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Basics of Causal Inference

» Let Y be an outcome of interest, Z be a binary exposure, and X be a
set of covariates

» A dataset is a single realization of the joint process that generates
the triple (Y, Z,X)

» Associational Inference = Relationships among observed quantities

» Causal Inference = Manipulation of the mechanism that generates
the data regarding answering a causal question



Basics of Causal Inference

» What if we intervene by changing an individual exposure status?
how much would the outcome change?

» What if we intervene by changing an individual medication? how
much would the outcome change?

= When answering causal questions via observed data we aim to
create a “bridge” between the observed setting and some
hypothetical (or experimental) setting



Basics of Causal Inference

> Let Y(z) be the outcome that would be observed if we intervene to
set Z =z at a particular unit

» A causal effect is a contrast between Y(0) and Y(1) (or E(Y(0)) and
E(Y(1))

» A first step when investigating a causal question is to specify
conditions necessary to answer it
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Basics of Causal Inference

> Let Y(z) be the outcome that would be observed if we intervene to
set Z =z at a particular unit

» A causal effect is a contrast between Y(0) and Y(1) (or E(Y(0)) and
E(Y(1))

» A first step when investigating a causal question is to specify
conditions necessary to answer it

- Why should we care about that? See Simpson’s paradox!



Basics of Causal Inference

» Causal Effect of interest: Average Treatment Effect (ATE)

= E(Y(1)) - E(Y(0))
- / yf£1 (y)dy— / Ve, (y)dy

fo(y)dy — /yg‘)(y) (y)dy

fey (¥) feo (V)
> |f f(;(y) and o) are equal to one, then 7 can be computed based on

fo (randomized experiments)




Basics of Causal Inference

» We focus on the problem of confounding, which is a phenomenon
that occurs when, in the data generating process, covariates affect
both simultaneously, outcome and exposure of interest

» Under no unmeasured confounding (and other mild assumptions), it
can be shown that

T=E(Y(1)) - E(Y(0)) = E(Y|Z=1,e(X)) - E(Y|Z =0,e(X)),
where e(X) = P(Z = 1|X) is the (correct) propensity score
» While relaxing the no unmeasured confounding assumption, we

investigate the need to include random effects in propensity score
and outcome regressions to account for unmeasured confounding



Motivation: Tuberculosis dataset

» Cases of Tuberculosis in the state of Sao Paulo, Brazil in 2016

= Infectious disease caused by the Mycobacterium tuberculosis
bacteria

= In Brazil, the treatment against Tuberculosis is given by the public
health system and lasts for at least six months

» One of the main challenges with the treatment of Tuberculosis is the
drug resistance acquired by patients, which is usually due to
mismanagement of medications



Basics of Causal Inference: Simpson’s paradox

» In the early 1990s, in order to reduce the odds of treatment failure,
the World Health Organization (WHO) introduced the directly
observed therapy (DOT)

= A health professional must watch the ingestion of medications during
the entire treatment process

» Multilevel structured observations: individual into municipalities



Proposed method

» Binary treatment, Zj, such that Z;|5;; ~ Bernoulli( ;) with

|Oglt(5ji) =log <1 oy ) Z ’}/ka/, +Vj, (1)
Ji k=

» Binary outcome, such that Yj;|Z; ~ Bernoulli(;) with

logit(u;i) = Bo + BzZji + Bji + ;. (2)
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Proposed method

» Literature Review: Proposed methods for modeling (1) and (2)

1. Joint likelihood = Incorrect inference because of a feedback of the outcome
into the propensity score model

2. Cutting Feedback = Incorrect inference because of a measurement error-like
problem on the outcome model

3. Two-step = Provide correct inference and has a fully Bayesian argument

» We follow the two-step procedure and discuss the need to include
random effects in propensity score and outcome models to account
for unmeasured confounders



Simulation Studies

» Two settings:

1. We consider both Z and Y to be normally distributed yielding a scenario in
which bias calculations are analytically tractable

2. We consider both Z and Y to be binary as this is commonly found in
epidemiological studies and is representative of our motivating example
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Figure 1: DAG of the data generation mechanism for the simulation studies.



An Analytically Tractable Example: The Linear Case

» Data Generating Mechanism

— Let Xj; be an individual-level covariate generated from a standard
normal distribution for j=1,...,mand i=1,...,n;, and assume that

Zi = og+oxXj+ Ti+¢gj, g~ A (0,p?) (3)
Yi = BzZi+BxXi+ W+ g, g~ A (0,x7), (4)

— LetT=(Ty,...,Tm)" and W = (Wj,..., Wp) " be two cluster-level
covariates whose joint distribution is given by

T ~ N .uT1m 672—|m pT,WGTGWIm

w uwlm )’ : Gsvlm ’
where pr1 v is the correlation between T and W. The quantities p in
(3), xin (4), and o1 and oy in (13) are assumed to be known.



An Analytically Tractable Example: The Linear Case

» Model Adjustment

— Exposure model: For Z;'s generated according to Equation (3), the
following model was fitted

Zj,' =0+ OC)(X/',' + Vi + &,

— Outcome Model: for Yj; generated according to Equation (4), the
following model was fitted

Yii= Bo+ BzZji+ Bji +nj + €,

where Bj; indicates how the adjustment for confounding is
implemented in the model.



An Analytically Tractable Example: The Linear Case

Table 1: Continuous outcome simulation: fitted models. Data generated as in (3)-(4).
The quantities BS and BS are the balancing scores estimated from models described

in column E(Z|X). The cluster-level random effects v and n are such that
v~ 4 (0,62lyn) and N ~ 4 (0,631m).

Model EZX) E(Y|ZX)

MDA ool + axX /301N+BZZ+[3bBS
MD2 | o1+ oxX+Av Boly+BzZ+ BpBS
MD3 | ap1+ axX Boln -+ B7zZ+ BBS -+ An
MD4 | a1+ axX+Av  Boly+BzZ+ B,BS+An




An Analytically Tractable Example: The Linear Case

Focusing on model MD2, it can be shown that

Bias(ﬁz) _ |:(HTH)_1 HT (ﬁXX+pT7WGT0-WAATZE|1)((Z - (aO + .uT)1 N — OCXX)):| @) )

where H = [Z | BNS] and [, indicates the second element of the
vector, and Yzjx = Var(Z|X).

[=] =P = = = DA 1p/21



An Analytically Tractable Example: The Linear Case
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Figure 2: Absolute bias of ﬁz under the models described in Table 1. These results are
averaged over 1000 Monte Carlo replicates.




A Simulation Study with Binary Exposure and Outcome

» Data Generating Mechamism

— Confounders X; and X,
Scenario 1: vj ~.#/(0,0.12) and {; ~ .#/(0,0.42);
Scenario 2: vj ~ .#(0,0.25%) and ¢; ~ .#(0,1).

— Exposure Zj|§;; ~ Bernoulli( ;i)
logit((Sj,-) = 0p +X1j,'061 +X2j/062 + Tj
— Outcome Yj;|w;; ~ Bernoulli( ;)

logit(u;i) = Bo + XqiB1 + Xoji2 + X1iXojiBs + Wi.



A Simulation Study with Binary Exposure and Outcome

» Model Adjustment

Table 2: Binary outcome simulation: fitted models. Data generated as in (??)-(??). The
quantities .E’.\Sj,- and .E’TS,-,- are the propensity scores estimated from models described in

column logit(8;). The cluster-level random effects v; and 7; are such that v; ~ .4 (0, ¢?)
and nj ~ #(0,¢2),forj=1,...,m.

Model logit(éj,-) IOgit([.ij)

MD1 | Yo+ nXiji+ 12 Xoi B+ BzZji+ BoPS;ji
MD2 | vo+nXiji+rXei+V, B+BzZi+BuPS;
MD3 | v+ 1 Xiji+ 12 Xoji B+ BzZji+ BoPSji + nj
MD4 | o +nXiit+rXe+Vv, B+BzZi+BuPS;+n;




A Simulation Study with Binary Exposure and Outcome
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Figure 3: Boxplots of the weighted SMD of X; (Panel A) and X> (Panel B) under
propensity scores estimated from models PS1 : logit(d;;) = yo + 11 X4ji + Y2 Xji and
PS2 : logit(§;) = % + 1 X1ji + Y2 X2ji + v;, over 1000 Monte Carlo data replicates.
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A Simulation Study with Binary Exposure and Outcome
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TB Data Analysis

» Zj denotes a binary exposure that indicates if individual / in the jth
city received the DOT

> Y denotes the outcome of interest that indicates if individual / in the
Jjth city had a diagnosis of cure at the end of the treatment

> Let Xj; = (Xij, -, Xpjj) be a p-dimensional vector of predictors for
individual 7 in the jth city. The vector X;; comprises both, individual
and cluster characteristics



TB Data Analysis

= Individual-level characteristics: indicator variables for diagnosis of
Acquired Immunodeficiency Syndrome (AIDS), diagnosis of
diabetes, reporting (illicit) drug use, diagnosis of alcoholism, being
homeless, gender, whether currently a prisoner, diagnosis of a
mental illness, and current smoking status. Additionally, type of TB,
and age (in years) are available.

= At the cluster-level, only the Human Development Index (HDI) is
available.



TB Data analysis: Exposure model specification

We assume Z;|§;; ~ Bernoulli(J;;), with

6..
logit(&;) = log <1 e ) Z Vi Xkji + Vi,
ji

» PS1:v; =0, for all j;
> PS2: v; ~ .#(0,9?), for all j; and
> PS3: v~ .#(0,92R(1)), where Rj = Corr(v;,v;) = exp (—A||s; — sj||),

with s; denoting the centroid of city j (a two-dimensional vector of
coordinates) and || - || denoting the Euclidean distance.



TB Data analysis: Exposure

Table 3: Exposure model comparison.

elpd (WAIC) pWAIC  WAIC | elpd (LOO) pLOO  LOO
PS1| -8136.17 14.10 16272.35| -8136.23 14.16 16272.45
PS2 | -6884.15 242.63 13768.30 | -6893.51 251.99 13787.02
PS3 | -6877.74 235.82 13755.49 | -6885.21 243.28 13770.42




TB Data analysis: Exposure
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Figure 5: Standardized mean difference (SMD) for the observed baseline covariates
between treated and control subjects.
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TB Data analysis: Outcome model specification

Model

QOutcome Model

Distribution of the random effect

M1
M2
M3
M4
M5
Mé
M7
M8
M9
M10
M11
M12
M13
M14
M15

logit{u;} = B+ ZjBz

logit{pj} = B+ Zifz +n;

logit{pj} = B+ Zifz +n;

logit{u;j} = B+ ZjBz + X[ Bx
logit{u;} = B+ ZjBz + X Bx +nj
logit{pj} = B+ ZjBz + X Bx +1j
logit{p;} = B+ ZjBz + PS1iBps
logit{u;} = B+ Z;jBz + PS1;Bps +1;
logit{u;} = B+ ZjBz + PS1;Bps + 1
logit{p;} = B+ ZjBz + PS2iBps
logit{u;} = B+ ZjBz + PS2;Bps + 1n;
logit{u;} = B+ Z;jBz + PS2;iBps +
logit{p;} = B+ ZjBz + PS3iBps
logit{pj} = B+ ZjBz + PS3iBps + n;
logit{u;} = B+ Z;jBz + PS3;Bps + 1

nl¢ ~ -4 (0,6%ly)
TW)’}W ~ JV(07¢2R()'}’))

nl¢ ~ A (0,¢%ly)
Tﬂ‘P»ky ~ JV(0,¢2R()~y))

nl¢ ~ A (0,¢%ly)
n‘¢>)~y ~ JV(O,(PZR()L}/))

nl¢ ~ A (0,¢%ly)
n‘¢>)~y ~ JV(O,(PZR()[,y))

nl¢ ~ A (0,¢%ly)
ﬂ“P,Ay ~ r/V(ov(PZR()t'y))




TB Data analysis: Outcome

Table 4: Outcome model comparison.

elpd (WAIC) pWAIC WAIC elpd (LOO)  pLOO LOO
M1 -3788.84 1.99 7577.67 -3788.84 2.00 7577.69
M2 -3622.66  120.45 724532 -3623.69 121.48  7247.38
M3 -3622.60 116.19  7245.20 362355 117.15  7247.10
M4 -3538.21 15.07 7076.42 353827  15.13 7076.54
M5 343576 11590 6871.52 | -343661 11674 6873.21
M6 -3436.19  111.72  6872.37 -3436.94 112.47  6873.88
M7 -3649.03 2.88 7298.06 -3649.04 2.89 7298.07
M8 -3535.18  104.18  7070.36 -3535.90 104.90  7071.81
M9 -3535.41  101.62  7070.82 -3536.10  102.31  7072.19
M10 | -3734.95 2.90 7469.90 -3734.96 2.91 7469.92
M11 | -3612.22 13822  7224.45 -3613.87 139.87  7227.74
Mi2 | -3613.57  131.75  7227.15 -3615.02  133.20  7230.05
M13 | -3735.10 2.99 7470.21 -3735.11 3.00 7470.23
Mi14 | -3613.55  137.26  7227.09 -3615.14  138.86  7230.28
M15 | -3614.23  131.34  7228.47 -3615.66  132.77  7231.32
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Figure 6: Posterior distributions of the ATE (Panel A) and Odds Ratio (Panel B) of the
models above.



Discussion

» We investigate the inclusion of a random effect in the propensity
score and outcome models for multilevel models

» (Non-collapsibility x Causal Inference) and Spatial Confounding

» Should we advocate for the inclusion of a random effect in the
propensity score model? and what about the outcome model?

= If we have strong indication of potential for unmeasured
confounders, and balancing diagnostics for observed confounders
are not penalized, the answer might be yes for both



Muito Obrigado!!!



Areas de Interesse

» Bayesian theory: semi- and non-parametric methods
» Spatial statistics
» Spatio-temporal analysis

» Causal inference
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