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Basics of Causal Inference

▶ Let Y be an outcome of interest, Z be a binary exposure, and X be a
set of covariates

▶ A dataset is a single realization of the joint process that generates
the triple (Y ,Z ,X)

▶ Associational Inference ⇒ Relationships among observed quantities

▶ Causal Inference ⇒ Manipulation of the mechanism that generates
the data regarding answering a causal question
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Basics of Causal Inference

▶ What if we intervene by changing an individual exposure status?
how much would the outcome change?

▶ What if we intervene by changing an individual medication? how
much would the outcome change?

⇒ When answering causal questions via observed data we aim to
create a “bridge” between the observed setting and some
hypothetical (or experimental) setting
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Basics of Causal Inference

▶ Let Y (z) be the outcome that would be observed if we intervene to
set Z = z at a particular unit

▶ A causal effect is a contrast between Y (0) and Y (1) (or E(Y (0)) and
E(Y (1)))

▶ A first step when investigating a causal question is to specify
conditions necessary to answer it

- Why should we care about that? See Simpson’s paradox!
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Basics of Causal Inference

▶ Causal Effect of interest: Average Treatment Effect (ATE)

τ = E(Y (1))−E(Y (0))

=
∫

yfε1(y)dy −
∫

yfε0(y)dy

=
∫

y
fε1(y)
fO(y)

fO(y)dy −
∫

y
fε0(y)
fO(y)

fO(y)dy

▶ If
fε1(y)
fO(y) and

fε0(y)
fO(y) are equal to one, then τ can be computed based on

fO (randomized experiments)
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Basics of Causal Inference

▶ We focus on the problem of confounding, which is a phenomenon
that occurs when, in the data generating process, covariates affect
both simultaneously, outcome and exposure of interest

▶ Under no unmeasured confounding (and other mild assumptions), it
can be shown that

τ = E(Y (1))−E(Y (0)) = E(Y |Z = 1,e(X ))−E(Y |Z = 0,e(X )),

where e(X ) = P(Z = 1|X ) is the (correct) propensity score

▶ While relaxing the no unmeasured confounding assumption, we
investigate the need to include random effects in propensity score
and outcome regressions to account for unmeasured confounding
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Motivation: Tuberculosis dataset

▶ Cases of Tuberculosis in the state of São Paulo, Brazil in 2016

⇒ Infectious disease caused by the Mycobacterium tuberculosis
bacteria

⇒ In Brazil, the treatment against Tuberculosis is given by the public
health system and lasts for at least six months

▶ One of the main challenges with the treatment of Tuberculosis is the
drug resistance acquired by patients, which is usually due to
mismanagement of medications

8/31



Basics of Causal Inference: Simpson’s paradox

▶ In the early 1990s, in order to reduce the odds of treatment failure,
the World Health Organization (WHO) introduced the directly
observed therapy (DOT)

⇒ A health professional must watch the ingestion of medications during
the entire treatment process

▶ Multilevel structured observations: individual into municipalities
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Proposed method

▶ Binary treatment, Zji , such that Zji |δji ∼ Bernoulli(δji) with

logit(δji) = log

(
δji

1−δji

)
=

q

∑
k=1

γkXkji +νj , (1)

▶ Binary outcome, such that Yji |Zji ∼ Bernoulli(µji) with

logit(µji) = β0 +βZ Zji +Bji +ηj . (2)
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Proposed method

▶ Literature Review: Proposed methods for modeling (1) and (2)

1. Joint likelihood ⇒ Incorrect inference because of a feedback of the outcome
into the propensity score model

2. Cutting Feedback ⇒ Incorrect inference because of a measurement error-like
problem on the outcome model

3. Two-step ⇒ Provide correct inference and has a fully Bayesian argument

▶ We follow the two-step procedure and discuss the need to include
random effects in propensity score and outcome models to account
for unmeasured confounders
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Simulation Studies
▶ Two settings:

1. We consider both Z and Y to be normally distributed yielding a scenario in
which bias calculations are analytically tractable

2. We consider both Z and Y to be binary as this is commonly found in
epidemiological studies and is representative of our motivating example

Z

Y

U

T

W

X

Figure 1: DAG of the data generation mechanism for the simulation studies.
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An Analytically Tractable Example: The Linear Case
▶ Data Generating Mechanism
– Let Xji be an individual-level covariate generated from a standard

normal distribution for j = 1, . . . ,m and i = 1, . . . ,nj , and assume that

Zji = α0 +αX Xji +Tj + εji , εji ∼ N (0,ρ2) (3)

Yji = βZ Zji +βX Xji +Wj + εji , εji ∼ N (0,κ2), (4)

– Let T = (T1, . . . ,Tm)
⊤ and W = (W1, . . . ,Wm)

⊤ be two cluster-level
covariates whose joint distribution is given by(

T
W

)
∼ N

[(
µT 1m
µW 1m

)
,

(
σ2

T Im ρT ,W σT σW Im
· σ2

W Im

)]
,

where ρT ,W is the correlation between T and W. The quantities ρ in
(3), κ in (4), and σT and σW in (13) are assumed to be known.
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An Analytically Tractable Example: The Linear Case

▶ Model Adjustment
– Exposure model: For Zji ’s generated according to Equation (3), the

following model was fitted

Zji = α0 +αX Xji +νj + εji ,

– Outcome Model: for Yji generated according to Equation (4), the
following model was fitted

Yji = β0 +βZ Zji +Bji +ηj + εji ,

where Bji indicates how the adjustment for confounding is
implemented in the model.
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An Analytically Tractable Example: The Linear Case

Table 1: Continuous outcome simulation: fitted models. Data generated as in (3)-(4).
The quantities B̂S and B̃S are the balancing scores estimated from models described
in column E(Z|X). The cluster-level random effects ννν and ηηη are such that
ννν ∼ N (0,σ2

T Im) and ηηη ∼ N (0,σ2
W Im).

Model E(Z|X) E(Y|Z,X)
MD1 α01+αX X β01N +βZ Z+βbB̂S
MD2 α01+αX X+Aννν β01N +βZ Z+βbB̃S
MD3 α01+αX X β01N +βZ Z+βbB̂S+Aηηη

MD4 α01+αX X+Aννν β01N +βZ Z+βbB̃S+Aηηη
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An Analytically Tractable Example: The Linear Case

Focusing on model MD2, it can be shown that

Bias(β̂Z ) =
[
(H⊤H)−1H⊤

(
βX X+ρT ,W σT σW AA⊤Σ−1

Z|X(Z− (α0 +µT )1N −αX X)
)]

(2)
,

where H =
[
Z | B̃S

]
and [·](2) indicates the second element of the

vector, and ΣZ|X = Var(Z|X).
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An Analytically Tractable Example: The Linear Case
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Figure 2: Absolute bias of β̂Z under the models described in Table 1. These results are
averaged over 1000 Monte Carlo replicates.

17/31



A Simulation Study with Binary Exposure and Outcome

▶ Data Generating Mechamism

– Confounders X1 and X2

Scenario 1: υji ∼ N (0,0.12) and ζj ∼ N (0,0.42);

Scenario 2: υji ∼ N (0,0.252) and ζj ∼ N (0,1).

– Exposure Zji |δji ∼ Bernoulli(δji)

logit(δji) = α0 +X1jiα1 +X2jiα2 +Tj .

– Outcome Yji |µji ∼ Bernoulli(µji)

logit(µji) = β0 +X1jiβ1 +X2jiβ2 +X1jiX2jiβ3 +Wj .
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A Simulation Study with Binary Exposure and Outcome

▶ Model Adjustment

Table 2: Binary outcome simulation: fitted models. Data generated as in (??)-(??). The
quantities P̂Sji and P̃Sji are the propensity scores estimated from models described in
column logit(δji). The cluster-level random effects νj and ηj are such that νj ∼ N (0,ϕ2)

and ηj ∼ N (0,φ2), for j = 1, . . . ,m.

Model logit(δji) logit(µji)

MD1 γ0 + γ1X1ji + γ2X2ji β +βZ Zji +βbP̂Sji

MD2 γ0 + γ1X1ji + γ2X2ji +νj β +βZ Zji +βbP̃Sji

MD3 γ0 + γ1X1ji + γ2X2ji β +βZ Zji +βbP̂Sji +ηj

MD4 γ0 + γ1X1ji + γ2X2ji +νj β +βZ Zji +βbP̃Sji +ηj
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A Simulation Study with Binary Exposure and Outcome

Case: Corr(T,W) = 0 Case: Corr(T,W) = 0.5 Case: T=W
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Figure 3: Boxplots of the weighted SMD of X1 (Panel A) and X2 (Panel B) under
propensity scores estimated from models PS1 : logit(δji) = γ0 + γ1X1ji + γ2X2ji and
PS2 : logit(δji) = γ0 + γ1X1ji + γ2X2ji +νj , over 1000 Monte Carlo data replicates.
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A Simulation Study with Binary Exposure and Outcome

Case: Corr(T,W) = 0 Case: Corr(T,W) = 0.5 Case: T=W
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Figure 4: Boxplots of the absolute bias (Panel A) and RMSE (Panel B) of the ATE for
the models described in Table 2 over 1000 Monte Carlo replicates assuming binary
exposure and outcome. The columns correspond to variations in the correlation
between T and W ; rows correspond to the two scenarios of X distributions in the true
data generation mechanism. In the data generation model, Xkji = υji +ζj , for k = 1,2.
The labels ‘X Scenario: 1’ and ‘X Scenario: 2’ assume that υji ∼ N (0,0.12) and
ζj ∼ N (0,0.42) and υji ∼ N (0,0.252) and ζj ∼ N (0,1), respectively.
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TB Data Analysis

▶ Zij denotes a binary exposure that indicates if individual i in the j th
city received the DOT

▶ Yij denotes the outcome of interest that indicates if individual i in the
j th city had a diagnosis of cure at the end of the treatment

▶ Let Xij = (X1ij , · · · ,Xpij) be a p-dimensional vector of predictors for
individual i in the j th city. The vector Xij comprises both, individual
and cluster characteristics
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TB Data Analysis

⇒ Individual-level characteristics: indicator variables for diagnosis of
Acquired Immunodeficiency Syndrome (AIDS), diagnosis of
diabetes, reporting (illicit) drug use, diagnosis of alcoholism, being
homeless, gender, whether currently a prisoner, diagnosis of a
mental illness, and current smoking status. Additionally, type of TB,
and age (in years) are available.

⇒ At the cluster-level, only the Human Development Index (HDI) is
available.
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TB Data analysis: Exposure model specification

We assume Zji |δji ∼ Bernoulli(δji), with

logit(δji) = log

(
δji

1−δji

)
=

q

∑
k=1

γkXkji +νj ,

▶ PS1: νj = 0, for all j ;

▶ PS2: νj ∼ N (0,ϕ2), for all j ; and

▶ PS3: ν ∼ N (0,ϕ2R(λ )), where Rij = Corr(νi ,νj) = exp
(
−λ ||si −sj ||

)
,

with sj denoting the centroid of city j (a two-dimensional vector of
coordinates) and || · || denoting the Euclidean distance.
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TB Data analysis: Exposure

Table 3: Exposure model comparison.

elpd (WAIC) pWAIC WAIC elpd (LOO) pLOO LOO
PS1 -8136.17 14.10 16272.35 -8136.23 14.16 16272.45
PS2 -6884.15 242.63 13768.30 -6893.51 251.99 13787.02
PS3 -6877.74 235.82 13755.49 -6885.21 243.28 13770.42
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TB Data analysis: Exposure
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Figure 5: Standardized mean difference (SMD) for the observed baseline covariates
between treated and control subjects.
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TB Data analysis: Outcome model specification

Model Outcome Model Distribution of the random effect
M1 logit{µij}= β +Zij βZ −
M2 logit{µij}= β +Zij βZ +ηj η |φ ∼ N (0,φ2IN)
M3 logit{µij}= β +Zij βZ +ηj η |φ ,λy ∼ N (0,φ2R(λy ))

M4 logit{µij}= β +Zij βZ +XT
ij βX −

M5 logit{µij}= β +Zij βZ +XT
ij βX +ηj η |φ ∼ N (0,φ2IN)

M6 logit{µij}= β +Zij βZ +XT
ij βX +ηj η |φ ,λy ∼ N (0,φ2R(λy ))

M7 logit{µij}= β +Zij βZ +PS1ij βps −
M8 logit{µij}= β +Zij βZ +PS1ij βps +ηj η |φ ∼ N (0,φ2IN)
M9 logit{µij}= β +Zij βZ +PS1ij βps +ηj η |φ ,λy ∼ N (0,φ2R(λy ))

M10 logit{µij}= β +Zij βZ +PS2ij βps −
M11 logit{µij}= β +Zij βZ +PS2ij βps +ηj η |φ ∼ N (0,φ2IN)
M12 logit{µij}= β +Zij βZ +PS2ij βps +ηj η |φ ,λy ∼ N (0,φ2R(λy ))

M13 logit{µij}= β +Zij βZ +PS3ij βps −
M14 logit{µij}= β +Zij βZ +PS3ij βps +ηj η |φ ∼ N (0,φ2IN)
M15 logit{µij}= β +Zij βZ +PS3ij βps +ηj η |φ ,λy ∼ N (0,φ2R(λy ))
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TB Data analysis: Outcome

Table 4: Outcome model comparison.

elpd (WAIC) pWAIC WAIC elpd (LOO) pLOO LOO
M1 -3788.84 1.99 7577.67 -3788.84 2.00 7577.69
M2 -3622.66 120.45 7245.32 -3623.69 121.48 7247.38
M3 -3622.60 116.19 7245.20 -3623.55 117.15 7247.10
M4 -3538.21 15.07 7076.42 -3538.27 15.13 7076.54
M5 -3435.76 115.90 6871.52 -3436.61 116.74 6873.21
M6 -3436.19 111.72 6872.37 -3436.94 112.47 6873.88
M7 -3649.03 2.88 7298.06 -3649.04 2.89 7298.07
M8 -3535.18 104.18 7070.36 -3535.90 104.90 7071.81
M9 -3535.41 101.62 7070.82 -3536.10 102.31 7072.19
M10 -3734.95 2.90 7469.90 -3734.96 2.91 7469.92
M11 -3612.22 138.22 7224.45 -3613.87 139.87 7227.74
M12 -3613.57 131.75 7227.15 -3615.02 133.20 7230.05
M13 -3735.10 2.99 7470.21 -3735.11 3.00 7470.23
M14 -3613.55 137.26 7227.09 -3615.14 138.86 7230.28
M15 -3614.23 131.34 7228.47 -3615.66 132.77 7231.32
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Figure 6: Posterior distributions of the ATE (Panel A) and Odds Ratio (Panel B) of the
models above.
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Discussion

▶ We investigate the inclusion of a random effect in the propensity
score and outcome models for multilevel models

▶ (Non-collapsibility×Causal Inference) and Spatial Confounding

▶ Should we advocate for the inclusion of a random effect in the
propensity score model? and what about the outcome model?

⇒ If we have strong indication of potential for unmeasured
confounders, and balancing diagnostics for observed confounders
are not penalized, the answer might be yes for both
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Perguntas?

Muito Obrigado!!!
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Áreas de Interesse

▶ Bayesian theory: semi- and non-parametric methods

▶ Spatial statistics

▶ Spatio-temporal analysis

▶ Causal inference
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