A Central Limit Theorem for intransitive dice

Daniel Ungaretti
UFRJ

Summer program at ICMC-USP

Jornadas de pesquisa para graduação

Supervisors

- Tertuliano Franco (UFBA)
- Guilherme Silva (ICMC-USP)
- Daniel Ungaretti (UFRJ)

Students

- Luis Coelho (FFCLRP-USP)
- Lael Lima (IMECC-Unicamp)
- João Pedro de Paula (IMECC-Unicamp)
- João Victor Pimenta (IFSC-USP)

Intransitive Dice

Which die is better?

- It looks counter-intuitive

However, it is related to 'real world problems':

- Testing different drugs;
- Comparing soccer teams;

- Ludic aspect / popularization of math
- Numberphile (YouTube channel)

- Quanta Magazine (2023)

[^0]Mathematicians Roll Dice and Get Rock-Paper-Scissors

- Interesting math

- Polymath Project

the probability that a random triple of dice is transitive
D. H. J. POLYMATH

Abstract. An n-sided die is an n-tuple of positive integers. We say that a die ($a_{1} \ldots \ldots, a_{\mathrm{n}}$) beats a die $\left(b_{1}, \ldots, b_{n}\right)$ if the number of pairs (i, j) such that $a_{i}>b_{j}$ is greater than the number of pairs (,.$j)$ such that $a_{j}<b_{j}$. We show that for a natural model of random n-sided dice, if A, B and C re three random dice then the probability that A beats C given that A beats B and B beats C is approximately $1 / 2$. In other words, the information that A beats B and B beats C has almost no
effect on the probability that A beats C. This proves a statement that was conjectured by Conrey. Gabbard, Grant, Liu and Morrison for a different model.

1. Introduction

- Deterministic conditions for intransitivity?
- What is the probability that a random set of dice is intransitive?
- How many sets of dice with intransitive cycles are there?

Deterministic conditions

Checking intransitivity - honest dice, no ties

Without ties: intransitivity \Longleftrightarrow counting strings

- Die with n faces: $\quad D=\left(D_{1}, \ldots, D_{n}\right)$;
- Collection of ℓ dice: $\quad \mathbf{D}=\left(D^{(1)}, \ldots, D^{(\ell)}\right)$;
- When there are no ties: $D^{(i)}$ has n_{i} faces \Longrightarrow total of $n_{1}+\ldots+n_{\ell}$ faces;
- Associated string: a permutation of $n_{1}+\ldots+n_{\ell}$ letters (with repetitions).
- $\mathcal{D}_{\ell}(n)=\left\{\mathbf{D}=\left(D^{(1)}, \ldots, D^{(\ell)}\right) ; D^{(i)} \in \mathbb{Z}^{n},\left\{D_{i}^{(j)}\right\}_{i, j}=[\ell n]\right\}$.
$\triangleright \mathcal{D}_{\triangleright, \ell}(n)=\left\{\mathbf{D}=\left(D^{(1)}, \ldots, D^{(\ell)}\right) ; D^{(1)} \triangleright \ldots \triangleright D^{(\ell)} \triangleright D^{(1)}\right\}$.
- Die with n faces: $D=\left(D_{1}, \ldots, D_{n}\right)$;
- Collection of ℓ dice: $\quad \mathbf{D}=\left(D^{(1)}, \ldots, D^{(\ell)}\right)$;
- When there are no ties: $D^{(i)}$ has n_{i} faces \Longrightarrow total of $n_{1}+\ldots+n_{\ell}$ faces;
- Associated string: a permutation of $n_{1}+\ldots+n_{\ell}$ letters (with repetitions).
- $\mathcal{D}_{\ell}(n)=\left\{\mathbf{D}=\left(D^{(1)}, \ldots, D^{(\ell)}\right) ; D^{(i)} \in \mathbb{Z}^{n},\left\{D_{i}^{(j)}\right\}_{i, j}=[\ell n]\right\}$.
$-\mathcal{D}_{\triangleright, \ell}(n)=\left\{\mathbf{D}=\left(D^{(1)}, \ldots, D^{(\ell)}\right) ; D^{(1)} \triangleright \ldots \triangleright D^{(\ell)} \triangleright D^{(1)}\right\}$.

Theorem (Existence)

(i) For every $\ell \geq 3$, we have $\mathcal{D}_{\triangleright, \ell}(2)=\varnothing$.
(ii) For every $\ell \geq 3$ and $n \geq 3$, we have $\mathcal{D}_{\triangleright, \ell}(n) \neq \varnothing$.

We have $n=2$. Whenever $D^{(j)} \triangleright D^{(k)}$, the substring on $D^{(j)}$ and $D^{(k)}$ is

$$
D^{(j)} D^{(j)} D^{(k)} D^{(k)} \quad \text { or } \quad D^{(j)} D^{(k)} D^{(j)} D^{(k)}
$$

In any case, there is a $D^{(j)}$ to the left of the two copies of $D^{(k)}$.

$$
\begin{aligned}
D^{(1)} \triangleright \ldots \triangleright D^{(\ell)} \triangleright D^{(1)} & \Longrightarrow \text { a } D^{(1)} \text { to the left of both } D^{(k)} \text { for } k \in[\ell], \\
& \Longrightarrow \text { no } D^{(\ell)} \text { to the left of both } D^{(1)}, \\
& \Longrightarrow D^{(\ell)} \triangleright D^{(1)} .
\end{aligned}
$$

Lemma (More dice)
If $\mathcal{W}_{\triangleright, \ell}(n)$ is non-empty, then $\mathcal{W}_{\triangleright, \ell+1}(n)$ is non-empty.

- From $\mathbf{W} \in \mathcal{W}_{\triangleright, \ell}(n)$ make $\widetilde{\mathbf{W}} \in \mathcal{W}_{\triangleright, \ell+1}(n)$ by replacing every $D^{(\ell)}$ by $D^{(\ell)} D^{(\ell+1)}$.

Lemma (More faces)
If $\mathcal{W}_{\triangleright, \ell}(n)$ is non-empty, then $\mathcal{W}_{\triangleright, \ell}(n+2)$ is non-empty.

- For a word \mathbf{W}, its dual word is \mathbf{W}^{*} obtained by reversing the order in \mathbf{W};
- Number of wins of $D^{(j)}$ over $D^{(k)}$ is $N_{j, k}(\mathbf{W})$;
- Word \mathbf{W} is neutral if $N_{k, j}(\mathbf{W})=N_{j, k}(\mathbf{W})$ for every j, k.
- If $\mathbf{S}=D^{(1)} \ldots D^{(\ell)}$ then the concatenation $\mathbf{S S}^{*} \in \mathcal{W}_{\ell}(2)$ is neutral.
- Given any word $\mathbf{W} \in \mathcal{W}_{\ell}(n)$, the concatenation $\mathbf{W S S}{ }^{*} \in \mathcal{W}_{\ell}(n+2)$ is neutral.

Initial cases:

Counting intransitive sets

Question: Can we estimate $\left|\mathcal{D}_{\triangleright, \ell}(n)\right|$?

- A simple combinatorial argument and Stirling's approximation ensures

$$
\left|\mathcal{D}_{\triangleright, \ell}(n)\right| \leq\left|\mathcal{D}_{\ell}(n)\right|=\frac{(\ell n)!}{(n!)^{\ell}} \sim \frac{\ell^{1 / 2}}{(2 \pi n)^{(\ell-1) / 2}} \cdot e^{n \ell \log \ell}
$$

- Does $\left|\mathcal{D}_{\triangleright, \ell}(n)\right|$ grow exponentially?

Theorem
For each $\ell \geq 3$, there exists a constant $L(\ell) \geq 0$ for which

$$
\left|\mathcal{D}_{\triangleright, \ell}(n)\right|=e^{n L(\ell)+o(n)} \quad \text { as } n \rightarrow \infty .
$$

Take $\mathbf{W}_{1} \in \mathcal{W}_{\triangleright, \ell}\left(n_{1}\right)$ and $\mathbf{W}_{2} \in \mathcal{W}_{\triangleright, \ell}\left(n_{2}\right)$. Then, $\mathbf{W}_{1} \mathbf{W}_{2} \in \mathcal{W}_{\triangleright, \ell}\left(n_{1}+n_{2}\right)$.

$$
\begin{aligned}
N_{i, i+1}\left(\mathbf{W}_{1} \mathbf{W}_{2}\right) & =N_{i, i+1}\left(\mathbf{W}_{1}\right)+n_{1} n_{2}+N_{i, i+1}\left(\mathbf{W}_{2}\right) \\
& >\frac{n_{1}^{2}}{2}+\frac{2 n_{1} n_{2}}{2}+\frac{n_{2}^{2}}{2} \\
& =\frac{\left(n_{1}+n_{2}\right)^{2}}{2}
\end{aligned}
$$

$\left(\mathbf{W}_{1}, \mathbf{W}_{2}\right) \mapsto \mathbf{W}_{1} \mathbf{W}_{2}$ is injection of $\mathcal{W}_{\triangleright, \ell}\left(n_{1}\right) \times \mathcal{W}_{\triangleright, \ell}\left(n_{2}\right)$ into $\mathcal{W}_{\triangleright, \ell}\left(n_{1}+n_{2}\right)$

$$
\Longrightarrow \quad\left|\mathcal{D}_{\triangleright, \ell}\left(n_{1}+n_{2}\right)\right| \geq\left|\mathcal{D}_{\triangleright, \ell}\left(n_{1}\right)\right|\left|\mathcal{D}_{\triangleright, \ell}\left(n_{2}\right)\right|,
$$

hence $\left|\mathcal{D}_{\triangleright, \ell}(n)\right|$ is supermultiplicative! Use Fekete's lemma.

By the previous theorem, we have

$$
L(\ell)=\sup _{n} \frac{\log \left|\mathcal{D}_{\triangleright, \ell}(n)\right|}{n} \leq \sup _{n} \frac{\log \left|\mathcal{D}_{\ell}(n)\right|}{n}=\ell \log \ell
$$

By computational methods we got:

- Exact computations:

$$
2.445<L(3) \leq 3 \log 3
$$

- Simulations for larger values of n :

$$
\Delta L_{3}(n):=\frac{\log \left|\mathcal{D}_{\triangleright}(n)\right|}{n}-\frac{\log \left|\mathcal{D}_{\triangleright, \ell}(n)\right|}{n} \quad \text { seems to go to zero. }
$$

Figure: $\Delta L_{3}(n)$ for various values of n. The blue data points are exact, and the red data points were generated through a stochastic simulation. The vertical axis is represented in a logarithmic scale

On our arxiv version of the paper:

- Simulations lead to conjecture that $L(3)=3 \log 3$.
- Maybe the same would hold for $\ell \geq 4$.

On our arxiv version of the paper:

- Simulations lead to conjecture that $L(3)=3 \log 3$.
- Maybe the same would hold for $\ell \geq 4$.

Currently unpublished:
Theorem
For $\ell \geq 3$ it holds that $L(\ell)=\ell \log \ell$.

- Application of our CLT!

Random sets of dice

A and B are n-faced IID dice:

$$
N_{A>B}=\sum_{i=1}^{n} \sum_{j=1}^{n} \chi_{A_{i}>B_{j}}
$$

IID Dice - no ties

$$
N_{A>B}+N_{B>A}=n^{2}
$$

$$
\begin{gathered}
N_{A>B}+N_{B>A}=n^{2} \\
A \triangleright B \quad \Longleftrightarrow \quad N_{A>B}>\frac{n^{2}}{2}
\end{gathered}
$$

$$
\begin{gathered}
N_{A>B}+N_{B>A}=n^{2} \\
A \triangleright B \quad \Longleftrightarrow \quad N_{A>B}>\frac{n^{2}}{2}
\end{gathered}
$$

Assuming $\left(A_{i}\right)$ and $\left(B_{j}\right)$ have a common distribution:

$$
\mathbb{E} N_{A>B}=\sum_{i, j=1}^{n} \mathbb{P}\left(A_{i}>B_{j}\right)=\frac{n^{2}}{2}
$$

$$
\begin{gathered}
N_{A>B}+N_{B>A}=n^{2} \\
A \triangleright B \quad \Longleftrightarrow \quad N_{A>B}>\frac{n^{2}}{2}
\end{gathered}
$$

Assuming $\left(A_{i}\right)$ and $\left(B_{j}\right)$ have a common distribution:

$$
\begin{aligned}
& \mathbb{E} N_{A>B}=\sum_{i, j=1}^{n} \mathbb{P}\left(A_{i}>B_{j}\right)=\frac{n^{2}}{2} \\
& A \triangleright B \quad \Longleftrightarrow \quad N_{A>B}>\mathbb{E} N_{A>B}
\end{aligned}
$$

Hence:

$$
A \triangleright B \quad \Longleftrightarrow \quad \tilde{N}_{A>B}=\frac{N_{A>B}-\mathbb{E} N_{A>B}}{\left(\operatorname{Var} N_{A>B}\right)^{1 / 2}}>0
$$

Hence:

$$
A \triangleright B \quad \Longleftrightarrow \quad \tilde{N}_{A>B}=\frac{N_{A>B}-\mathbb{E} N_{A>B}}{\left(\operatorname{Var} N_{A>B}\right)^{1 / 2}}>0
$$

If we have $\ell \geq 3$ dice:

$$
\begin{gathered}
D^{(1)} \triangleright D^{(2)} \triangleright \ldots \triangleright D^{(\ell)} \triangleright D^{(1)} \\
\left.\tilde{\mathbb{N}}^{2}, \tilde{N}_{1}, \tilde{N}_{2}, \ldots, \tilde{N}_{\ell}\right) \in(0, \infty)^{\ell}
\end{gathered}
$$

Main question: As $n \rightarrow \infty$,

$$
\left(\tilde{N}_{1}, \tilde{N}_{2}, \ldots, \tilde{N}_{\ell}\right) \xrightarrow{d} ?
$$

Theorem (Uniform case, $\ell=3$)
Suppose $\left(A_{i}\right),\left(B_{i}\right),\left(C_{i}\right)$ are iid. with distribution $\operatorname{Unif}(0,1)$.

$$
\left(\tilde{N}_{A>B}, \tilde{N}_{B>C}, \tilde{N}_{C>A}\right) \xrightarrow{d} \mathcal{N}(0, \Sigma)
$$

where

$$
\Sigma=\left(\begin{array}{rrr}
1 & -\frac{1}{2} & -\frac{1}{2} \\
-\frac{1}{2} & 1 & -\frac{1}{2} \\
-\frac{1}{2} & -\frac{1}{2} & 1
\end{array}\right)
$$

Matrix Σ is singular:

$$
\left(\begin{array}{rrr}
1 & -\frac{1}{2} & -\frac{1}{2} \\
-\frac{1}{2} & 1 & -\frac{1}{2} \\
-\frac{1}{2} & -\frac{1}{2} & 1
\end{array}\right) \cdot\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

Corollary (Uniform case, $\ell=3$)
$\mathbb{P}(A \triangleright B \triangleright C \triangleright A) \xrightarrow{n} \mathbb{P}\left(\mathcal{N}(0, \Sigma) \in(0, \infty)^{3}\right)=0$.
Plane $x+y+z=0$
$\mathcal{D}_{3}(n): 3 n$-letter strings, with n letters A, B and C. $\mathcal{D}_{\triangleright, 3}(n)$: intransitive strings in $\mathcal{D}_{3}(n)$.

Corollary (Uniform case, $\ell=3) \quad \Longrightarrow \quad \frac{\left|\mathcal{D}_{\triangleright, 3}(n)\right|}{\left|\mathcal{D}_{3}(n)\right|} \rightarrow 0$.

$$
\begin{aligned}
& \tilde{N}_{A>B} \xrightarrow{d} \mathcal{N}(0,1) \\
& \mathbb{V} \\
& \mathbb{E}\left[\left(\tilde{N}_{A>B}\right)^{t}\right] \rightarrow \mathbb{E}\left[\mathcal{N}(0,1)^{t}\right]=\left\{\begin{array}{ll}
0 & \text { if } t \text { is odd } \\
(t-1)!! & \text { if } t \text { is even }
\end{array},\right.
\end{aligned}
$$

$$
\begin{gathered}
\tilde{N}_{A>B} \xrightarrow{\stackrel{d}{\longrightarrow}} \mathcal{N}(0,1) \\
\mathbb{N}\left[\left(\tilde{N}_{A>B}\right)^{t}\right] \rightarrow \mathbb{E}\left[\mathcal{N}(0,1)^{t}\right]=\left\{\begin{array}{ll}
0 & \text { if } t \text { is odd } \\
(t-1)!! & \text { if } t \text { is even }
\end{array},\right.
\end{gathered}
$$

$$
\operatorname{Var} N_{A>B}=n^{3} \sigma+O\left(n^{2}\right)
$$

$$
\begin{gathered}
\tilde{N}_{A>B} \xrightarrow{\hat{d}} \mathcal{N}(0,1) \\
\mathbb{E}\left[\left(\tilde{N}_{A>B}\right)^{t}\right] \rightarrow \mathbb{E}\left[\mathcal{N}(0,1)^{t}\right]=\left\{\begin{array}{ll}
0 & \text { if } t \text { is odd } \\
(t-1)!! & \text { if } t \text { is even }
\end{array},\right.
\end{gathered}
$$

$$
\operatorname{Var} N_{A>B}=n^{3} \sigma+O\left(n^{2}\right)
$$

$$
\tilde{N}_{A>B}=\frac{N_{A>B}-\mathbb{E} N_{A>B}}{\left(\operatorname{Var} N_{A>B}\right)^{1 / 2}} \Longrightarrow \mathbb{E}\left[\left(\tilde{N}_{A>B}\right)^{t}\right]=\frac{\mathbb{E}[(\sum_{i, j}^{n} \overbrace{\left(\chi_{A_{i}>B_{j}-\frac{1}{2}}\right)}^{e_{i, j}^{t}}]}{n^{3 t / 2}(\sigma+o(1))}
$$

○
○

$$
\mathbb{E}\left[\left(\sum_{i, j} e_{i, j}\right)^{t}\right]=\sum_{i_{1}, j_{1}} \cdots \sum_{i_{t}, j_{t}} \mathbb{E}\left[e_{i_{1}, j_{1}} \ldots e_{i_{t}, j_{t}}\right]
$$

-
-

$$
e_{1,1} e_{2,3} e_{2,1} \ldots e_{i_{t}, j_{t}}
$$

0	0
\vdots	\vdots
0	0
0	0

A B

$$
\mathbb{E}\left[\left(\sum_{i, j} e_{i, j}\right)^{t}\right]=\sum_{i_{1}, j_{1}} \cdots \sum_{i_{t}, j_{t}} \mathbb{E}\left[e_{i_{1}, j_{1}} \ldots e_{i_{t}, j_{t}}\right]
$$

$$
\boldsymbol{e}_{1,1} e_{2,3} e_{2,1} \ldots e_{i_{t}, j_{t}}
$$

A B

$$
\mathbb{E}\left[\left(\sum_{i, j} e_{i, j}\right)^{t}\right]=\sum_{i_{1}, j_{1}} \cdots \sum_{i_{t}, j_{t}} \mathbb{E}\left[e_{i_{1}, j_{1}} \ldots e_{i_{t}, j_{t}}\right]
$$

-

\circ
\vdots
0
-

$$
e_{1,1} \boldsymbol{e}_{\mathbf{2 , 3}} e_{2,1} \ldots e_{i_{t}, j_{t}}
$$

A B

$$
\mathbb{E}\left[\left(\sum_{i, j} e_{i, j}\right)^{t}\right]=\sum_{i_{1}, j_{1}} \cdots \sum_{i_{t}, j_{t}} \mathbb{E}\left[e_{i_{1}, j_{1}} \ldots e_{i_{t}, j_{t}}\right]
$$

$$
e_{1,1} e_{2,3} e_{\mathbf{2}, \mathbf{1}} \ldots e_{i_{t}, j_{t}}
$$

A B

$$
\mathbb{E}\left[\left(\sum_{i, j} e_{i, j}\right)^{t}\right]=\sum_{i_{1}, j_{1}} \cdots \sum_{i_{t}, j_{t}} \mathbb{E}\left[e_{i_{1}, j_{1}} \ldots e_{i_{t}, j_{t}}\right]
$$

$$
e_{1,1} e_{2,3} e_{2,1} \ldots \boldsymbol{e}_{\boldsymbol{i}_{\boldsymbol{t}}, \boldsymbol{j}_{\boldsymbol{t}}}
$$

A B

$$
\begin{gathered}
\mathbb{E}\left[\left(\sum_{i, j} e_{i, j}\right)^{t}\right]=\sum_{i_{1}, j_{1}} \cdots \sum_{i_{t}, j_{t}} \mathbb{E}\left[e_{i_{1}, j_{1}} \ldots e_{i_{t}, j_{t}}\right] \\
e_{1,1} e_{2,3} e_{2,1} \ldots e_{i_{t}, j_{t}}
\end{gathered}
$$

- Connected components \leftrightarrow independence

$$
\mathbb{E}[\underbrace{\left(e_{i_{1}, j_{1}} \ldots e_{i_{t_{1}}, j_{t_{1}}}\right)}_{G_{1}} \ldots G_{k}]=\prod_{i=1}^{n} \mathbb{E}\left[G_{i}\right]
$$

A
 B

$$
\begin{gathered}
\mathbb{E}\left[\left(\sum_{i, j} e_{i, j}\right)^{t}\right]=\sum_{i_{1}, j_{1}} \cdots \sum_{i_{t}, j_{t}} \mathbb{E}\left[e_{i_{1}, j_{1}} \ldots e_{i_{t}, j_{t}}\right] \\
e_{1,1} e_{2,3} e_{2,1} \ldots e_{i_{t}, j_{t}}
\end{gathered}
$$

- Connected components \leftrightarrow independence

$$
\mathbb{E}[\underbrace{\left(e_{i_{1}, j_{1}} \ldots e_{i_{t_{1}}, j_{t_{1}}}\right)}_{G_{1}} \ldots G_{k}]=\prod_{i=1}^{n} \mathbb{E}\left[G_{i}\right]
$$

- Isolated edges:

$$
\mathbb{E}\left[e_{i, j}\right]=\mathbb{P}\left(A_{i}>B_{j}\right)-\frac{1}{2}=0 .
$$

A B
Sufficient to count cherry graphs!

A B

Sufficient to count cherry graphs!

- More than $t / 2$ connected components:

At least one with one edge.

Sufficient to count cherry graphs!

- More than $t / 2$ connected components:

At least one with one edge.

- Less than $t / 2$ connected components:

$$
\# \text { graphs }=O\left(n^{\frac{3 t-1}{2}}\right) \ll n^{\frac{3 t}{2}} .
$$

Since $|\mathbb{E}[G]|$ is bounded, can be ignored.

Sufficient to count cherry graphs!

- More than $t / 2$ connected components:

At least one with one edge.

- Less than $t / 2$ connected components:

$$
\# \text { graphs }=O\left(n^{\frac{3 t-1}{2}}\right) \ll n^{\frac{3 t}{2}} .
$$

Since $|\mathbb{E}[G]|$ is bounded, can be ignored.

- Focus on
- Exactly $t / 2$ components;
- At least 2 edges in each;

Sufficient to count cherry graphs!

- More than $t / 2$ connected components:

At least one with one edge.

- Less than $t / 2$ connected components:

$$
\# \text { graphs }=O\left(n^{\frac{3 t-1}{2}}\right) \ll n^{\frac{3 t}{2}} .
$$

Since $|\mathbb{E}[G]|$ is bounded, can be ignored.

- Focus on
- Exactly $t / 2$ components;
- Exactly 2 edges in each;

By the Cramér-Wold criteria:

$$
\left(\tilde{N}_{A>B}, \tilde{N}_{B>C}, \tilde{N}_{C>A}\right)=\underset{\mathbb{\Downarrow}}{ }\left(\tilde{N}_{1}, \tilde{N}_{2}, \tilde{N}_{3}\right) \xrightarrow{d} \mathcal{N}(0, \Sigma)
$$

For every $\alpha=\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$:

$$
\sum_{i=1}^{3} \alpha_{i} \tilde{N}_{i} \xrightarrow{d} \sum_{i=1}^{3} \alpha_{i} X_{i}, \text { where } X=\left(X_{1}, X_{2}, X_{3}\right)^{T} \sim \mathcal{N}(0, \Sigma) .
$$

For every $\alpha=\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$:

$$
\mathbb{E}\left[\left(\sum_{i=1}^{3} \alpha_{i} \tilde{N}_{i}\right)^{t}\right] \rightarrow \mathbb{E}\left[\left(\sum_{i=1}^{3} \alpha_{i} X_{i}\right)^{t}\right]= \begin{cases}0 & \text { if } t \text { is odd } \\ \left(\alpha^{T} \Sigma \alpha\right)^{t / 2}(t-1)!! & \text { if } t \text { is even }\end{cases}
$$

We allow quite general sequence of dice!
$-\ell \geq 3$ dice: $\quad \mathbf{D}=\left(D^{(1)}, D^{(2)}, \ldots, D^{(\ell)}\right) ;$

- We look at the laws of sequence of dice $\left\{\mathbf{D}_{m}\right\}_{m}$;
- Different laws: $\quad D^{(j)}(m)$ has iid faces with law $\mathcal{L}_{m}^{(j)}$;
- Different dice are independent;
- Different number of faces: $n_{j}(m)$;
(for convenience, $n_{j}=f_{j} \cdot m$, with $f_{j} \leq 1$.)

Single edge:

$$
\mathbf{p}_{k}=\mathbf{p}\left(\mathcal{L}^{(k)}, \mathcal{L}^{(k+1)}\right):=\mathbb{P}\left(D_{1}^{\left.k k_{0}^{(k)}>D_{1}^{(k+1)}\right)}=\mathbb{E}\left(\mathbb{1}_{D_{1}^{(k)}>D_{1}^{(k+1)}}\right)\right.
$$

Cherry of type $(k+1,3)$:

$$
\mathbf{q}_{k}=\mathbf{q}\left(\mathcal{L}^{(k)}, \mathcal{L}^{(k+1)}\right):=\mathbb{P}\left(D_{1}^{(k)}>D_{1}^{(k+1)}, D_{2}^{(k)}>D_{1}^{(k+1)}\right)
$$

Cherry of type $(k, 2)$:

$$
\mathbf{r}_{k}=\mathbf{r}\left(\mathcal{L}^{(k)}, \mathcal{L}^{(k+1)}\right):=\mathbb{P}\left(D_{1}^{(k)}>D_{1}^{(k+1)}, D_{1}^{(k)}>D_{2}^{(k+1)}\right)
$$

Cherry of type $(k, 1)$:

$$
\begin{array}{ccc}
k-1 & k & k+1 \\
0 & 0
\end{array}
$$

$$
\mathbf{s}_{k}=\mathbf{s}\left(\mathcal{L}^{(k-1)}, \mathcal{L}^{(k)}, \mathcal{L}^{(k+1)}\right):=\mathbb{P}\left(D_{1}^{(k-1)}>D_{1}^{(k)}>D_{1}^{(k+1)}\right)
$$

From $\mathbf{p}_{k}, \mathbf{q}_{k}, \mathbf{r}_{k}, \mathbf{s}_{k}$ we have many important quantities. Let:

$$
\begin{aligned}
\sigma_{k} & :=\left[f_{k} f_{k+1}\left(f_{k}\left(\mathbf{q}_{k}-\mathbf{p}_{k}^{2}\right)+f_{k+1}\left(\mathbf{r}_{k}-\mathbf{p}_{k}^{2}\right)\right)\right]^{1 / 2} \\
\gamma_{k} & :=\frac{1}{\sigma_{k-1} \sigma_{k}} f_{k-1} f_{k} f_{k+1}\left(\mathbf{s}_{k}-\mathbf{p}_{k-1} \mathbf{p}_{k}\right)
\end{aligned}
$$

Then, we have

$$
\begin{aligned}
\mathbb{E}\left(N_{k}\right) & =f_{k} f_{k+1} m^{2} \mathbf{p}_{k}, \\
\operatorname{Var}\left(N_{k}\right) & =\sigma_{k}^{2} m^{3}+o\left(m^{3}\right), \quad \text { and } \\
\operatorname{Corr}\left(N_{k-1}, N_{k}\right) & =\gamma_{k}+o(1)
\end{aligned}
$$

Assumptions

Fix $\ell \geq 3$. Assume the sequence $\left\{\mathbf{D}_{m}\right\}_{m}$ satisfies
(i) For $k=1, \ldots, \ell$ the relative sizes $f_{k}=f_{k}(m)$ satisfy

$$
f_{k}(m) \rightarrow f_{k}(\infty) \in(0,1], \quad \text { as } m \rightarrow \infty
$$

(ii) For $k=1, \ldots, \ell$ the rate of growth of the mean and variance of N_{k} and covariance between N_{k-1} and N_{k} satisfy

$$
\begin{aligned}
& \mathbf{p}_{k}(m) \rightarrow \mathbf{p}_{k}(\infty) \in(0,1] \\
& \sigma_{k}(m) \rightarrow \sigma_{k}(\infty) \in(0, \infty) \\
& \gamma_{k}(m) \rightarrow \gamma_{k}(\infty) \in[-1,1]
\end{aligned}
$$

as $m \rightarrow \infty$.

Theorem

Under Assumptions, we have

$$
\left(\tilde{N}_{1}, \tilde{N}_{2}, \ldots, \tilde{N}_{\ell}\right) \underset{n \rightarrow \infty}{\stackrel{d}{\longrightarrow}} \mathcal{N}(0, \Sigma)
$$

where

$$
\Sigma=\left(\begin{array}{cccccc}
1 & \gamma_{2}(\infty) & 0 & \cdots & 0 & \gamma_{1}(\infty) \\
\gamma_{2}(\infty) & 1 & \gamma_{3}(\infty) & \cdots & 0 & 0 \\
0 & \gamma_{3}(\infty) & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 1 & \gamma_{\ell}(\infty) \\
\gamma_{1}(\infty) & 0 & 0 & \cdots & \gamma_{\ell}(\infty) & 1
\end{array}\right)
$$

Connecting CLT with intransitivity, ties allowed

No-tie dice: $\mathbb{P}\left(D^{(1)} \triangleright \ldots \triangleright D^{(\ell)} \triangleright D^{(1)}\right) \rightarrow \mathbb{P}\left(\mathcal{N}(0, \Sigma) \in(0, \infty)^{\ell}\right)$.

No-tie dice: $\mathbb{P}\left(D^{(1)} \triangleright \ldots \triangleright D^{(\ell)} \triangleright D^{(1)}\right) \rightarrow \mathbb{P}\left(\mathcal{N}(0, \Sigma) \in(0, \infty)^{\ell}\right)$.
Theorem (Connecting CLT with intransitivity, ties allowed)
Fix $\ell \geq 3$ and assume $\left\{\mathbf{D}_{m}\right\}_{m}$ satisfy the Assumptions. Suppose that there exists $\delta>0$ and a function $r(m)$ with $\lim _{m \rightarrow \infty} r(m)=+\infty$, for which

$$
\frac{1}{2}-\mathbf{p}_{k}-\frac{1}{2} \mathbb{P}\left(D_{1}^{(k)}=D_{1}^{(k+1)}\right) \geq-\frac{\delta}{m^{1 / 2} r(m)}, \quad k=1, \ldots, \ell
$$

for every m sufficiently large, and in addition

$$
\lim _{m \rightarrow \infty} \mathbb{P}\left(D_{1}^{(k)}(m)=D_{1}^{(k+1)}(m)\right)=0 \quad \text { for } k=1, \ldots, \ell
$$

Then

$$
\limsup _{m \rightarrow \infty} \mathbb{P}\left(D^{(1)} \triangleright \cdots \triangleright D^{(\ell)} \triangleright D^{(1)}\right) \leq \mathbb{P}\left(\mathcal{N}(0, \Sigma) \in[0, \infty)^{\ell}\right)
$$

Important case: all laws are the same

- $\frac{1}{2}-\mathbf{p}_{k}-\frac{1}{2} \mathbb{P}\left(D_{1}^{(k)}=D_{1}^{(k+1)}\right)=0$ always holds.
- We have that asymptotically, when probability of ties go to zero:

$$
\mathbf{p}_{k} \rightarrow \frac{1}{2}, \quad \mathbf{q}_{k} \rightarrow \frac{1}{3}, \quad \mathbf{r}_{k} \rightarrow \frac{1}{3}, \quad \mathbf{s}_{k} \rightarrow \frac{1}{6}
$$

- Consequently:

$$
\begin{aligned}
\sigma_{k}(\infty) & =\sqrt{\frac{f_{k} f_{k+1}\left(f_{k}+f_{k+1}\right)}{6}} \\
\gamma_{k}(\infty) & =-\frac{f_{k-1} f_{k} f_{k+1}}{\sqrt{f_{k-1} f_{k}\left(f_{k-1}+f_{k}\right)} \sqrt{f_{k} f_{k+1}\left(f_{k}+f_{k+1}\right)}}
\end{aligned}
$$

- Covariance matrix Σ has a very interesting structure!

Lemma
In iid. case with probability of ties going to zero, we have that $\operatorname{det} \Sigma=0$ and the eigenspace of 0 has dimension 1 and is generated by a vector $x \in(0, \infty)^{\ell}$.

- Covariance matrix Σ has a very interesting structure!

Lemma
In iid. case with probability of ties going to zero, we have that $\operatorname{det} \Sigma=0$ and the eigenspace of 0 has dimension 1 and is generated by a vector $x \in(0, \infty)^{\ell}$.

Corollary
In iid. case with probability of ties going to zero:

$$
\mathbb{P}\left(D^{(1)} \triangleright \cdots \triangleright D^{(\ell)} \triangleright D^{(1)}\right) \rightarrow \mathbb{P}\left(\mathcal{N}(0, \Sigma) \in[0, \infty)^{\ell}\right)=0 .
$$

Theorem

Let $A^{(k)}=\left(a_{1}^{(k)}, \ldots, a_{m}^{(k)}\right)$ for $k \in[\ell]$ be a set of ℓ deterministic honest dice with m faces that is known to be intransitive: $A^{(k)} \triangleright A^{(k+1)}$ for every k. Consider random dice $\left(B^{(k)}: k \in[\ell]\right)$, each with n faces, where the faces of die $B^{(k)}$ are independently chosen with law

$$
B_{j}^{(k)} \sim \operatorname{Unif}\left\{a_{i}^{(k)}: i \in[m]\right\},
$$

that is, uniformly over the faces of die $A^{(k)}$. Then, there is a constant $c>0$, depending only on the set of dice $A^{(k)}$, such that

$$
\begin{equation*}
\mathbb{P}\left(B^{(1)} \triangleright B^{(2)} \triangleright \cdots \triangleright B^{(\ell)} \triangleright B^{(1)}\right)=1+o\left(e^{-c n}\right), \quad \text { as } n \rightarrow \infty . \tag{1}
\end{equation*}
$$

Theorem

Fix $\ell \geq 3$. It holds $\frac{\log \left|\mathcal{D}_{\triangleright, \ell}(n)\right|}{n} \rightarrow \ell \log \ell$.

Theorem

Fix $\ell \geq 3$. It holds $\frac{\log \left|\mathcal{D}_{\triangleright, \ell}(n)\right|}{n} \rightarrow \ell \log \ell$.

- We saw $\frac{\left|\mathcal{D}_{\nabla, \ell}(n)\right|}{\left|\mathcal{D}_{\ell}(n)\right|} \rightarrow 0$.
- Let $\mathcal{Q}_{\ell}(n)$ be a set of close to intransitive words:

$$
\begin{aligned}
\mathcal{Q}_{\ell}(n) & :=\left\{\mathbf{W} \in \mathcal{W}_{\ell}(n) ; 2 N_{i, i+1}>n^{2}-n^{3 / 2}\left(1+\frac{1}{2 n}\right)^{1 / 2}\right\} \\
& =\left\{\left(\tilde{N}_{1}, \ldots, \tilde{N}_{\ell}\right) \in\left(-\frac{\sqrt{6}}{2}, \infty\right)\right\}
\end{aligned}
$$

Then, the CLT implies $\frac{\left|\mathcal{Q}_{\ell}(n)\right|}{\left|\mathcal{D}_{\ell}(n)\right|} \rightarrow c>0$.
Hence, $\left|\mathcal{Q}_{\ell}(n)\right|$ has exponential growth of order $\ell \log \ell$.

- Build intransitive words by concatenating to $\mathbf{W} \in \mathcal{Q}_{\ell}(n)$ a highly intransitive word.

Obrigado!

[^0]: Sauantamanazine

