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The model
Consider the box Λn = {−n, . . . ,n}d , for d ,n ∈ N

1. Start with the “empty” configuration on Λn

2. Choose a not yet chosen site x ∈ Λn uniformly at random

3. If x and its closest neighbors are not occupied, then, put a
particle on x , otherwise do nothing.

4. While there are unchosen sites in x ∈ Λn , go back to 2.

One obtains a random element XΛn ∈ {0,1}Λn through

XΛn(i) = 1{i is occupied at the end of the procedure} for all i ∈ Λn

⇒ XΛn is called the jamming limit of Λn.
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Our objectives:

1. How to define a thermodynamic limit (stationary random field
Y on {0,1}Zd

) of the jamming limits?

2. Let
Nn :=

∑
i∈Λn

XΛn(i) and NY
n :=

∑
i∈Λn

Y (i)

What about the statistical properties of XΛn and Y ?:
→LLN, TCL, LIL... for Nn and NY

n
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Interesting model because:

▶ Peculiar type of dependence between the XΛn(i)’s

▶ It is not defined through conditioning (specifications of
statistical physics)

▶ Strongly non-Gibbsian (for those who know what it takes to
be Gibbsian).

▶ Irreversibility of the dynamics.
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Random sequential adsorption (RSA)
Intramolecular reaction between neighboring substituents of vinyl
polymers. Paul J. Flory (1939)

“When F is a functional group of a character such that two
neighboring F’s may undergo condensation with one
another (...) a unique and interesting circumstance arises.”

F F F F F F F F F F F F

⇓

F C C F C C C C F C C F

Let Zn = #{reacted sites at the end}
By recursion, Flory computed E(Zn)

n → 1 − e−2.
Note that

Nn−1 =
1
2

Zn
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Random sequential adsorption (RSA)

Alternative perspective:

Particles arrive at random locations, and each adsorbed particle
occupies a region of the substrate which prevents the adsorption
of any subsequently arriving particle in an overlapping surface
region.

Figure: 2-mers on the left, 2x2-mers on the right
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Parenthesis: Continuous counterparts

The Rényi car parking problem: Cars are parked uniformly at
random in [0, x ], x > 0

Rényi (1958) proved that

N[0, x ]
x

→ 0.7475979202... a.s.



Parenthesis: Continuous counterparts
Cars are parked uniformly at random in [0, x ]2, x > 0

(Brosilow et al., 1991) lim
N([0, x ]2)

x2 → 0,562009... a.s.



Other nomenclature/applications/interpretation

▶ Fatmen seating problem
▶ Unfriendly seating problem
▶ Packing problem
▶ ...

Find applications in
▶ Polymer chemistry
▶ Independent sets (graph theory)
▶ Scheduling problems in operation research
▶ Rock fragmentation
▶ ...

See the paper by Evans (1993)
“Random and Cooperative sequential adsorption”
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Some literature (most in 1d)
▶ Page (1959), Freedman and Shepp (1962), Flajolet (1998),

Pinsky (2014), ...

E(Nn)

n
=

1
2
(1 − e−2) + precise error term

Var(Nn)

n
= e−4 + precise error term

▶ Page (1959): Nn
n

P→ 1
2(1 − e−2)

▶ Penrose (2002) (any dimension): Nn
n

Lp
→ ρd and CLT.

▶ Ritchie (2006) (any dimension): Thermodynamic limit and
Nn
n

a.s.→ ρd
▶ Pinsky (2014) (very fat men): extended results of Page

(1959).
▶ Gerin (2015): didn’t know about Ritchie’s paper it seems.
▶ Chern et al (2015): “Dinner table”.
▶ And many others papers in Physics literature based on

simulations.



Much more related to our problem

Mathew D. Penrose:
▶ Limit theorems for monotonic particle systems and

sequential deposition. (2002).

He obtains CLTs for general models, but through a very long and
complicated path:

“However, since we always obtain our systems by tak-
ing the random input to come only from inside the
target region, rather than restricting a stationary ran-
dom field to the target region, general CLTs such as
that of Bolthausen (1982) are not directly applicable.”
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What Penrose means?

▶ That if Λ ⊂ Λ′, then

XΛ

D
̸= XΛ′

∣∣∣
Λ

▶ To use classical results from random field literature: needs a
stationary random fields on Zd

(Y (i))i∈Zd , Y (i) ∈ {0,1}

▶ Satisfying the rules of RSA!
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Ritchie constructed such a random field

Thomas Ritchie:
▶ Construction of the Thermodynamic Jamming Limit for the

Parking Process and Other Exclusion Schemes on Zd .
(2006).

He proved:

▶ Perfect simulation algorithm of Y on any Λ ⊂ Zd :

Y (i) = [f (U)](i) , ∀i ∈ Zd

where

U = (U(i))i∈Zd is i.i.d. Ui ∼ Unif[0,1]

f :U → {0,1}Zd
is translation equivariant.
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As a consequence of the construction, he gets:

▶ Strong law of large numbers

1
|Λn|

∑
i∈Λn

Y (i) n→∞−→ ρd , a.s.

▶ With a control of boundary effects he proved

1
|Λn|

∑
i∈Λn

XΛn(i)
n→∞−→ ρd , a.s.
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About the random field Y : asymptotic results

Theorem
For any d ≥ 1, the random field Y satisfies

(CLT)
NY

n − |Λn|ρd√
σ2|Λn|

D−→
n→∞

N(0,1)

(LIL) lim sup
n

NY − |Λn|ρd√
2σ2|Λn| log log |Λn|

= 1 a.s.

where
σ2 =

∑
i∈Zd

Cov
(
Y (0),Y (i)

)
> 0. (1)



About the random field Y : non-asymptotic result

Theorem
For any ϵ > 0,n,d ≥ 1

P
(∣∣∣NY

n − ρ|Λn|
∣∣∣ > ϵ

)
≤ e

1
e−

ϵ2
4eB|Λn| (2)

where B = B(d) is explicit.



About the sequence XΛn,n ≥ 1

Theorem
▶ For any n,d ≥ 1∣∣∣ENn − |Λn|ρd

∣∣∣ ≤
2d(2d − 1)n

(n + 1)!
+ (2d)2

n−1∑
k=0

(2d − 1)k (2(n − k) + 1)d−1

(k + 1)!
.

▶ The LIL holds for the sequence XΛn ,n ≥ 1 in d = 1.

Couldn’t get rid of the boundary effects to get the LIL in d ≥ 2...
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The base of our proofs: Ritchie’s perfect
simulation algorithm

▶ Solves the issue of Penrose
It simulates from any region Λ ⊂ Zd a sample Y (Λ) which is a
compatible projection of the whole random field (Y (i))i∈Zd .

▶ It gives all we want at once
It easily yields good mixing properties allowing to use results
from the literature.

▶ It is very elegant!
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Consider (Ui)i∈Z2 i.i.d.’s with U0 ∼ Unif[0,1] and region Λ
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First step: “the uniforms algorithm” (in Z2)

Observe that:

1. This has exactly the same distribution as the first (definition)
algorithm for finite boxes.

2. It appears clearly now why we are not sampling from the
thermodynamic limit: look at the 0,11!

3. This last observation is also the key to understanding how
the PSA should work:

The decision of whether or not a particles is put at i ∈ Z2

should not depend on the box, but exclusively on the
uniform random variables.



The perfect simulation algorithm

▶ Start from (Ui)i∈Z2 i.i.d.’s with U0 ∼ Unif[0,1]

▶ For any i , j ∈ Z2, write i→j if there exists a decreasing path of
uniforms from i to j

▶ Define the “armour” of i ∈ Z2 by

A({i}) :=
⋃

y∈Z2:i→j

{vertices on the path from i to j}

▶ The PSA for i ∈ Z2:

Just apply the “uniforms algorithm” in A({i})!!
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Let us perfectly simulate Y (Λ) for |Λ| = 1

Here is our Λ = {i}...
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Let us perfectly simulate XΛ for |Λ| = 1

... to conclude the algorithm: Y (i) = 1.



For the proofs concerning Y

▶ We can make the PSA of any finite region Λ ⊂ Zd in finite
time.

▶ A(Λ) = ∪i∈ΛA({i})

▶ Moreover |A({i})| has super-exponential tail.

▶ This gives very good α-mixing

▶ ⇒ Good mixing implies, for the random field:
▶ SLLN,
▶ CLT,
▶ Berry-Esseen,
▶ Concentration inequalities etc...



For the proofs concerning XΛn,n ≥ 1
▶ To prove that

∣∣∣ENY
n − |Λn|ρ

∣∣∣ ≤ F (d) observe that∣∣∣ENY
n − |Λn|ρ

∣∣∣
≤ E|NY

n − |Λn|ρ|

≤ E
∑
i∈Λn

1{XΛn(i) ̸= Y (i)}

=
∑
i∈Λn

P(XΛn(i) ̸= Y (i)).

▶ Proof of the LIL in 1d for XΛn ,n ≥ 1
▶ We know it holds for NY

n .
▶ We can show that

P(|Nn − N̄n| > M) ≤ 2
1

⌈M/2 + 2⌉!
.

▶ Thus |Nn − N̄n| >
√
|Λn| finitely many times.
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Thank you!
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