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Abstract

Frequently, real-time tracking of epidemics is faced with a concerning issue, the report-
ing delays of cases and deaths. Delays might occur due to logistical problems, laboratory
confirmation, and other reasons. Being able to correct the delay is essential to decision-
making with the goal of containing an epidemic. In some cases, the epidemic might be
associated with more than one disease, Dengue and Chikungunya are common examples
of this phenomenon. We propose a multivariate model to correct reporting delays and
accommodate the above-mentioned cases. The model is estimated using the Integrated
Nested Laplace Approximation method with the aim of providing faster results.

Keywords: Nowcasting. Dengue. Chikungunya. INLA. Bayesian hierarchical model.
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Resumo

Frequentemente, o monitoramento em tempo real de epidemias enfrenta um problema
preocupante: os atrasos na notificação de casos e mortes. Esses atrasos podem ocorrer
devido a problemas loǵısticos, confirmação laboratorial e outros motivos. A habilidade
de corrigir esses atrasos é essencial para a tomada de decisões com o objetivo de conter
uma epidemia. Em alguns casos, a epidemia pode estar associada a mais de uma doença,
como é o caso de dengue e chikungunya, por exemplo. Nestre trabalho, propomos um
modelo multivariado para corrigir os atrasos de notificação e acomodar os casos como
dengue e chikungunya. O modelo é estimado usando o método INLA (Integrated Nested
Laplace Approximation) com o objetivo de obter resultados mais rapidamente.

Palavras-chave: Nowcasting. Dengue. Chikungunya. INLA. Modelo hierárquico bayesiano.
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Chapter 1

Introduction

When dealing with infectious diseases, surveillance systems play a pivotal role in the
assessment of the severity of an epidemic and the management of associated risks. The
purpose of such systems is to provide accurate and timely information on the situation of
a given disease to be monitored. One crucial feature of a good surveillance system is to
reflect the current situation of the phenomenon of interest, yielding information as close
to the present reality as possible. Ideally, such information is used immediately to aid in
the decision-making process to detect and contain an outbreak, for instance.

Some examples of surveillance systems in Brazil that help public authorities to make
informed decisions to disease control are the InfoDengue1 and InfoGripe2 systems. The
InfoDengue system aggregates information and produces reports on dengue, zika and
chikungunya. These diseases are arboviruses transmitted by the same mosquitoes, mainly
Aedes aegypti. In Brazil, suspected cases of these diseases must be reported into a Na-
tional Disease Notification System (SINAN). InfoGripe is an initiative to monitor se-
vere acute respiratory infection (SARI) cases reported into the Influenza epidemiological
surveillance system (SIVEP-Gripe) and was widely used during the COVID-19 pandemic
(Bastos et al., 2020).

Although timeliness is of essential importance in disease surveillance, most systems
deal with the pressing problem of reporting delays. That is, an event such as the onset
of symptoms or death by a disease can often take several days or weeks to be recorded
in the system. This can severely restrain the possibility of taking decisions based on the
information currently available since the actual situation might be significantly different
from the one reported in the system. Therefore, addressing this problem is essential to
real-time tracking of infectious diseases and decision-making.

Reporting delays might occur due to logistical difficulties, laboratory confirmation,
staffing constraints, and other reasons. From a statistical perspective, the problem of
notification delay can be seen as a momentary censorship problem, where the observed
data, such as the count of reported cases, will eventually be available. Note that there
is an important distinction between observable and true data since there are cases that
will never be reported (underreporting). The observable data are detected and will be
eventually reported, while the true counts are the observed count plus the cases that will

1https://info.dengue.mat.br/
2http://info.gripe.fiocruz.br/
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never be reported.
The task of estimating the actual observable data, and correcting for reporting delays,

is referred to in the literature as nowcasting (a combination of “now” and “forecasting”).
Statistical modeling approaches have been widely applied to nowcast diseases and increase
the accuracy of surveillance systems around the world.

However, the notification delay problem is not restricted to epidemiological data,
some approaches perform nowcasting to estimate the number of outstanding claims when
there is a delay between the occurrence of the event of interest and the insurance claim
(Renshaw and Verrall, 1998).

Usually, the delayed counts are thought of as a variable indexed by the time of occur-
rence, and the delay until reporting, denoted as nt,d – the number of events that occurred
at time t but were reported d units of time later. More details on the data structure,
as well as notation, can be found in Chapter 2. The chain-ladder technique, proposed
by Mack (1993) as a distribution-free method and used to estimate incurred-but-not-
reported (IBNR) claims reserves in insurance settings, directly handles the distribution
of nt,d. In Renshaw and Verrall (1998) it was demonstrated that the underlying model of
the chain-ladder technique is a generalized linear model with effects for time and delay.
This technique has also been expanded to include parametric and nonparametric func-
tional forms and potential covariates (England and Verrall, 2002; Barbosa and Struchiner,
2002).

More closely related to the correction of delays in disease surveillance, Bastos et al.
(2019) propose a flexible hierarchical Bayesian model based on the chain-ladder technique
that allows estimation of missing observable counts and prediction for future times. The
model expands the chain-ladder technique to accommodate spatial effects and covari-
ates, the inference is done using the Integrated Nested Laplace Approximation (INLA)
method (Rue et al., 2009). Furthermore, applications to dengue and SARI in Brazil are
performed.

With similar inference and application, Rotejanaprasert et al. (2020) present a model
that takes into account a moving window for the nowcasting of dengue in Thailand while
testing for window size and distribution of the counts. The inference is also done using
INLA, and the Negative Binomial and Poisson distributions are considered.

The counts nt,d can also be approached conditionally, by conditioning them on the
total observed at time t. This conditional approach has been employed for nowcasting
cases of Escherichia coli in Germany (Höhle and an der Heiden, 2014) and for detecting
outbreaks in the presence of reporting delays (Salmon et al., 2015), for instance. In the
latter case, the approach involves assuming a Negative Binomial distribution for the totals
and a Multinomial distribution for the conditioned nt,d. The model was implemented in
INLA and is available in R via the surveillance package.

In more recent developments, Günther et al. (2021) use a two-step process to nowcast
COVID-19 cases in Bavaria. Another proposed method is a Bayesian smoothing approach
for nowcasting by McGough et al. (2020), which has been found to perform better in the
presence of varying delays over time and has been tested on dengue data in Puerto Rico
and influenza-like illness (ILI) in the United States. The approach is available through
the R package NobBS.

In some cases, the epidemic might be associated with more than one disease. Dengue

2



and chikungunya are common examples of this phenomenon since these are associated
with the same vector, the Aedes aegypti mosquito. Hence, it is reasonable to assume that
epidemics of both diseases might occur concurrently. Figure 1.1 shows the number of
cases of dengue and chikungunya in Rio de Janeiro from 2017 to 2019. It illustrates that
there were moments with a simultaneously high number of cases of both diseases. The
dashed line represents the data observed without delay, i.e. reported in the same week
of the beginning of symptoms. Note that it hardly represents the real counts of cases.

In cases like the previously mentioned, it stands to reason that using a multivariate
scheme to correct reporting delays could potentially bring benefits and improve the cor-
rections. Dealing jointly with corrections might provide better handling of uncertainty.
Stoner and Economou (2020) propose a multivariate approach based on a Generalized
Dirichlet-Multinomial framework that allows for nowcasting and inclusion of underre-
porting in the final count of interest, but it is not suitable for approximation with INLA,
for instance, demanding an MCMC approach.

In a setting of multivariate modeling of time series data. Berry and West (2020)
present a multivariate dynamic generalized linear model for the forecasting of time series
of non-negative counts with a decouple/recouple approach that allows for information
sharing between series. Alves et al. (2022) tackle the estimation of dynamic generalized
linear models within the k-parametric exponential family through a sequential approach
based on information geometry.

In this work, we seek to propose a flexible multivariate Bayesian framework that allows
the joint correction of delays for events that present some relationship, as in the case of
infectious diseases such as dengue and chikungunya. We take inspiration from works
that expand upon the chain-ladder technique, notably Bastos et al. (2019). We aim for a
flexible and computationally cheap model without losing the ability to accommodate the
complex nature of a problem that involves multivariate correction of delays. For the case
counts, we assume a Negative Binomial distribution that has the Poisson distribution as
a limit case. The model allows for common and marginal effects for time and amount of
delay for each disease.

3
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Figure 1.1: Number of actually reported (solid line) and without delay (dashed line)
infections by dengue (blue) and chikungunya (red) in the state of Rio de Janeiro by week
of symptom onset and disease from 2017 to 2019.

Since the posterior distributions of the parameter vector are not easily obtainable,
it is necessary to use some method to sample from the resulting posterior distribution.
Instead of using the usual Markov Chain Monte Carlo (MCMC) (Gamerman and Lopes,
2006) approach for bayesian inference, we perform approximate inference using the INLA
method. This choice was made to obtain faster results and facilitate the future inclusion
of the model in a surveillance system. The use of INLA in previous works such as Bastos
et al. (2019) and Rotejanaprasert et al. (2020) also motivates the choice for approximate
inference. INLA has been shown to provide very good approximations while reducing
computation costs substantially (Rue et al., 2017) for Latent Gaussian Models (LGMs),
which is the case of our proposed model, which is essentially a generalized mixed model.

The implementation and analysis shown in this work were performed in the R pro-
gramming language v. 4.1.1 (R Core Team, 2021). The use of INLA in R is made possible
by the R-INLA3 package.

This document is organized as follows. In Chapter 2, we present the methodology,
such as the data structure and notation, the model, and the inference procedure based
on the posterior predictive distribution of the true observed count of events. In Chapter
3 we present an application of the model to simulated data and the data shown in Figure
1.1 from dengue and chikungunya arboviruses in Rio de Janeiro from 2017 to 2019 as
well as a brief discussion. Concluding remarks are presented in Chapter 4.

3https://www.r-inla.org/
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Chapter 2

Materials and Methods

2.1 Data structure

The usual data structure in a reporting delay problem is shown in Table 2.1, where
the rows are indexed by the time steps t = 1, 2, . . . , T+H and the columns by the amount
of delay D = 0, 1, . . . , D. Here, T represents the current time and is usually measured
in weeks in disease surveillance data, and D is the maximum acceptable delay, measured
in the same unit as the time steps. The nt,d cell represents the number of events that
occurred at time t but were reported d units of time later.

t
d

0 1 2 · · · D − 2 D − 1 D N

1 n1,0 n1,1 n1,2 · · · n1,D−2 n1,D−1 n1,D N1

2 n2,0 n2,1 n2,2 · · · n2,D−2 n2,D−1 n2,D N2

3 n3,0 n3,1 n3,2 · · · n3,D−2 n3,D−1 n3,D N3
...

...
...

... · · ·
...

...
...

...
T −D nT−D,0 nT−D,1 nT−D,2 · · · nT−D,D−2 nT−D,D−1 nT−D,D NT−D

T −D + 1 nT−D+1,0 nT−D+1,1 nT−D+1,2 · · · nT−D+1,D−2 nT−D+1,D−1 nT−D+1,D NT−D+1

T −D + 2 nT−D+2,0 nT−D+2,1 nT−D+2,2 · · · nT−D+2,D−2 nT−D+2,D−1 nT−D+2,D NT−D+2
...

...
...

... · · ·
...

...
...

...
T − 2 nT−2,0 nT−2,1 nT−2,2 · · · nT−2,D−2 nT−2,D−1 nT−2,D NT−2

T − 1 nT−1,0 nT−1,1 nT−1,2 · · · nT−1,D−2 nT−1,D−1 nT−1,D NT−1

T nT,0 nT,1 nT,2 · · · nT,D−2 nT,D−1 nT,D NT

T + 1 nT+1,0 nT+1,1 nT+1,2 · · · nT+1,D−2 nT+1,D−1 nT+1,D NT+1
...

...
...

... · · ·
...

...
...

...
T +H nT+H,0 nT+H,1 nT+H,2 · · · nT+H,D−2 nT+H,D−1 nT+H,D NT+H

Table 2.1: Data structure in a reporting delay problem with the observed number of
events (white cells), occurred-but-not-yet-reported number of events (light gray cells)
and the future number of events that could be of interest to forecast (dark gray cells).

We adopt the notation employed by Höhle and an der Heiden (2014) and Bastos et al.
(2019). At any given time point t, the number of events of interest (e.g., number of cases
in a particular week) is the total Nt, given by the sum of the row t in the table. Note that
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if t + d > T , the value of nt,d has not yet been observed, and thus we cannot compute
Nt without estimating such missing values. These unobserved nt,d are represented by
the light gray cells in Table 2.1, the so-called run-off triangle, and are the quantities of
interest in a nowcasting problem, the occurred-but-not-yet-reported events. Additionally,
if one is interested in forecasting H time steps ahead, the focus would be on the dark
gray cells. In this work, we focus on nowcasting since the aim is to correct reporting
delays in disease surveillance data.

When dealing with more than one disease our data can be seen as replicates of Table
2.1, one for each disease. Thus, we are interested in the totals Ni,t, and the cells of the
table can be denoted as ni,t,d, where i = 1, . . . , p indicates the i-th disease.

2.2 Model specification

Since we are dealing with more than one disease, we can now see our data as a
replicate of Table 2.1 for each disease. Thus, let ni,t,d be the count of the event of interest
for i−th disease that occurred at time step t but were reported d units of times later,
for t = 1, . . . , T , d = 1, . . . , D, and i = 1, . . . , p. We assume that ni,t,d follows a Negative
Binomial distribution and the linear predictor combines joint and marginal effects, i.e.,

ni,t,d ∼ NegBin(λi,t,d, ϕi), λi,t,d > 0, ϕi > 0, (2.1)

log(λi,t,d) = αi + βi,t + γi,d + δt + ψd + νi,txt, (2.2)

for i = 1, . . . , p; t = 1, . . . , T ; and d = 1, . . . , D.

We use the following parametrization for the Negative Binomial distribution:

If Y ∼ NegBin(λ, ϕ) ⇒ p(y|λ, ϕ) =
(

y + ϕ− 1
y

)(
λ

λ+ ϕ

)y ( ϕ

λ+ ϕ

)ϕ
, y = 0, 1, 2... (2.3)

In this parametrization for the Negative Binomial distribution, the expected value and
variance are given, respectively, by E(ni,t,d) = λi,t,d and V (ni,t,d) = λi,t,d (1 + λi,t,d/ϕi).
Note that the Poisson distribution is obtained if we take the limit as ϕ tends to infinity.
Hence, the Negative Binomial distribution can be seen as a more flexible extension of
the Poisson distribution that can accommodate overdispersion, with ϕ accounting for the
inverse of the overdispersion.

In Equation (2.2), αi is an intercept term accounting for the overall mean at log-
scale, the effects βi,t and γi,d capture the temporal evolution and the structure of the
delay mechanism, respectively, for the i−th disease count. The terms δt and ψd capture
the common structures in time and delay, respectively, for both counts of interest. These
effects are important to take the correlation between diseases into account. Moreover, xt

is a vector of regressor variables and νi,t are the respective coefficients of these external
variables varying over time and per disease. A particular case might be adopted when νi
is static, where xt still varies in time. It is also possible to set a common value νi = ν for
the coefficient if it seems suitable that the covariate in question influences both diseases
equally. The random effect components have been constrained to sum up to zero to

6



ensure the identifiability of the fixed effects such as the intercept terms and the mean
effect of the covariate.

In this specification, the effects of time and delay might evolve according to a variety
of processes, such as random walks or autoregressive processes of a given order. In
particular, a first order random walk for these effects is a possible choice and will be
further used, that is,

βi,t | (βi,t−1, σ
2
β) ∼ N(βi,t−1, σ

2
β), (2.4)

γi,d | (γi,d−1, σ
2
γ) ∼ N(γi,d−1, σ

2
γ), (2.5)

δt | (δt−1, σ
2
δ ) ∼ N(δt−1, σ

2
δ ), (2.6)

ψd | (ψd−1, σ
2
ψ ∼ N(ψd−1, σ

2
ψ), (2.7)

νi,t | (νi,t−1, σ
2
ν) ∼ N(νi,t−1, σ

2
ν), (2.8)

for i = 1, . . . , p; t = 2, . . . , T ; and d = 1, . . . , D.
Observe that the time effects evolve over time index t and the delay effects evolve

over delay index d. Since the inference is done under a Bayesian approach, the model
must be completed with the prior distributions. We can set, for instance, Gamma or
Half-Normal priors for the precision hyperparameters σ−2 of each random walk. These
priors are also suitable for ϕi. It is worth noting that time series of infection counts might
have longer temporal memory, which can be included in the model through higher-order
random walks. Moreover, we consider prior independence for the effects.

2.3 Parameter estimation and nowcasting

We are interested in the posterior distribution of

Θ =
(
{αi}, {βi,t} , {γi,d} , {δt} , {ψd} , {νi,t}, {ϕi}, σ−2

β , σ−2
γ , σ−2

δ , σ−2
ψ , σ−2

ν

)
.

which is given by

p(Θ | n) ∝ p(Θ)

p∏
i=1

T∏
t=1

D∏
d=0

{t+d<T}

p (ni,t,d | Θ) , (2.9)

where n = {ni,t,d, t + d < T} represents the observed data, p (ni,t,d | Θ) is the Negative
Binomial probability function, p(Θ) is the prior distribution given by the product of the
marginal priors for the effects and hyperparameters.

In this case, the posterior is not analytically computable, which means there is a need
for methods to obtain samples or an approximation from the posterior distribution of the
parameters. To avoid the expensiveness of MCMC methods and facilitate the practical
repeated use of the model (say, weekly in a surveillance system), we perform approximate
inference through INLA.

INLA provides results significantly faster than MCMC approaches most of the time
(Rue et al., 2017) and requires a less extensive examination of results such as convergence
and autocorrelation analysis in MCMC. In short, INLA performs a sequence of Laplace
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approximations and numerical methods for sparse matrices and is suitable for latent
Gaussian models (which is the case for the proposed model). Hence, the model can
be promptly implemented in R through R-INLA. The common procedure is to obtain
the approximated posterior and sample from it with the inla.sample.posterior()

function. After that step, we can sample nt,d from the likelihood evaluated at each
posterior sample.

Once we learn about the parameters through the posterior distribution, we can access
the posterior predictive distribution of the occur-but-not-yet observed {nt,d; T < t+d <
T +D} to perform the nowcast. The posterior predictive is given by

p (nt,d | n)
{T<t+d<T+D}

=

∫
Θ

p (nt,d | Θ) p(Θ | n)dΘ. (2.10)

The integral in (2.10) does not have an analytical solution, however, an approximation
is obtainable using a Monte Carlo approach. In practice, we take samples from the
posterior p(Θ | n) and then, for each parameter vector θ sampled from p(Θ | n), we
sample from the negative binomial likelihood p(nt,d | θ).

Once the simulated values from the posterior predictive distribution are obtained, we
can calculate the total number of notifications at time t, Nt, by summing over the rows
of Table 2.1. Some values will be known, and others will be taken from the posterior
predictive samples.

In short, these are the steps taken to obtain the posterior predictive using the Monte
Carlo approach after finding the approximation:

1. Sample ({αi}, {βi,t} , {γi,d} , {δt} , {ψd} , {νi,t}) from the joint posterior;

2. Sample nt,d from the likelihood evaluated at the sampled parameters;

3. Compute Nt =
∑D

d=0 nt,d.

Note that, in step 3, some nt,d in the sum have already been observed, while others have
been sampled in step 2.

In further applications in Chapter 3 we use vague gamma priors for the hyperparam-
eters {{ϕi}, σ−2

β , σ−2
γ , σ−2

δ , σ−2
ψ , σ−2

ν }. All of these are set to follow a gamma distribution
with parameters α = 0.01 and β = 0.01, leading to prior mean equals 1 and variance
equals 100.

2.4 Model evaluation criteria

To assess the model performance, we considered a few metrics for both point and
interval estimates. For point estimates, we chose to use the widely applied mean absolute
percentage error (MAPE), mean squared error (MSE), and mean absolute error (MAE).
In order to simplify the notation we will refer to the counts as y. Let ŷk and yk be the
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estimate and the actual value we aim to nowcast, respectively, the metrics mentioned
above are given by the following expressions:

MSE(yk, ŷk) =
1

K

K∑
k=1

(yk − ŷk)
2,

MAE(yk, ŷk) =
1

K

K∑
k=1

|yk − ŷk|,

MAPE(yk, ŷk) =
1

K

K∑
k=1

∣∣∣∣yk − ŷk
yk

∣∣∣∣× 100%,

where K denotes the number of steps predicted, or, in this case, nowcasted. Note that,
for each of the metrics, the smaller the better.

For the interval estimates we aim for some metrics that value both width of the
intervals and the ability to cover the real value. The interval score is one of the most
common choices in this case. Let y be the count we aim to nowcast, and define l and u,
respectively, as the lower and upper limits of an interval of credibility of level 1−α. The
interval score is given by the following expression:

ISα(y, l, u) = (u− l) +
2

α
× (l − y)× 1(y < l) +

2

α
× (y − u)× 1(y > u),

where 1 is the indicator function. Note that the width of the interval is taken into account
and there are also penalization terms for when the real value falls outside the interval.
Smaller values of interval score point to better interval estimates. More information on
the interval score and a visualization of the penalization can be found in Gneiting and
Raftery (2007) and Bracher et al. (2021). We also measure the width and coverage of
the intervals as a separate metric:

Width(l, u) = u− l.

We also define the coverage of interval estimates as

Coverage(y, l, u) =
1

K

K∑
k=1

1(l ≤ yk ≤ u).

The previous metrics are useful and frequently used for univariate problems. In the
case of a multivariate output, it can be cumbersome to examine the metrics for each series
separately. As an attempt to create a unified metric rather than assessing individual
time series separately, we chose to examine relative versions of interval score and interval
width. These were obtained by normalizing both metrics with respect to the real value
in the following manner:

relISα(y,u, l) =

p∑
i=1

ISα(yi, li, ui)

|yi|
,
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relWidth(y,u, l) =

p∑
i=1

Width(yi, li, ui)

|yi|
,

where i represents the i-th disease, yi is the count we aim to nowcast, li and ui are
respectively the lower and upper limits of an interval of credibility of level 1− α. Thus,
y = (y1, . . . , yp), l = (l1, . . . , lp) and u = (u1, . . . , up). Note that we are summing over
the dimensions of a multivariate observation at time t. That is, in a disease reporting
delay correction problem, the sum happens across the counts Ni,t for diseases observed
at the same point in time.

We also evaluate two multivariate scoring rules for probabilistic forecasts that con-
sider finite samples from a distribution of interest F , which in our case is the predictive
posterior. The first metric is the energy score (ES; Gneiting and Raftery 2007), a multi-
variate generalization of the continuous ranked probability score (CRPS). The main idea
behind the energy score is to measure the mean distance between the samples from the
distribution of interest and the actual value and compare them with the mean distance
inside the samples themselves. Smaller differences between the mean distances indicate
better predictions.

The second metric is the variogram score (VS; Scheuerer and Hamill 2015), a proper
scoring rule based on the geostatistical concept of variograms. Essentially, the variogram
score measures the differences between the variograms of order β for the real data and the
samples over all pairs of components of the multivariate vector. Smaller values indicate
better performance. Let m be the number of samples from the distribution of interest
F , the expressions for the energy score and variogram score are as follows:

ES(F,y) =
1

m

m∑
i=1

∥Xi − y∥ − 1

2m2

m∑
i=1

m∑
j=1

∥Xi −Xj∥ ,

VSβ(F,y) =

p∑
i=1

p∑
j=1

wi,j

(∣∣y(i) − y(j)
∣∣β − 1

m

m∑
k=1

∣∣∣X(i)
k −X

(j)
k

∣∣∣β)2

,

whereX represents the vector samples taken from the posterior predictive and y is the real
observed vector. These and other metrics for probabilistic forecasts, although mostly uni-
variate, are implemented and can be readily used through the R package scoringRules
(Jordan et al., 2019). In further applications, we use the variogram score with weights
wi,j = 1 and β = 0.5, which presented better discrimination against miscalibration in
Scheuerer and Hamill (2015).

It is worth mentioning that variogram and energy scores are originally defined using
the expectation with respect to the multivariate distribution F instead of the sample
means. However, for finite samples, it is common to use the latter as it is shown here.
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Chapter 3

Application

3.1 Study with artificial dataset

In this section, we evaluate the proposed model using artificially generated data.
Subsection 3.1.1 covers the processes underlying data generation, the application of the
proposed model, and its ability to recover the real values for the effects and hyperparam-
eters. In subsection 3.1.2, we compare the nowcasting results of the proposed model to
those of two other models.

3.1.1 Data generation and application of proposed model

In order to validate the proposed model and its capacity to estimate delay and time
effects, we propose an application with a simulated dataset that considers two time series
N1 and N2, representing two disease counts that have some similarity in their evolution.
We generate the effects according to random walks of order 1, as explicit in Equations
(2.4) to (2.8), except for the common delay effect ψd, which was modified to imitate
the behavior of the real data. The evolution of the common delay effect is governed by
Equation (3.1), that is, the effect for a delay of d units of time is set to follow a truncated
normal distribution centered and truncated at the previous value, ensuring a decreasing
effect over the amount of delay, this is:

ψd ∼ T N (−∞,ψd−1)(ψd−1, σ
2
ψ). (3.1)

In this study we use one covariate x, taking the form of a scalar with the behavior
dictated by a random walk of order 1. The coefficient νt is also considered to follow a
random walk of order 1, and in this study, we consider a common coefficient for both
time series. The true values of the inverse overdispersion hyperparameters ϕi, i = 1, 2
and the precision hyperparameters for Equations (2.4) to (2.8) were fixed according to
the values presented in Table 3.1.
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Hyperparameter Real value
ϕ1 5
ϕ2 5
σ−2
β 50

σ−2
γ 50
σ−2
δ 5
σ−2
ψ 5

σ−2
ν 1/2

Table 3.1: Hyperparameters used in the generation of the artificial dataset.

The study considered a window of T = 200 time steps and a maximum possible delay
of D = 15 time steps. Both generated time series are depicted in Figure 3.1. The scale
of the y-axis is due to the difficulty of generating more well-behaved values once we are
working in the logarithmic scale when generating the effects of time, delay, and covariate
and computing the linear predictor. Nonetheless, some correlation between moments of
peak can still be observed. Notably, the selection of a random walk of order one to the
time effect led to a less smooth curve than in real applications, which may theoretically
impose greater difficulty on the nowcasting process. In summary, the generated dataset
presents a behavior comparable to or more challenging than the real dataset, which
motivates this work. To facilitate a clearer analysis of the relation between both time
series, Appendix A is included, containing a standardized representation of the generated
data.
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nt
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Figure 3.1: Simulated time series used in the study.

All the effects of time and delay were modeled by random walks of order 1, and a
vague gamma prior mentioned in section 2.3 was considered for the precision hyperpa-
rameters. The point estimates were obtained via the posterior median, and the 95%
credible intervals were obtained by taking equal probability for the tails of the posterior
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distribution. To obtain the nowcasting estimates, a sample of size 1000 from the posterior
predictive of N1 and N2 was considered.

Table 3.2 presents the real values, and the point and interval estimates for the fixed ef-
fects in the model, which include the intercept terms and the mean effect of the covariate.
As it is presented in the table, the model can accurately recover such parameters.

Effect True value Posterior Median 95% Credible interval
α1 7.20 7.37 (6.90; 7.84)
α2 3.74 3.89 (3.42; 4.35)
ν -10.99 -11.54 (-14.19; -8.90)

Table 3.2: Point estimates and 95% credible intervals for fixed effects in the proposed
model, with true values used in the generation of the artificial dataset.

The random effects estimates, along with the respective real values, are shown in
Figure 3.2. We note that a considerable portion of the real parameters falls within the
credible intervals. Moreover, the point estimates seem to track the trends in the real
parameters, especially for the common time and delay effects δt and ψd.
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Figure 3.2: Real values, posterior median, and respective 95% credible intervals for the
random effects in the proposed model.

Figure 3.3 displays the nowcasting estimates, the observed data at the moment, and
the actual observed data for N1 and N2. We observe that the corrections are notably
accurate for N1. For N2, the corrections do not match the observed data as closely
towards the end of the time series. Nonetheless, the model succeeds in correcting for
the steep rise in the observed data for N2 when compared to the data available at the
moment, and the true values are inside the interval estimates throughout most of the time
frame. The figure also gives a sense of the increase in uncertainty as the number of time
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steps advances, an expected behavior since more values are unknown when computing
the nowcasts for more recent values.
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Figure 3.3: Nowcasting estimates, data observed at the moment of predictions, and true
observed data artificially generated in the simulation study.

The true values and estimates for the hyperparameters are shown in Table 3.3. The
model managed to capture the real values of the precisions of most of the hyperparame-
ters. Except for an underestimation of precision, and hence overestimation of uncertainty,
for the marginal delay effects γ1,d and γ2,d.

Hyperparameter Real value Posterior median 95% Credible interval
ϕ1 5 4.96 (4.70; 5.25)
ϕ2 5 5.21 (4.80; 5.66)
σ−2
β 50 41.49 (29.71; 60.41)

σ−2
γ 50 25.95 (14.04; 50.12)
σ−2
δ 5 4.59 (3.15; 6.47)
σ−2
ψ 5 4.90 (2.66; 9.55)

σ−2
ν 1/2 0.52 (0.23; 1.67)

Table 3.3: Real values, point and interval estimates for the hyperparameters.

This study provides encouraging results with respect to the use of the proposed model.
Although with less well-behaved time series than the real dataset further considered in
this study and possible future practical applications to disease data, we manage to capture
the real values of fixed and random effects, besides most of the hyperparameters. The
nowcasting corrections have shown to be accurate and successfully recover the real data
from the observed with delay.
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3.1.2 Evaluating different models

In this subsection, we compare the true model from which the data was generated with
two others in order to examine how the metrics behave and assist in model choosing. The
first is a Poisson model with the same structure, i.e. same linear predictor as in Equation
(2.2). The second model considered for this comparison is a model without the common
terms of time and delay, which can be viewed as a proxy for using two separate univariate
models for ease of workflow and implementation. It is important to mention that this
model is equivalent to two univariate models except for the precision hyperparameters for
the random walks of the effects of time and delay, which are assumed to be the same in
this case. That is, for the independent model, the effects can be seen as two realizations of
the same process, whereas using two separate models would allow for different precisions
in each effect. The linear predictor in this case is given by the following:

log(λi,t,d) = αi + βi,t + γi,d + νi,txt.

Note that, in addition to not having the common effects of time and delay, another
difference between the bivariate negative binomial model fitted to this data and the
independent model is the handling of the covariate coefficient. In the bivariate model
used in this application, the covariate coefficient is assumed to be common to both time
series, whereas in the independent model, it is considered free to vary between the two
series. This latter approach is analogous to a double-univariate model, treating each time
series separately.

Table 3.4 presents the results for the models evaluated, bold indicates the best results.
Some metrics are also presented with respect to the last observed value, such as the
last relative interval score and relative width, as a way to obtain insights regarding
the estimation under most uncertainty. It is notable that the Poisson model performs
worse than the other two in most cases, presenting smaller intervals but also smaller
coverage. Both negative binomial models perform equivalently in terms of coverage,
with the bivariate model exhibiting smaller relative widths and a larger mean interval
score. However, when examining the last relative interval score and the metrics for
the posterior predictive samples, the proposed model performs better, with significant
differences observed in the mean variogram score and the last energy and variogram
scores. While the independent model performs better in terms of the mean energy score,
its performance is comparable to the bivariate negative binomial model. In this case, the
proposed model would be a suitable choice.
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Bivariate (NB) Bivariate (Poisson) Independent

MAPE (N1) 2.156 4.246 3.805
MAPE (N2) 5.862 6.044 4.602
Coverage (N1) 0.867 0.800 0.867
Coverage (N2) 0.800 0.467 0.800
Coverage (both) 0.667 0.333 0.667
Last coverage (both) 1.000 0.000 1.000
mean relWidth 0.344 0.137 0.367
mean relIS 0.780 2.265 0.648
last relWidth 2.137 0.548 2.281
last relIS 2.137 8.094 2.281
mean Energy Score 19873.920 30157.008 19692.964
mean Variogram Score 1282.004 5664.418 2660.245
last Energy Score 66122.889 219450.046 92603.079
last Variogram Score 4710.258 72361.541 31261.713

Table 3.4: Performance results for models considered.

As expected, the metrics point to the true model used to generate the data, the
bivariate Negative Binomial model with common and marginal effects. For more detail
on the nowcasting estimates for each model, Figures A.2 and A.3 in the Appendix show
the estimates according to the Poisson and Independent models, respectively.

3.2 Dengue and chikungunya in Rio de Janeiro

In this section, we present an application of the proposed model to weekly data of
dengue and chikungunya in the state of Rio de Janeiro from 2017 to 2019, shown in Figure
1.1. The data consists of suspected cases of dengue and chikungunya in the city of Rio
de Janeiro reported in the Sistema de Informação de Agravos de Notificação (SINAN).
The aggregated data are available at InfoDengue.

This section is divided into two parts. In subsection 3.2.1 we explore the dataset,
motivating the choice of the maximum possible delay, and conducting a sliding window
analysis evaluating a simpler formulation of the model with different window sizes to
assess the performance. In subsection 3.2.2 we apply different structures of the model
using the number of tweets with mention of the term “dengue” as a covariate. Four
models are considered with different formulations for the linear predictor, including or
excluding some of the effects. The application takes into account the sliding window size
chosen from subsection 3.2.1.

3.2.1 Sliding windows analysis

The mean time between the onset of symptoms and reporting was 5.5 and 4.3 weeks,
for chikungunya and dengue, respectively. At the same time, the median time is 3 and 2
weeks, respectively, for dengue and chikungunya. Although the mean and median delay
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might seem low, the difference between these measures in both cases can give us a sense
of the asymmetry in this case. In fact, fewer than 80% of cases are reported within 5
weeks of symptoms onset.

Table 3.5 shows the cumulative proportion of reported cases within 5, 10, 15, and
20 weeks. We observe that over 90% (and close to 95%) of cases are reported within 15
weeks. Figure 3.4 shows the non-cumulative proportions of cases reported by the number
of weeks of delay along with a 1% threshold dashed line, note that after 15 weeks both
dengue and chikungunya present less than 1% of weekly reported cases. Consequently,
we have decided to use a maximum possible delay of 15 weeks.

Delay (weeks) Dengue (%) Chikungunya (%
5 76.40 67.25
10 89.35 86.01
15 94.87 93.46
20 97.46 96.59

Table 3.5: Cumulative percentage of reported cases for dengue and chikungunya by
number of weeks of delay.

We aim to nowcast the number of cases in a given week for dengue and chikungunya.
Hence, the proposed model with p = 2 will be applied. Our first approach is to ap-
ply a simpler formulation of the model in Equation (2.2), without the covariate term,
considering sliding windows of different sizes.

In order to evaluate the capacity of the model to recover the observable counts in
different stages of an epidemic – in fact, we are especially interested in the ability to
perform accurate corrections in moments of an increasing number of cases – we performed
the sliding windows analysis from March 27th to September 8th, 2019 (epidemiological
weeks 13 to 37 from 2019), since this period contemplates the rise and fall of the number
of cases for both dengue and chikungunya. This behavior can be observed in Figure 1.1.

All models presented throughout this section consider a random walk of order 2 for
the time effects, explicit in Equation (3.2), and a random walk of order 1 for delay effects
and the covariate’s coefficient. We considered the same vague gamma prior from section
2.3 for the precision hyperparameters 1/σ2 in Equations (2.4) to (2.8) and the size of the
Negative Binomial distribution ϕi.

βt | (βt−1, βt−2, σ
2
β) ∼ N(2βt−1 − βt−2, σ

2
β) (3.2)

After calculating the approximation, a sample of size 1000 was taken from the joint
posterior in the inference procedure. The point estimations are given by the median of
the posterior predictive distribution, and we took the 95% credible intervals considering
the same probability for the tails of the posterior predictive for the interval estimation.

Table 3.6 displays the window sizes, as well as the time required to evaluate the models
and performance metrics. These experiments were performed on a computer running a
64-bit Windows 10 operating system, equipped with an Intel i5-8265S CPU and 12 GB
of RAM. In addition to the mean of metrics across all the correction windows, we also
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Figure 3.4: Proportion of reported cases of dengue (Blue) and chikungunya (Red) by
number of weeks of delay along with 1% of reported cases threshold (dashed line).

present some metrics averaged over the last predictions made for each window. Assessing
these metrics is particularly insightful because they concern the predictions under the
most uncertainty.

The results indicate that increasing the window size leads to better performance,
except for the time taken to run the models. However, a 70 weeks window size provides
comparable results to using the full data, which is equivalent to a window size of 116,
despite the latter taking twice as long to run. Moreover, we observe that as the window
size increases, the relative interval widths also increase, while the relative interval scores
decrease. This stands to reason, given that wider intervals (usually) result in better
coverage and smaller penalty terms in the interval scores. The metrics averaged over the
last predictions yield similar results. Mean energy and variogram scores also point to
bigger windows with comparable results for a window of size 70 and the full data.

Given the results in Table 3.6 we can proceed to a more detailed analysis with a
window of size 70. Figure 3.5 displays the results of the corrections of chikungunya cases
for each window. Note that, in most cases, the proposed model is able to recover the
count, estimating its value close to the actual observed data several weeks later. This
happens especially during periods of increasing and peak numbers of cases, which is
highly relevant in a nowcasting problem. For moments a few weeks later the peak, the
model is unable to capture the actual height of the peak accurately, but it still succeeds
in estimating the current number of cases. This is evident in windows 16 and 17, for
example. The corrections for dengue are displayed in Figure B.1 in Appendix B and
show similar results.
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Window Size (weeks)

30 40 50 60 70 Full data

Fit time (in minutes) 2.410 3.540 4.730 6.480 8.100 17.830
MAPE (Chikungunya) 11.479 10.685 9.662 8.868 8.191 7.753
MAPE (Dengue) 9.589 9.847 9.228 8.228 7.625 8.052
Coverage (Chikungunya) 0.237 0.351 0.433 0.516 0.569 0.612
Coverage (Dengue) 0.258 0.254 0.307 0.374 0.426 0.378
Coverage (both) 0.192 0.222 0.283 0.358 0.404 0.373
Last coverage (both) 0.840 0.960 0.960 1.000 1.000 1.000
mean relWidth 0.336 0.364 0.404 0.453 0.497 0.526
mean relIS 4.279 3.890 3.264 2.586 2.169 2.202
mean last relWidth 1.685 1.793 1.910 2.130 2.347 2.528
mean last relIS 2.223 1.898 1.956 2.130 2.347 2.528
mean Energy Score 16775.018 16778.206 16768.821 16744.975 16732.822 16731.638
mean Variogram Score 19942.819 19664.789 19423.708 19193.965 19022.499 19082.418

Table 3.6: Window sizes considered, time taken to fit the model, and respective perfor-
mance metrics, with optimum values in bold.

Figure 3.5: Nowcasting for each of the 25 windows of 70 weeks to which the model was
fitted.
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In the next subsection, we compare a few formulations of the model with sliding
windows of size 70 weeks and evaluate the results.

3.2.2 Comparing model structures

In this subsection, we aim to compare different model structures using a sliding win-
dow of size 70 weeks, as determined in subsection 3.2.1. We include the number of tweets
mentioning the word “dengue” located in Rio de Janeiro, available from the InfoDengue
system, as a covariate. Figure 3.6 shows the time series of this covariate. We notice that
a dynamic coefficient may be suitable as there appears to be a similar trend between the
series of tweets and the number of cases of dengue and chikungunya in 2019. However,
the same similarity does not happen during the epidemic moment of 2018, which may
indicate that the effect of the number of tweets becomes more significant as we approach
2019.
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Figure 3.6: Number of tweets published in Rio de Janeiro mentioning the term “dengue”.
From 2017 to 2019.

Table 3.7 displays the models considered for the present application, along with their
corresponding linear predictor structures. To account for the possibility of using two
separate univariate models, we include a model without the common terms as a proxy,
as described in the previous section. A comparison between results when using two
univariate models and the proxy bivariate model used here is presented in Figures C.1
and C.2 in Appendix C. Additionally, we consider the complete proposed model, as well
as two specific cases: the proposed model with a fixed coefficient for the covariate and
the model without the covariate. It is worth noting that all models in the Table are
particular cases of M1.
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Model description Linear predictor (log(λi,t,d))
M0 - Independent model (model without common effects) αi + βi,t + γi,d
M1 - Complete model αi + βi,t + γi,d + δt + ψd + νi,txt
M2 - Complete model with static covariate effect αi + βi,t + γi,d + δt + ψd + νixt
M3 - Model without the covariate αi + βi,t + γi,d + δt + ψd

Table 3.7: Models considered in the application and respective linear predictor structures.

The performance results for each model are presented in Table 3.8. It is observed
that M2 performs better when considering the interval metrics, and is the second-best
model when considering both MAPE, with an error difference of less than 0.1% to M0.
The baseline M0 performs slightly better when examining MAPE, variogram, and energy
scores. Despite this, M0 is the worst of the four models when considering interval metrics.

M0 M1 M2 M3

MAPE (Chikungunya) 8.042 8.102 8.090 8.191
MAPE (Dengue) 7.419 7.551 7.555 7.625
Coverage (both) 0.392 0.401 0.400 0.404
mean relWidth 0.517 0.500 0.497 0.497
mean relIS 2.188 2.159 2.153 2.169
mean last relWidth 2.482 2.344 2.313 2.347
mean last relIS 2.482 2.344 2.313 2.347
mean Energy Score 16731.6 16731.8 16733.7 16732.8
mean Variogram Score 18950.2 19028.0 19031.0 19022.5

Table 3.8: Performance metrics for models used in the application.

Although the differences in model performance may seem small when comparing the
aggregate results, some conclusions become clearer when examining certain metrics across
the sliding windows as shown in Figure 3.7. Notably, models with the common terms
present smaller intervals without sacrificing the interval score, which means the coverage
is maintained. Concerning the point estimates, the results are not as clear as for the
interval metrics. However, we can see that M0 yields larger errors for chikungunya in
moments of high number of cases such as windows 10 to 12. In contrast, M0 shows
similar performance for dengue corrections when compared to the bivariate models.
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Figure 3.7: Relative interval width, relative interval score, and MAPE for each of the 25
sliding windows colored by model.

In order to investigate the time and delay structure estimates, we chose to fit M2 to the
full data after observing the results in Table 3.8 and Figure 3.7. The decision to use the
full data was made to obtain estimates of time effects for all the time steps and compare
them to the original time series. The results are presented in Figure 3.8. Notably, the
time effects follow the actual behavior of both original time series in Figure1.1. As for
the delay, the effects exhibit a similar pattern to the proportion bars presented in Figure
3.4, with a higher proportion of reports for dengue at the beginning, and an inversion as
the amount of delay increases.
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Figure 3.8: Effects of time and delay for dengue (blue) and chikungunya (red).

Table 3.9 displays the intercept terms α1 and α2, as well as the fixed coefficients for
the number of tweets ν1 and ν2. We observe a higher intercept term for the chikungunya
cases, which stands to reason since the number of chikungunya cases is higher throughout
most of the analyzed period. Although the coefficients for the covariate effect do not
significantly differ from 0 based on the interval estimates, we retained them in the model.

Effect Median 95% credible interval
α1 (Chikungunya) 2.77 ( 2.63; 2.92)
α2 (Dengue) 2.46 ( 2.32; 2.61)
ν1 (Chikungunya) 0.02 (-0.02; 0.07)
ν2 (Dengue) 0.01 (-0.03; 0.06)

Table 3.9: Fixed effects estimates for M2 with full data.

The posterior estimates of ϕi and precision hyperparameters for the same model are
presented in Table 3.10. The smaller precision for the correlation-inducing parameters,
δd and ψd, when compared to the β and gamma terms, show that these have more
importance in the linear predictor and the model is not close to a double univariate
approach.
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Hyperparameter Median 95% credible interval
ϕ1 3.66 (3.35; 3.99)
ϕ2 4.43 (4.04; 4.87 )
σ−2
β 2848.90 (1180.54; 5824.83)

σ−2
γ 104.59 (43.40; 256.19)
σ−2
δ 287.10 (151.71; 532.99)
σ−2
ψ 9.56 (3.96; 18.94)

Table 3.10: Posterior estimates of hyperparameters for M2 with full data.

The low values for ϕi, i = 1, 2, indicate that the Poisson distribution is likely not fit for
this application. To examine this, we performed nowcasting with a Poisson distribution
and compared it with the Negative Binomial approach for one of the windows considered
(Window 11). The corrections are displayed in Figure 3.9. We notice that although the
Poisson model performs better for chikungunya correction, it confidently underestimates
the number of dengue cases, yielding point estimates that fall below the true value and
credible intervals that do not contain it.

(a) (b)

(c) (d)

Figure 3.9: Nowcasting using the Negative Binomial (panels (a) and (b)), and the Poisson
(panels (c) and (d)) distributions considering full data until May 19th, 2019.

3.2.3 Prior sensitivity analysis

Since we are using a different prior from the default INLA Gamma prior for the
precision and ϕi hyperparameters, it is of interest to assess the sensitivity of the model to
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the prior choice and its implications in the final nowcasting estimates. We consider some
prior distributions suggested for hierarchical models from Gelman (2006) implemented
for use as priors for precision hyperparameters in INLA by Gómez-Rubio (2020). The
priors examined in the study are shown in Table 3.11.

Default Gamma(1, 5× 10−5)
Gamma(0.001, 0.001) used in this work
Half-Normal with precision τ0 = 0.001
Half-Cauchy with scale parameter γ = 25
Half-t with 3 degrees of freedom
Improper Uniform prior

Table 3.11: Priors considered for a sensitivity analysis

For each of the priors, we applied the model M2 to the same data used to obtain
the estimates in Figure 3.8 and Table 3.10, covering 140 weeks of data from January
1st, 2017 to September 8th, 2019. The resulting posterior marginals for each of the
hyperparameters σ−2 according to the priors of choice are displayed in Figure 3.10. We
notice that, for the overdispersion hyperparameters ϕi, the prior choice does not seem to
influence the posterior.

In contrast, the posterior distributions for the precisions of time and delay effects
present different behaviors according to the priors of choice. The Half-Normal, Half-t,
Half-Cauchy, and Uniform priors produce similar results in this case. Whereas both
Gamma priors present different results depending on the hyperparameter. For Instance,
σ−2
β , the precision for the βt,i effects, we notice that the applied Gamma prior with

parameters α = β = 0.001 is more concentrated on smaller values while the default prior
has an opposite result.

Regarding the other three precision hyperparameters, using the default Gamma prior
yields posterior distributions with higher probabilities for larger values of the hyperpa-
rameter. Additionally, choosing the alternative (applied) Gamma prior produces results
that are generally more similar to the other four priors, occasionally still very similar to
the results obtained with the default Gamma prior. An instance of this is observed in
the case of σ−2

ϕ .
The median posterior and interval estimates for the hyperparameters according to

each prior can be found in Table D.1 in the Appendix D.
Since there are differences in the posterior for certain hyperparameters, it is crucial

to analyze how the choice of priors affects the final nowcasting estimates. Figure 3.11
presents the point and interval estimates according to the priors and respective interval
widths. Although there are slight variations between the predictions and interval widths,
they do not appear to be influenced by the choice of prior.

In order to investigate whether this behavior is due to the fact that the moment being
nowcasted has a decreasing number of cases, we fitted the model aiming to nowcasting a
moment with a high number of cases, the same data used in Figure 3.9. The results, shown
in Figure 3.12, are similar, presenting mild differences for point and interval estimates
according to the priors. The small fluctuations of interval width and point estimates
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Figure 3.10: Posterior marginals for the hyperparameters according to prior of choice.

for more recent nowcasted steps may also be due to the fact that we are sampling from
the predictive posterior distribution of the true observable counts and there is more
uncertainty associated with the last steps. See Table 2.1, where the T -th row is almost
entirely not-yet-observed.

Hence, the nowcasting estimates have shown to be robust to the choice of prior dis-
tribution for the precision and ϕi hyperparameters.
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Figure 3.11: Nowcasting estimates and interval widths according to prior of choice.

3.3 Discussion

The study with the artificial dataset demonstrated that the proposed model is ca-
pable of accurately capturing the fixed and random effects, as well as the associated
hyperparameters, despite the common delay effect being generated according to a differ-
ent process than the one used to fit the model and despite the difference in scale between
the generated time series.

When comparing different models on the artificial data, the metrics pointed to the
true model used to generate the data, although an equivalence was found for the interval
coverages when compared to the model without the common effects of time and delay.
The use of the Poisson distribution, in this case, has been shown to underestimate the
uncertainty of the nowcasting corrections and provide very short intervals that rarely
contain the real value.

The application in real data for dengue and chikungunya also provided encouraging
results. We managed to find a suitable maximum acceptable delay for the dataset and
proceed with a sliding windows approach to find a smaller window size that provides
equivalent results to the use of the entire dataset. For the sliding windows corrections,
we observed that the model was able to capture the real current situation of the number
of cases in the different moments of the epidemic curve, which is one of the main features
of interest in a nowcasting model.

Different model structures were compared using the number of tweets as a covariate,
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Figure 3.12: Nowcasting estimates and interval widths for a moment of high number of
cases according to prior of choice.

and the model with the fixed covariate effect showed more suitable for this application.
It is also noteworthy that every model with common terms presented better performance
than the approach without the common effects, providing smaller intervals while main-
taining coverage.

These smaller intervals obtained with a bivariate approach can facilitate a possible
future short-term forecasting, once we would have a smaller uncertainty propagated to
the prediction of future steps when compared to univariate approaches, hence having
more reasonable interval estimates in this case.

In an application to the full data, we note that the time effects estimates accurately
depict the relation between both series of interest, evolving similarly to the previously
shown real data. The same goes for the delay structure, showing similar behavior to the
weekly proportions of reported cases by amount of delay.

We also examined an application with the Poisson distribution and found that the
results did not encourage its use in this particular application. Some corrections underes-
timated the number of cases with very little uncertainty when compared to the negative
binomial approach.

To assess the robustness of the model to prior distribution choices for the hyperpa-
rameters, we performed a sensitivity analysis. The results indicate that the posterior
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distributions of the hyperparameters may vary depending on the prior distribution, even
though we are using vague priors. Despite these variations, the final nowcasting estimates
do not appear to be affected by this variation, as both the estimates and the quality of
the intervals exhibit only a slight variation across the different prior distributions.
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Chapter 4

Concluding remarks

We managed to propose a Bayesian hierarchical multivariate framework for correcting
reporting delays in disease surveillance data. The model and implementation present
practical feasibility and yet the flexibility to accommodate different effects of time and
delay for both time series and also covariates with effects varying over time. The model
can be used with any data presented in the structure of Table 2.1, where an estimation
for the run-off triangle is needed.

Covariate effects can be equal or different for both series, and the user may also choose
to use only the fixed effect of the covariate, without the dynamic effect. The model also
accepts a different distribution for count data and, depending on the application, a
Poisson distribution can be examined. Especially if the ϕi hyperparameters estimation
is a high value, having in mind that these hyperparameters can be seen as the inverse of
the overdispersion.

Along the work, we considered metrics to jointly evaluate multivariate predictions,
which made it possible to simplify model evaluation for the choice of window size and
model structure. In particular, the relative interval width and interval score made it
easier to assess the quality of interval predictions without having to examine a different
metric for each prediction. Additionally, the energy and variogram scores were useful in a
similar manner. Nevertheless, the problem of multivariate scoring rules for probabilistic
forecasting is one with room for improvement in literature.

We applied the model to artificial and real data and obtained encouraging results for
the use of a multivariate approach. When compared to a univariate-equivalent approach,
the model generated smaller intervals without sacrificing coverage of the real values, while
producing similar point estimates. This relationship was observed with or without the
covariate and indicates the potential for more accurate forecasting. Typically, intervals
for future predictions can quickly become unreasonably large due to the propagated
uncertainty, but smaller intervals could provide more reliable forecasts for at least a few
weeks.

The ability to rapidly obtain estimates and samples from the posterior with INLA
facilitated a sliding windows approach to identify an “optimal” window size for the ap-
plication. This is also important for the possible future development of an R package
and implementation of the model in a surveillance system.

Other covariates apart from the number of tweets can be investigated in future appli-
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cations. The index of google searches containing terms related to dengue or chikungunya,
obtainable from google trends, is a possibility that has been shown useful for nowcasting
problems in work such as Miller et al. (2022), though only with fixed covariate effects.
Environmental variables such as temperature, rain, and humidity are also of possible use
if available.

In future work, other formulations can be considered. For example, it would be
interesting to explore the incorporation of spatial correlation into the model or to allow
the delay to evolve over time with an interaction term as it is thought that delays might
be longer in moments of high number of infections.
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Appendix A

Supplementary material for the
study with artificial dataset

In this section we present additional material for the study with the artificial dataset.
Figure A.1 displays the standardized version of the time series shown in Figure 3.1.
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Figure A.1: Standardized version of simulated data in Figure 3.1

Nowcasting results for the Poisson and independent models are presented in Figures
A.2 and A.3, respectively.
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Figure A.2: Nowcasting estimates according to the Poisson model, data observed at the
moment of predictions, and true observed data artificially generated in the simulation
study.
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Figure A.3: Nowcasting estimates according to the independent model, data observed at
the moment of predictions, and true observed data artificially generated in the simulation
study.
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Appendix B

Supplementary material for the
sliding windows study

Figure B.1: Nowcasting of Dengue cases for each of the 25 windows of 70 weeks
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Appendix C

Comparison of univariate approach
and proxy approach
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Figure C.1: Effects estimates by model.
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Figure C.2: 95% credible interval width according to model.
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Appendix D

Supplementary material for the
prior sensitivity analysis

Hyperparameter

Prior ϕ1 ϕ2 σ−2
β

Gamma(0.001, 0.001)
3.66 4.43 2848.90

(3.35, 3.99) (4.04, 4.87) (1180.54, 5824.83)

Gamma(1, 5× 10−5)
3.65 4.43 6649.29

(3.35, 3.98) (4.03, 4.86) (2748.04, 15557.39)

Half-Normal
3.65 4.43 5186.75

(3.35, 3.98) (4.03, 4.87) (1898.54, 12751.65)

Half-Cauchy
3.65 4.43 5617.08

(3.35, 3.98) (4.03, 4.87) (1921.72, 13184.70)

Half-t
3.65 4.43 5378.30

(3.35, 3.99) (4.03, 4.87) (1836.43, 12788.73)

Uniform
3.66 4.43 5249.10

(3.35, 3.98) (4.03, 4.87) (1810.33, 12543.60)

Prior σ−2
γ σ−2

δ σ−2
ψ

Gamma(0.001, 0.001)
104.59 287.10 9.56

(43.40, 256.19) (151.71, 532.99) (3.96, 18.94)

Gamma(1, 5× 10−5)
139.05 317.08 10.56

(54.67, 302.17) (172.17, 577.82) (4.75, 20.19)

Half-Normal
101.60 280.49 8.32

(40.48, 238.97) (144.78, 512.61) (3.61, 17.56)

Half-Cauchy
105.55 270.61 8.38

(42.30, 249.81) (147.46, 532.07) (3.63, 17.53)

Half-t
101.57 270.05 8.74

(39.35, 238.20) (147.01, 523.74) (3.83, 17.80)

Uniform
103.58 271.79 8.41

(39.68, 239.21) (145.66, 518.59) (3.57, 17.30)

Table D.1: Hyperparameter estimates according to prior of choice.
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