Limit Theorems for the simplest parking process

Sandro Gallo, UFSCar

Ongoing research:
Cooperation between FAPESP and Universidad de Antioquia (Medellin)

In colaboration with

- Alejandro Roldán (UdeA, Colombia)
- Alexander Valencia (UdeA, Colombia)
- Cristian Coletti (UFABC, Brasil)

Many thanks to Eulalia and Giulio for the oportunity to share!

Content

The problem

History and Motivation

Some new results

Idea of the proofs

The model

Consider the box $\Lambda_{n}=\{-n, \ldots, n\}^{d}$, for $d, n \in \mathbb{N}$

The model

Consider the box $\Lambda_{n}=\{-n, \ldots, n\}^{d}$, for $d, n \in \mathbb{N}$

1. Start with the "empty" configuration on Λ_{n}

The model

Consider the box $\Lambda_{n}=\{-n, \ldots, n\}^{d}$, for $d, n \in \mathbb{N}$

1. Start with the "empty" configuration on Λ_{n}
2. Choose a not yet chosen site $x \in \Lambda_{n}$ uniformly at random

The model

Consider the box $\Lambda_{n}=\{-n, \ldots, n\}^{d}$, for $d, n \in \mathbb{N}$

1. Start with the "empty" configuration on Λ_{n}
2. Choose a not yet chosen site $x \in \Lambda_{n}$ uniformly at random
3. If x and its closest neighbors are not occupied, then, put a particle on x, otherwise do nothing.

The model

Consider the box $\wedge_{n}=\{-n, \ldots, n\}^{d}$, for $d, n \in \mathbb{N}$

1. Start with the "empty" configuration on Λ_{n}
2. Choose a not yet chosen site $x \in \Lambda_{n}$ uniformly at random
3. If x and its closest neighbors are not occupied, then, put a particle on x, otherwise do nothing.
4. While there are unchosen sites in $x \in \Lambda_{n}$, go back to 2 .

The model

Consider the box $\Lambda_{n}=\{-n, \ldots, n\}^{d}$, for $d, n \in \mathbb{N}$

1. Start with the "empty" configuration on Λ_{n}
2. Choose a not yet chosen site $x \in \Lambda_{n}$ uniformly at random
3. If x and its closest neighbors are not occupied, then, put a particle on x, otherwise do nothing.
4. While there are unchosen sites in $x \in \Lambda_{n}$, go back to 2 .

One obtains a random element $X_{\Lambda_{n}} \in\{0,1\}^{\wedge_{n}}$ through
$X_{\wedge_{n}}(i)=\mathbf{1}\{i$ is occupied at the end of the procedure $\}$ for all $i \in \Lambda_{n}$

The model

Consider the box $\Lambda_{n}=\{-n, \ldots, n\}^{d}$, for $d, n \in \mathbb{N}$

1. Start with the "empty" configuration on Λ_{n}
2. Choose a not yet chosen site $x \in \Lambda_{n}$ uniformly at random
3. If x and its closest neighbors are not occupied, then, put a particle on x, otherwise do nothing.
4. While there are unchosen sites in $x \in \Lambda_{n}$, go back to 2 .

One obtains a random element $X_{\Lambda_{n}} \in\{0,1\}^{\wedge_{n}}$ through
$X_{\Lambda_{n}}(i)=\mathbf{1}\{i$ is occupied at the end of the procedure $\}$ for all $i \in \Lambda_{n}$
$\Rightarrow X_{\Lambda_{n}}$ is called the jamming limit of Λ_{n}.

Our objectives:

Our objectives:

1. How to define a thermodynamic limit (stationary random field Y on $\{0,1\}^{\mathbb{Z}^{d}}$) of the jamming limits?

Our objectives:

1. How to define a thermodynamic limit (stationary random field Y on $\{0,1\}^{\mathbb{Z}^{d}}$) of the jamming limits?
2. Let

$$
N_{n}:=\sum_{i \in \Lambda_{n}} X_{\Lambda_{n}}(i) \text { and } N_{n}^{Y}:=\sum_{i \in \Lambda_{n}} Y(i)
$$

What about the statistical properties of $X_{\Lambda_{n}}$ and Y ?:
\rightarrow LLN, TCL, LIL... for N_{n} and N_{n}^{Y}

Interesting model because:

Interesting model because:

- Peculiar type of dependence between the $X_{\Lambda_{n}}(i)$'s
- It is not defined through conditioning (specifications of statistical physics)
- Strongly non-Gibbsian (for those who know what it takes to be Gibbsian).
- Irreversibility of the dynamics.

Content

The problem

History and Motivation

Some new results

Idea of the proofs

Random sequential adsorption (RSA)

Intramolecular reaction between neighboring substituents of vinyl polymers. Paul J. Flory (1939)

Random sequential adsorption (RSA)

Intramolecular reaction between neighboring substituents of vinyl polymers. Paul J. Flory (1939)
"When F is a functional group of a character such that two neighboring F's may undergo condensation with one another (...) a unique and interesting circumstance arises."

Random sequential adsorption (RSA)

Intramolecular reaction between neighboring substituents of vinyl polymers. Paul J. Flory (1939)
"When F is a functional group of a character such that two neighboring F's may undergo condensation with one another (...) a unique and interesting circumstance arises."

$$
\begin{gathered}
\text { FFFFFFFFFFFF} \\
\Downarrow \\
\text { FCCFCCCCFCCF }
\end{gathered}
$$

Random sequential adsorption (RSA)

Intramolecular reaction between neighboring substituents of vinyl polymers. Paul J. Flory (1939)
"When F is a functional group of a character such that two neighboring F's may undergo condensation with one another (...) a unique and interesting circumstance arises."

$$
\begin{gathered}
\text { FFFFFFFFFFFF} \\
\Downarrow \\
\text { FCCFCCCCFCCF }
\end{gathered}
$$

Let $Z_{n}=\#\{$ reacted sites at the end $\}$

Random sequential adsorption (RSA)

Intramolecular reaction between neighboring substituents of vinyl polymers. Paul J. Flory (1939)
"When F is a functional group of a character such that two neighboring F's may undergo condensation with one another (...) a unique and interesting circumstance arises."

$$
\begin{gathered}
\text { FFFFFFFFFFFF} \\
\Downarrow \\
\text { FCCFCCCCFCCF }
\end{gathered}
$$

Let $Z_{n}=\#\{$ reacted sites at the end $\}$
By recursion, Flory computed $\frac{\mathbb{E}\left(Z_{n}\right)}{n} \rightarrow 1-e^{-2}$.

Random sequential adsorption (RSA)

Intramolecular reaction between neighboring substituents of vinyl polymers. Paul J. Flory (1939)
"When F is a functional group of a character such that two neighboring F's may undergo condensation with one another (...) a unique and interesting circumstance arises."

$$
\begin{gathered}
F F F F F F F F F F F F \\
\Downarrow \\
F C C F C C C C F C C F
\end{gathered}
$$

Let $Z_{n}=\#\{$ reacted sites at the end $\}$
By recursion, Flory computed $\frac{\mathbb{E}\left(Z_{n}\right)}{n} \rightarrow 1-e^{-2}$.
Note that

$$
N_{n-1}=\frac{1}{2} Z_{n}
$$

Random sequential adsorption (RSA)

Random sequential adsorption (RSA)

Alternative perspective:
Particles arrive at random locations, and each adsorbed particle occupies a region of the substrate which prevents the adsorption of any subsequently arriving particle in an overlapping surface region.

Random sequential adsorption (RSA)

Alternative perspective:
Particles arrive at random locations, and each adsorbed particle occupies a region of the substrate which prevents the adsorption of any subsequently arriving particle in an overlapping surface region.

Figure: 2-mers on the left, 2×2-mers on the right

Parenthesis: Continuous counterparts

The Rényi car parking problem: Cars are parked uniformly at random in $[0, x], x>0$

Rényi (1958) proved that

$$
\frac{N[0, x]}{x} \rightarrow 0.7475979202 \ldots \text { a.s. }
$$

Parenthesis: Continuous counterparts

Cars are parked uniformly at random in $[0, x]^{2}, x>0$

(Brosilow et al., 1991) $\lim \frac{N\left([0, x]^{2}\right)}{x^{2}} \rightarrow 0,562009 \ldots$ a.s.

Other nomenclature/applications/interpretation

- Fatmen seating problem
- Unfriendly seating problem
- Packing problem

Find applications in

- Polymer chemistry
- Independent sets (graph theory)
- Scheduling problems in operation research
- Rock fragmentation

Other nomenclature/applications/interpretation

- Fatmen seating problem
- Unfriendly seating problem
- Packing problem

Find applications in

- Polymer chemistry
- Independent sets (graph theory)
- Scheduling problems in operation research
- Rock fragmentation

See the paper by Evans (1993)
"Random and Cooperative sequential adsorption"

Some literature (most in 1d)

- Page (1959), Freedman and Shepp (1962), Flajolet (1998), Pinsky (2014), ...

$$
\begin{aligned}
\frac{\mathbb{E}\left(N_{n}\right)}{n} & =\frac{1}{2}\left(1-e^{-2}\right)+\text { precise error term } \\
\frac{\operatorname{Var}\left(N_{n}\right)}{n} & =e^{-4}+\text { precise error term }
\end{aligned}
$$

- Page (1959): $\frac{N_{n}}{n} \xrightarrow{\mathbb{P}} \frac{1}{2}\left(1-e^{-2}\right)$
- Penrose (2002) (any dimension): $\frac{N_{n}}{n} \xrightarrow{L^{p}} \rho_{d}$ and CLT.
- Ritchie (2006) (any dimension): Thermodynamic limit and $\frac{N_{n}}{n} \xrightarrow{\text { a.s. }} \rho_{d}$
- Pinsky (2014) (very fat men): extended results of Page (1959).
- Gerin (2015): didn't know about Ritchie's paper it seems.
- Chern et al (2015): "Dinner table".
- And many others papers in Physics literature based on simulations.

Much more related to our problem

Mathew D. Penrose:

- Limit theorems for monotonic particle systems and sequential deposition. (2002).

Much more related to our problem

Mathew D. Penrose:

- Limit theorems for monotonic particle systems and sequential deposition. (2002).

He obtains CLTs for general models, but through a very long and complicated path:
"However, since we always obtain our systems by taking the random input to come only from inside the target region, rather than restricting a stationary random field to the target region, general CLTs such as that of Bolthausen (1982) are not directly applicable."

What Penrose means?

What Penrose means?

- That if $\Lambda \subset \Lambda^{\prime}$, then

$$
\left.X_{\Lambda} \stackrel{\mathcal{D}}{\neq} X_{\Lambda^{\prime}}\right|_{\Lambda}
$$

What Penrose means?

- That if $\Lambda \subset \Lambda^{\prime}$, then

$$
\left.X_{\Lambda} \stackrel{\mathcal{D}}{\neq} X_{\Lambda^{\prime}}\right|_{\Lambda}
$$

- To use classical results from random field literature: needs a stationary random fields on \mathbb{Z}^{d}

$$
(Y(i))_{i \in \mathbb{Z}^{d}}, \quad Y(i) \in\{0,1\}
$$

What Penrose means?

- That if $\Lambda \subset \Lambda^{\prime}$, then

$$
\left.X_{\Lambda} \stackrel{\mathcal{D}}{\neq} X_{\Lambda^{\prime}}\right|_{\Lambda}
$$

- To use classical results from random field literature: needs a stationary random fields on \mathbb{Z}^{d}

$$
(Y(i))_{i \in \mathbb{Z}^{d}}, \quad Y(i) \in\{0,1\}
$$

- Satisfying the rules of RSA!

Ritchie constructed such a random field

Thomas Ritchie:

- Construction of the Thermodynamic Jamming Limit for the Parking Process and Other Exclusion Schemes on \mathbb{Z}^{d}. (2006).

He proved:

Ritchie constructed such a random field

Thomas Ritchie:

- Construction of the Thermodynamic Jamming Limit for the Parking Process and Other Exclusion Schemes on \mathbb{Z}^{d}. (2006).

He proved:

- Perfect simulation algorithm of Y on any $\wedge \subset \mathbb{Z}^{d}$:

$$
Y(i)=[f(U)](i), \forall i \in \mathbb{Z}^{d}
$$

where

$$
\begin{aligned}
& U=(U(i))_{i \in \mathbb{Z}^{d}} \text { is i.i.d. } U_{i} \sim \operatorname{Unif}[0,1] \\
& f: U \rightarrow\{0,1\}^{\mathbb{Z}^{d}} \text { is translation equivariant. }
\end{aligned}
$$

As a consequence of the construction, he gets:

As a consequence of the construction, he gets:

- Strong law of large numbers

$$
\frac{1}{\left|\Lambda_{n}\right|} \sum_{i \in \Lambda_{n}} Y(i) \xrightarrow{n \rightarrow \infty} \rho_{d}, \text { a.s. }
$$

As a consequence of the construction, he gets:

- Strong law of large numbers

$$
\frac{1}{\left|\Lambda_{n}\right|} \sum_{i \in \Lambda_{n}} Y(i) \xrightarrow{n \rightarrow \infty} \rho_{d}, \text { a.s. }
$$

- With a control of boundary effects he proved

$$
\frac{1}{\left|\Lambda_{n}\right|} \sum_{i \in \Lambda_{n}} X_{\Lambda_{n}}(i) \xrightarrow{n \rightarrow \infty} \rho_{d}, \text { a.s. }
$$

Content

The problem

History and Motivation

Some new results

Idea of the proofs

About the random field Y : asymptotic results

Theorem

For any $d \geq 1$, the random field Y satisfies

$$
\begin{aligned}
& (C L T) \frac{N_{n}^{Y}-\left|\Lambda_{n}\right| \rho_{d}}{\sqrt{\sigma^{2}\left|\Lambda_{n}\right|}} \underset{n \rightarrow \infty}{\mathcal{D}} N(0,1) \\
& \text { (LIL) } \quad \limsup _{n} \frac{N^{Y}-\left|\Lambda_{n}\right| \rho_{d}}{\sqrt{2 \sigma^{2}\left|\Lambda_{n}\right| \log \log \left|\Lambda_{n}\right|}}=1 \quad \text { a.s. }
\end{aligned}
$$

where

$$
\begin{equation*}
\sigma^{2}=\sum_{i \in \mathbb{Z}^{d}} \operatorname{Cov}(Y(\mathbf{0}), Y(i))>0 \tag{1}
\end{equation*}
$$

About the random field Y : non-asymptotic result

Theorem

For any $\epsilon>0, n, d \geq 1$

$$
\begin{equation*}
\mathbb{P}\left(\left|N_{n}^{Y}-\rho\right| \Lambda_{n}| |>\epsilon\right) \leq e^{\frac{1}{e}-\frac{\epsilon^{2}}{4 e B\left|\Lambda_{n}\right|}} \tag{2}
\end{equation*}
$$

where $B=B(d)$ is explicit.

About the sequence $X_{\Lambda_{n}}, n \geq 1$

Theorem

- For any $n, d \geq 1$

$$
\begin{aligned}
& \left|\mathbb{E} N_{n}-\left|\Lambda_{n}\right| \rho_{d}\right| \leq \\
& \quad \frac{2 d(2 d-1)^{n}}{(n+1)!}+(2 d)^{2} \sum_{k=0}^{n-1} \frac{(2 d-1)^{k}(2(n-k)+1)^{d-1}}{(k+1)!} .
\end{aligned}
$$

- The LIL holds for the sequence $X_{\Lambda_{n}}, n \geq 1$ in $d=1$.

About the sequence $X_{\Lambda_{n}}, n \geq 1$

Theorem

- For any $n, d \geq 1$

$$
\begin{aligned}
& \left|\mathbb{E} N_{n}-\left|\Lambda_{n}\right| \rho_{d}\right| \leq \\
& \quad \frac{2 d(2 d-1)^{n}}{(n+1)!}+(2 d)^{2} \sum_{k=0}^{n-1} \frac{(2 d-1)^{k}(2(n-k)+1)^{d-1}}{(k+1)!}
\end{aligned}
$$

- The LIL holds for the sequence $X_{\Lambda_{n}}, n \geq 1$ in $d=1$.

Couldn't get rid of the boundary effects to get the LIL in $d \geq 2 \ldots$

Content

The problem

History and Motivation

Some new results

Idea of the proofs

The base of our proofs: Ritchie's perfect simulation algorithm

The base of our proofs: Ritchie's perfect simulation algorithm

- Solves the issue of Penrose

It simulates from any region $\Lambda \subset \mathbb{Z}^{d}$ a sample $Y(\Lambda)$ which is a compatible projection of the whole random field $(Y(i))_{i \in \mathbb{Z}^{d}}$.

- It gives all we want at once

It easily yields good mixing properties allowing to use results from the literature.

- It is very elegant!

First step: "the uniforms algorithm" (in \mathbb{Z}^{2})
Consider $\left(U_{i}\right)_{i \in \mathbb{Z}^{2}}$ i.i.d.'s with $U_{0} \sim \operatorname{Unif}[0,1]$ and region \wedge

9,25	0,87	0,78	0,41	0,64	0,61	0,50
9,86	0,51	0,42	0,94	0,06	0,93	0,23
9,55	0,38	0,57	0,74	0,52	0,29	0,85
0,92	0,40	0,78	0,83	0,71	0,11	0,85
0,63	0,55	9,73	0,34	0,42	0,36	9,93

First step: "the uniforms algorithm" (in \mathbb{Z}^{2})
Consider $\left(U_{i}\right)_{i \in \mathbb{Z}^{2}}$ i.i.d.'s with $U_{0} \sim \operatorname{Unif}[0,1]$ and region \wedge

9,95	0,87	0,78	0,41	0,64	0,61	0,50
9,86	0,51	0,42	0,94	0	0,93	0,23
955	0,38	0,57	0,74	0,52	0,29	0,85
952	0,40	0,78	0,83	0,71	0,11	0,85
0,63	0,55	9,73	0,34	0,42	0,36	9,93

First step: "the uniforms algorithm" (in \mathbb{Z}^{2})
Consider $\left(U_{i}\right)_{i \in \mathbb{Z}^{2}}$ i.i.d.'s with $U_{0} \sim \operatorname{Unif}[0,1]$ and region \wedge

9,95	0,87	0,78	0,41	0,64	0,61	0,50
9,86	0,51	0	0,94	0	0,93	0,23
955	0,38	0,57	0,74	0,52	0,29	0,85
952	0,40	0,78	0,83	0,71	0,11	0,85
0,63	0,55	9,73	0,34	0,42	0,36	9,93

First step: "the uniforms algorithm" (in \mathbb{Z}^{2})
Consider $\left(U_{i}\right)_{i \in \mathbb{Z}^{2}}$ i.i.d.'s with $U_{0} \sim \operatorname{Unif}[0,1]$ and region \wedge

925	0,87	0,78	0,41	0,64	0,61	0,50
9,86	0,51	0	0,94	0	0,93	0,23
955	0,38	0,57	0,74	0,52	0,29	0,85
952	0,40	0,78	0,83	0	0,11	0,85
0,63	0,55	9,73	0,34	0,42	0,36	9,93

First step: "the uniforms algorithm" (in \mathbb{Z}^{2})
Consider $\left(U_{i}\right)_{i \in \mathbb{Z}^{2}}$ i.i.d.'s with $U_{0} \sim \operatorname{Unif}[0,1]$ and region \wedge

First step: "the uniforms algorithm" (in \mathbb{Z}^{2})

Observe that:

1. This has exactly the same distribution as the first (definition) algorithm for finite boxes.
2. It appears clearly now why we are not sampling from the thermodynamic limit: look at the 0,11 !
3. This last observation is also the key to understanding how the PSA should work:

The decision of whether or not a particles is put at $i \in \mathbb{Z}^{2}$ should not depend on the box, but exclusively on the uniform random variables.

The perfect simulation algorithm

- Start from $\left(U_{i}\right)_{i \in \mathbb{Z}^{2}}$ i.i.d.s with $U_{0} \sim \operatorname{Unif}[0,1]$

The perfect simulation algorithm

- Start from $\left(U_{i}\right)_{i \in \mathbb{Z}^{2}}$ i.i.d.'s with $U_{0} \sim \operatorname{Unif}[0,1]$
- For any $i, j \in \mathbb{Z}^{2}$, write $i \rightarrow j$ if there exists a decreasing path of uniforms from i to j

The perfect simulation algorithm

- Start from $\left(U_{i}\right)_{i \in \mathbb{Z}^{2}}$ i.i.d.'s with $U_{0} \sim \operatorname{Unif}[0,1]$
- For any $i, j \in \mathbb{Z}^{2}$, write $i \rightarrow j$ if there exists a decreasing path of uniforms from i to j
- Define the "armour" of $i \in \mathbb{Z}^{2}$ by

$$
\mathcal{A}(\{i\}):=\bigcup_{y \in \mathbb{Z}^{2}: i \rightarrow j}\{\text { vertices on the path from } i \text { to } j\}
$$

The perfect simulation algorithm

- Start from $\left(U_{i}\right)_{i \in \mathbb{Z}^{2}}$ i.i.d.s with $U_{0} \sim \operatorname{Unif}[0,1]$
- For any $i, j \in \mathbb{Z}^{2}$, write $i \rightarrow j$ if there exists a decreasing path of uniforms from i to j
- Define the "armour" of $i \in \mathbb{Z}^{2}$ by

$$
\mathcal{A}(\{i\}):=\bigcup_{y \in \mathbb{Z}^{2}: i \rightarrow j}\{\text { vertices on the path from } i \text { to } j\}
$$

- The PSA for $i \in \mathbb{Z}^{2}$:

The perfect simulation algorithm

- Start from $\left(U_{i}\right)_{i \in \mathbb{Z}^{2}}$ i.i.d.'s with $U_{0} \sim \operatorname{Unif}[0,1]$
- For any $i, j \in \mathbb{Z}^{2}$, write $i \rightarrow j$ if there exists a decreasing path of uniforms from i to j
- Define the "armour" of $i \in \mathbb{Z}^{2}$ by

$$
\mathcal{A}(\{i\}):=\bigcup_{y \in \mathbb{Z}^{2}: i \rightarrow j}\{\text { vertices on the path from } i \text { to } j\}
$$

- The PSA for $i \in \mathbb{Z}^{2}$:

Just apply the "uniforms algorithm" in $\mathcal{A}(\{i\})!$!

Let us perfectly simulate $Y(\Lambda)$ for $|\Lambda|=1$
Here is our $\Lambda=\{i\} \ldots$

9,25	0,87	0,78	0,41	0,64	0,61	0,50
9,86	0,51	0,42	0,94	0,06	0,93	0,23
9,55	0,38	0,57	0,74	0,52	0,29	0,85
0,92	0,40	0,78	0,83	0,71	0,11	0,85
0,63	0,55	9,73	0,34	0,42	0,36	993

Let us perfectly simulate X_{\wedge} for $|\Lambda|=1$
... we construct its armour but going along "decreasing paths"...

9,25	0,87	0,78	0,41	0,64	0,61	0,50
986	0,51	0,42	0,94	0,06	0,93	0,23
9,55	0,38	0,57	0,74	0,52	0,29	0,85
952	0,40	0,78	0,83	0,71	0,11	0,85
0,63	0,55	9,73	0,34	0,42	0,36	993

Let us perfectly simulate X_{\wedge} for $|\Lambda|=1$
... we construct its armour but going along "decreasing paths"...

Let us perfectly simulate X_{Λ} for $|\Lambda|=1$
... we obtain the final armour $\mathcal{A}(\{i\})$...

Let us perfectly simulate X_{\wedge} for $|\Lambda|=1$
... we obtain the final armour $\mathcal{A}(\{i\})$...

Let us perfectly simulate X_{\wedge} for $|\Lambda|=1$
... and we can now use the "uniform algorithm" inside $\mathcal{A}(\{i\})$...

Let us perfectly simulate X_{\wedge} for $|\Lambda|=1$
... and we can now use the "uniform algorithm" inside $\mathcal{A}(\{i\})$...

Let us perfectly simulate X_{\wedge} for $|\Lambda|=1$
... to conclude the algorithm:

Let us perfectly simulate X_{\wedge} for $|\Lambda|=1$
... to conclude the algorithm: $Y(i)=1$.

For the proofs concerning Y

- We can make the PSA of any finite region $\Lambda \subset \mathbb{Z}^{d}$ in finite time.
- $\mathcal{A}(\Lambda)=\cup_{i \in \wedge} \mathcal{A}(\{i\})$
- Moreover $|\mathcal{A}(\{i\})|$ has super-exponential tail.
- This gives very good α-mixing
$\Delta \Rightarrow$ Good mixing implies, for the random field:
- SLLN,
- CLT,
- Berry-Esseen,
- Concentration inequalities etc...

For the proofs concerning $X_{\Lambda_{n}}, n \geq 1$

- To prove that $\left|\mathbb{E} N_{n}^{Y}-\left|\Lambda_{n}\right| \rho\right| \leq F(d)$ observe that

$$
\begin{aligned}
\mid \mathbb{E} N_{n}^{Y}- & \left|\Lambda_{n}\right| \rho \mid \\
& \leq \mathbb{E}\left|\Lambda_{n}^{Y}-\left|\Lambda_{n}\right| \rho\right| \\
& \leq \mathbb{E} \sum_{i \in \Lambda_{n}} \mathbf{1}\left\{X_{\Lambda_{n}}(i) \neq Y(i)\right\} \\
& =\sum_{i \in \Lambda_{n}} \mathbb{P}\left(X_{\Lambda_{n}}(i) \neq Y(i)\right) .
\end{aligned}
$$

For the proofs concerning $X_{\Lambda_{n}}, n \geq 1$

- To prove that $\left|\mathbb{E} N_{n}^{Y}-\left|\Lambda_{n}\right| \rho\right| \leq F(d)$ observe that

$$
\begin{aligned}
\mid \mathbb{E} N_{n}^{Y}- & \left|\Lambda_{n}\right| \rho \mid \\
& \leq \mathbb{E}\left|\Lambda_{n}^{Y}-\left|\Lambda_{n}\right| \rho\right| \\
& \leq \mathbb{E} \sum_{i \in \Lambda_{n}} \mathbf{1}\left\{X_{\Lambda_{n}}(i) \neq Y(i)\right\} \\
& =\sum_{i \in \Lambda_{n}} \mathbb{P}\left(X_{\Lambda_{n}}(i) \neq Y(i)\right) .
\end{aligned}
$$

- Proof of the LIL in 1d for $X_{\Lambda_{n}}, n \geq 1$

For the proofs concerning $X_{\Lambda_{n}}, n \geq 1$

- To prove that $\left|\mathbb{E} N_{n}^{Y}-\left|\Lambda_{n}\right| \rho\right| \leq F(d)$ observe that

$$
\begin{aligned}
\mid \mathbb{E} N_{n}^{Y}- & \left|\Lambda_{n}\right| \rho \mid \\
& \leq \mathbb{E}\left|N_{n}^{Y}-\left|\Lambda_{n}\right| \rho\right| \\
& \leq \mathbb{E} \sum_{i \in \Lambda_{n}} \mathbf{1}\left\{X_{\Lambda_{n}}(i) \neq Y(i)\right\} \\
& =\sum_{i \in \Lambda_{n}} \mathbb{P}\left(X_{\Lambda_{n}}(i) \neq Y(i)\right) .
\end{aligned}
$$

- Proof of the LIL in 1d for $X_{\Lambda_{n}}, n \geq 1$
- We know it holds for N_{n}^{Y}.

For the proofs concerning $X_{\Lambda_{n}}, n \geq 1$

- To prove that $\left|\mathbb{E} N_{n}^{Y}-\left|\Lambda_{n}\right| \rho\right| \leq F(d)$ observe that

$$
\begin{aligned}
\mid \mathbb{E} N_{n}^{Y}- & \left|\Lambda_{n}\right| \rho \mid \\
& \leq \mathbb{E}\left|N_{n}^{Y}-\left|\Lambda_{n}\right| \rho\right| \\
& \leq \mathbb{E} \sum_{i \in \Lambda_{n}} \mathbf{1}\left\{X_{\Lambda_{n}}(i) \neq Y(i)\right\} \\
& =\sum_{i \in \Lambda_{n}} \mathbb{P}\left(X_{\Lambda_{n}}(i) \neq Y(i)\right) .
\end{aligned}
$$

- Proof of the LIL in 1d for $X_{\Lambda_{n}}, n \geq 1$
- We know it holds for N_{n}^{Y}.
- We can show that

$$
\mathbb{P}\left(\left|N_{n}-\bar{N}_{n}\right|>M\right) \leq 2 \frac{1}{\lceil M / 2+2\rceil!} .
$$

For the proofs concerning $X_{\Lambda_{n}}, n \geq 1$

- To prove that $\left|\mathbb{E} N_{n}^{Y}-\left|\Lambda_{n}\right| \rho\right| \leq F(d)$ observe that

$$
\begin{aligned}
\mid \mathbb{E} N_{n}^{Y}- & \left|\Lambda_{n}\right| \rho \mid \\
& \leq \mathbb{E}\left|\Lambda_{n}^{Y}-\left|\Lambda_{n}\right| \rho\right| \\
& \leq \mathbb{E} \sum_{i \in \Lambda_{n}} \mathbf{1}\left\{X_{\Lambda_{n}}(i) \neq Y(i)\right\} \\
& =\sum_{i \in \Lambda_{n}} \mathbb{P}\left(X_{\Lambda_{n}}(i) \neq Y(i)\right) .
\end{aligned}
$$

- Proof of the LIL in 1d for $X_{\Lambda_{n}}, n \geq 1$
- We know it holds for N_{n}^{Y}.
- We can show that

$$
\mathbb{P}\left(\left|N_{n}-\bar{N}_{n}\right|>M\right) \leq 2 \frac{1}{\lceil M / 2+2\rceil!} .
$$

- Thus $\left|N_{n}-\bar{N}_{n}\right|>\sqrt{\left|\Lambda_{n}\right|}$ finitely many times.

Thank you!

