsymbol{v} and $\boldsymbol{\eta}$ are such that $\boldsymbol{v} \sim \mathscr{N}\left(0, \sigma_{T}^{2} \mathbf{I}_{m}\right)$ and $\boldsymbol{\eta} \sim \mathscr{N}\left(0, \sigma_{W}^{2} \mathbf{I}_{m}\right)$.

Model	$E(\mathbf{Z} \mid \mathbf{X})$	$E(\mathbf{Y} \mid \mathbf{Z}, \mathbf{X})$
MD1	$\alpha_{0} \mathbf{1}+\alpha_{X} \mathbf{X}$	$\beta_{0} \mathbf{1}_{N}+\beta_{Z} \mathbf{Z}+\beta_{b} \overparen{\mathbf{B S}}$
MD2	$\alpha_{0} \mathbf{1}+\alpha_{X} \mathbf{X}+\mathbf{A} \boldsymbol{v}$	$\beta_{0} \mathbf{1}_{N}+\beta_{Z} \mathbf{Z}+\beta_{b}$ BS
MD3	$\alpha_{0} \mathbf{1}+\alpha_{X} \mathbf{X}$	$\beta_{0} \mathbf{1}_{N}+\beta_{z} \mathbf{Z}+\beta_{b} \overparen{\mathbf{B S}}+\mathbf{A} \boldsymbol{\eta}$
MD4	$\alpha_{0} \mathbf{1}+\alpha_{X} \mathbf{X}+\mathbf{A} \boldsymbol{v}$	$\beta_{0} \mathbf{1}_{N}+\beta_{Z} \mathbf{Z}+\beta_{b} \widehat{\mathbf{B S}}+\mathbf{A} \boldsymbol{\eta}$

An Analytically Tractable Example: The Linear Case

Focusing on model MD2, it can be shown that

$$
\operatorname{Bias}\left(\widehat{\beta}_{Z}\right)=\left[\left(\mathbf{H}^{\top} \mathbf{H}\right)^{-1} \mathbf{H}^{\top}\left(\beta_{X} \mathbf{X}+\rho_{T, W} \sigma_{T} \sigma_{W} \mathbf{A A}^{\top} \Sigma_{\mathbf{Z} \mid \mathbf{X}}^{-1}\left(\mathbf{Z}-\left(\alpha_{0}+\mu_{T}\right) \mathbf{1}_{N}-\alpha_{X} \mathbf{X}\right)\right)\right]_{(2)},
$$

where $\mathbf{H}=[\mathbf{Z} \mid \widetilde{\mathbf{B S}}]$ and $[\cdot]_{(2)}$ indicates the second element of the vector, and $\Sigma_{\mathbf{Z} \mid \mathbf{X}}=\operatorname{Var}(\mathbf{Z} \mid \mathbf{X})$.

An Analytically Tractable Example: The Linear Case

Figure 2: Absolute bias of $\widehat{\beta}_{Z}$ under the models described in Table 1. These results are averaged over 1000 Monte Carlo replicates.

A Simulation Study with Binary Exposure and Outcome

- Data Generating Mechamism
- Confounders X_{1} and X_{2}

Scenario 1: $v_{j i} \sim \mathscr{N}\left(0,0.1^{2}\right)$ and $\zeta_{j} \sim \mathscr{N}\left(0,0.4^{2}\right)$;
Scenario 2: $v_{j i} \sim \mathscr{N}\left(0,0.25^{2}\right)$ and $\zeta_{j} \sim \mathscr{N}(0,1)$.

- Exposure $Z_{j i} \mid \delta_{j i} \sim$ Bernoulli $\left(\delta_{j i}\right)$

$$
\operatorname{logit}\left(\delta_{j i}\right)=\alpha_{0}+X_{1 j i} \alpha_{1}+X_{2 j i} \alpha_{2}+T_{j} .
$$

- Outcome $Y_{j i} \mid \mu_{j i} \sim$ Bernoulli $\left(\mu_{j i}\right)$

$$
\operatorname{logit}\left(\mu_{j i}\right)=\beta_{0}+X_{1 j i} \beta_{1}+X_{2 j i} \beta_{2}+X_{1 j i} X_{2 j i} \beta_{3}+W_{j} .
$$

A Simulation Study with Binary Exposure and Outcome

- Model Adjustment

Table 2: Binary outcome simulation: fitted models. Data generated as in (??)-(??). The quantities $\widehat{P S}{ }_{j i}$ and $P S_{j i}$ are the propensity scores estimated from models described in column $\operatorname{logit}\left(\delta_{j i}\right)$. The cluster-level random effects v_{j} and η_{j} are such that $v_{j} \sim \mathscr{N}\left(0, \varphi^{2}\right)$ and $\eta_{j} \sim \mathscr{N}\left(0, \phi^{2}\right)$, for $j=1, \ldots, m$.

Model	$\operatorname{logit}\left(\delta_{j i}\right)$	$\operatorname{logit}\left(\mu_{j j}\right)$
MD1	$\gamma_{0}+\gamma_{1} X_{1 j i}+\gamma_{2} X_{2 j i}$	$\beta+\beta_{z} z_{j i}+\beta_{b} \widetilde{P S} S_{j i}$
MD2	$\gamma_{0}+\gamma_{1} X_{1 j i}+\gamma_{2} X_{2 j i}+v_{j}$	$\beta+\beta_{z} Z_{j i}+\beta_{b} \widetilde{P S}$
MD3	$\gamma_{0}+\gamma_{1} X_{1 j i}+\gamma_{2} X_{2 j i}$	$\beta+\beta_{z} z_{j i}+\beta_{b} \widetilde{P S}$
MD4 $+\eta_{j}$		
MD4	$\gamma_{0}+\gamma_{1} X_{1 j i}+\gamma_{2} X_{2 j i}+v_{j}$	$\beta+\beta_{z} z_{j i}+\beta_{b} \widetilde{P S} j i+\eta_{j}$

A Simulation Study with Binary Exposure and Outcome

Figure 3: Boxplots of the weighted SMD of X_{1} (Panel A) and X_{2} (Panel B) under propensity scores estimated from models PS1: logit $\left(\delta_{j i}\right)=\gamma_{0}+\gamma_{1} X_{1 j i}+\gamma_{2} X_{2 j i}$ and PS2 $: \operatorname{logit}\left(\delta_{j i}\right)=\gamma_{0}+\gamma_{1} X_{1 j i}+\gamma_{2} X_{2 j i}+v_{j}$, over 1000 Monte Carlo data replicates.

A Simulation Study with Binary Exposure and Outcome

TB Data Analysis

- $Z_{i j}$ denotes a binary exposure that indicates if individual i in the j th city received the DOT
- $Y_{i j}$ denotes the outcome of interest that indicates if individual i in the j th city had a diagnosis of cure at the end of the treatment
- Let $\mathbf{X}_{i j}=\left(X_{1 i j}, \cdots, X_{p i j}\right)$ be a p-dimensional vector of predictors for individual i in the j th city. The vector $\mathbf{X}_{i j}$ comprises both, individual and cluster characteristics

TB Data Analysis

\Rightarrow Individual-level characteristics: indicator variables for diagnosis of Acquired Immunodeficiency Syndrome (AIDS), diagnosis of diabetes, reporting (illicit) drug use, diagnosis of alcoholism, being homeless, gender, whether currently a prisoner, diagnosis of a mental illness, and current smoking status. Additionally, type of TB, and age (in years) are available.
\Rightarrow At the cluster-level, only the Human Development Index (HDI) is available.

TB Data analysis: Exposure model specification

We assume $Z_{j i} \mid \delta_{j i} \sim \operatorname{Bernoulli}\left(\delta_{j i}\right)$, with

$$
\operatorname{logit}\left(\delta_{j i}\right)=\log \left(\frac{\delta_{j i}}{1-\delta_{j i}}\right)=\sum_{k=1}^{q} \gamma_{k} X_{k j i}+v_{j}
$$

- PS1: $v_{j}=0$, for all j;
- PS2: $v_{j} \sim \mathscr{N}\left(0, \varphi^{2}\right)$, for all j; and
- PS3: $v \sim \mathscr{N}\left(\mathbf{0}, \varphi^{2} \mathbf{R}(\lambda)\right)$, where $R_{i j}=\operatorname{Corr}\left(v_{i}, v_{j}\right)=\exp \left(-\lambda\left\|\mathbf{s}_{i}-\mathbf{s}_{j}\right\|\right)$, with \mathbf{s}_{j} denoting the centroid of city j (a two-dimensional vector of coordinates) and $\| \cdot| |$ denoting the Euclidean distance.

TB Data analysis: Exposure

Table 3: Exposure model comparison.

	elpd (WAIC)	pWAIC	WAIC	elpd (LOO)	pLOO	LOO
PS1	-8136.17	14.10	16272.35	-8136.23	14.16	16272.45
PS2	-6884.15	242.63	13768.30	-6893.51	251.99	13787.02
PS3	-6877.74	235.82	$\mathbf{1 3 7 5 5 . 4 9}$	-6885.21	243.28	$\mathbf{1 3 7 7 0 . 4 2}$

TB Data analysis：Exposure

Figure 5：Standardized mean difference（SMD）for the observed baseline covariates between treated and control subjects．

TB Data analysis: Outcome model specification

Model	Outcome Model	Distribution of the random effect
M1	$\operatorname{logit}\left\{\mu_{i j}\right\}=\beta+Z_{i j} \beta_{Z}$	-
M2	$\operatorname{logit}\left\{\mu_{i j}\right\}=\beta+Z_{i j} \beta_{Z}+\eta_{j}$	$\eta \mid \phi \sim \mathscr{N}\left(\mathbf{0}, \phi^{2} \mathbf{I}_{N}\right)$
M3	$\operatorname{logit}\left\{\mu_{i j}\right\}=\beta+Z_{i j} \beta_{Z}+\eta_{j}$	$\eta \mid \phi, \lambda_{y} \sim \mathscr{N}\left(\mathbf{0}, \phi^{2} \mathbf{R}\left(\lambda_{y}\right)\right)$
M4	$\operatorname{logit}\left\{\mu_{i j}\right\}=\beta+Z_{i j} \beta_{Z}+\mathbf{X}_{i j}^{T} \beta_{X}$	-
M5	$\operatorname{logit}\left\{\mu_{i j}\right\}=\beta+Z_{i j} \beta_{Z}+\mathbf{X}_{i i}^{T} \beta_{X}+\eta_{j}$	$\eta \mid \phi \sim \mathscr{N}\left(\mathbf{0}, \phi^{2} \mathbf{I}_{N}\right)$
M6	$\operatorname{logit}\left\{\mu_{i j}\right\}=\beta+Z_{i j} \beta_{Z}+\mathbf{X}_{i j}^{T} \beta_{X}+\eta_{j}$	$\eta \mid \phi, \lambda_{y} \sim \mathscr{N}\left(\mathbf{0}, \phi^{2} \mathbf{R}\left(\lambda_{y}\right)\right)$
M7	$\operatorname{logit}\left\{\mu_{i j}\right\}=\beta+Z_{i j} \beta_{Z}+P S 1_{i j} \beta_{p s}$	-
M8	$\operatorname{logit}\left\{\mu_{i j}\right\}=\beta+Z_{i j} \beta_{Z}+P S 1_{i j} \beta_{p s}+\eta_{j}$	$\eta \mid \phi \sim \mathscr{N}\left(\mathbf{0}, \phi^{2} \mathbf{I}_{N}\right)$
M9	$\operatorname{logit}\left\{\mu_{i j}\right\}=\beta+Z_{i j} \beta_{Z}+P S 1_{i j} \beta_{p s}+\eta_{j}$	$\eta \mid \phi, \lambda_{y} \sim \mathscr{N}\left(\mathbf{0}, \phi^{2} \mathbf{R}\left(\lambda_{y}\right)\right)$
M10	$\operatorname{logit}\left\{\mu_{i j}\right\}=\beta+Z_{i j} \beta_{Z}+P S 2_{i j} \beta_{p s}$	-
M11	$\operatorname{logit}\left\{\mu_{i j}\right\}=\beta+Z_{i j} \beta_{Z}+P S 2_{i j} \beta_{p s}+\eta_{j}$	$\eta \mid \phi \sim \mathscr{N}\left(\mathbf{0}, \phi^{2} \mathbf{I}_{N}\right)$
M12	$\operatorname{logit}\left\{\mu_{i j}\right\}=\beta+Z_{i j} \beta_{z}+P S 2_{i j} \beta_{p s}+\eta_{j}$	$\eta \mid \phi, \lambda_{y} \sim \mathscr{N}\left(\mathbf{0}, \phi^{2} \mathbf{R}\left(\lambda_{y}\right)\right)$
M13	$\operatorname{logit}\left\{\mu_{i j}\right\}=\beta+Z_{i j} \beta_{Z}+P S 3_{i j} \beta_{p s}$	-
M14	$\operatorname{logit}\left\{\mu_{i j}\right\}=\beta+Z_{i j} \beta_{Z}+P S 3_{i j} \beta_{p s}+\eta_{j}$	$\eta \mid \phi \sim \mathscr{N}\left(\mathbf{0}, \phi^{2} \mathbf{I}_{N}\right)$
M15	$\operatorname{logit}\left\{\mu_{i j}\right\}=\beta+Z_{i j} \beta_{z}+P S 3_{i j} \beta_{p s}+\eta_{j}$	$\eta \mid \phi, \lambda_{y} \sim \mathscr{N}\left(\mathbf{0}, \phi^{2} \mathbf{R}\left(\lambda_{y}\right)\right)$

TB Data analysis: Outcome

Table 4: Outcome model comparison.

	elpd (WAIC)	pWAIC	WAIC	elpd (LOO)	pLOO	LOO
M1	-3788.84	1.99	7577.67	-3788.84	2.00	7577.69
M2	-3622.66	120.45	7245.32	-3623.69	121.48	7247.38
M3	-3622.60	116.19	7245.20	-3623.55	117.15	7247.10
M4	-3538.21	15.07	7076.42	-3538.27	15.13	7076.54
M5	-3435.76	115.90	$\mathbf{6 8 7 1 . 5 2}$	-3436.61	116.74	$\mathbf{6 8 7 3 . 2 1}$
M6	-3436.19	111.72	6872.37	-3436.94	112.47	6873.88
M7	-3649.03	2.88	7298.06	-3649.04	2.89	7298.07
M8	-3535.18	104.18	7070.36	-3535.90	104.90	7071.81
M9	-3535.41	101.62	7070.82	-3536.10	102.31	7072.19
M10	-3734.95	2.90	7469.90	-3734.96	2.91	7469.92
M11	-3612.22	138.22	7224.45	-3613.87	139.87	7227.74
M12	-3613.57	131.75	7227.15	-3615.02	133.20	7230.05
M13	-3735.10	2.99	7470.21	-3735.11	3.00	7470.23
M14	-3613.55	137.26	7227.09	-3615.14	138.86	7230.28
M15	-3614.23	131.34	7228.47	-3615.66	132.77	7231.32

Figure 6: Posterior distributions of the ATE (Panel A) and Odds Ratio (Panel B) of the models above.

Discussion

- We investigate the inclusion of a random effect in the propensity score and outcome models for multilevel models
- (Non-collapsibility \times Causal Inference) and Spatial Confounding
- Should we advocate for the inclusion of a random effect in the propensity score model? and what about the outcome model?
\Rightarrow If we have strong indication of potential for unmeasured confounders, and balancing diagnostics for observed confounders are not penalized, the answer might be yes for both

Áreas de Interesse

- Bayesian theory: semi- and non-parametric methods
- Spatial statistics
- Spatio-temporal analysis
- Causal inference

-

