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Essentially, all models are wrong, but

some are useful.

George E. P. Box



ABSTRACT

In this work, we present a Bayesian model-based approach to anomaly detec-
tion using mixture models. Our proposed method, called the filtering model, only
requires us to specify a parametric model, that depends on an unknown θ, to de-
scribe the behavior of the typical data and uses the chosen model to determine the
underlying distribution of the component of the mixture responsible for capturing
anomalies. The method is able to simultaneously estimate the classification for each
observation and θ, while taking the estimate of θ to be a convex combination of each
possible estimate generated by a subsample. For this reason, it can also be used for
robust parameter estimation. We consider estimation using Markov chain Monte
Carlo techniques, and in particular the Metropolis-Hastings algorithm, and present
applications for chemical, health and demographic data.

Keywords: Bayesian inference. Mixture model. Anomaly detection.
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1 INTRODUCTION

The data is the main object of study of a statistician, because even if it is not

the only possible source of information, it is generally the primary one used for all

inferential procedures. Those, in turn, have an important role on the processes of

prediction and explanation of phenomena of interest within multiple fields of study,

such as medicine, pharmacology, genetics, finance, economy, psychology, geogra-

phy, and many others. However, not every data set is exempt of flaws, possibly

containing erroneous, inconsistent or atypical entries. The presence of these types

of observations throughout inference making may negatively influence results, po-

tentially leading to biased conclusions or decisions. With that in mind, the main

objective of this work is to develop a new methodology designed to address the

problems of identifying and treating these types of entries.

There are many possible causes that may generate a data set containing prob-

lematic observations. The cause may be due to typos during the transcription of

the data, noisy measuring instruments, sudden change in behavior, atypical events,

corruption of files or even a security breach, since information may be maliciously

adulterated for multiple reasons. Naturally, this multiplicity of factors make this

a common nuisance during data analysis and consequently attracts the attention

of many researches with various backgrounds. Thus, it is not surprising that there

are many distinct lines of research within this area, each one based on different

techniques.

In this work we propose a methodology for anomaly detection based on mix-

ture models. Our approach uses simple principles to define a mixture component

responsible for capturing outliers, given a chosen parametric family of distribution

to capture the typical behavior of data. Since this component is model-induced,

the resulting model is able to deal with non-identically distributed observations,

multivariate data and time series.

For a brief concrete motivational example, Figure 1 shows curves of near infrared

absorbance spectra at different wavelengths for 39 gasoline samples. As we can see,
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Figure 1: Absorbance curves for gasoline samples from the octane data set at dif-

ferent wavelengths.

some of the observations do match the behavior of the rest, detaching from the other

curves for wavelengths greater than 1390nm. Interestingly, these are observations

25, 26 and 36-39 and known to be outliers because they correspond to gasoline

samples that were contaminated with ethanol.

Since our approach is based on mixture models, in principle we would need to

choose a family of distributions for the typical and anomalous observations, however,

our proposed method only requires us to characterize what we subjectively believe

to be a reasonable description of the typical behavior of our data through the use

of a parametric model. So, considering the data presented in Figure 1, if we choose

a common time series model to capture the typical behavior of the observations, for

instance a simple random walk model, then our method is able to incorporate the

information from our choice to identify the anomalies without supervision.

In Chapter 2 we present the core theoretical foundations used in this work. In

Chapter 3 we propose the filtering model and discuss estimation, interpretation,

shortcomings, prediction and other topics regarding our method. In Chapter 4 we

consider three applications, including the identification of contaminated gasoline

samples using the near infrared absorbance spectra, the classification of breast tu-

mors using quantitative features extracted from medical image exams and the iden-
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tification of historic events using the estimated mortality rates for the male French

population. Lastly, in Chapter 5 we provide some final considerations, including

possible research topics for future work.
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2 THEORETICAL FOUNDATION

In this chapter we present the theoretical tools used for the construction of the

model proposed in Chapter 3 and for the applications of Chapter 4. Firstly, we in-

troduce some concepts of Bayesian parametric inference in section 2.1; in section 2.2

we discuss numerical alternatives for estimation in cases of high analytical complex-

ity; and sections 2.3 and 2.4 are dedicated to present the context of outlier detection

methodologies based on mixture models and depth functions, respectively.

2.1 BAYESIAN PARAMETRIC INFERENCE

Given a family of probabilistic models, suppose we wish to find an estimate of an

unknown generating process, that is, the best model to approximate a phenomenon of

interest. Since probabilistic models are characterized by their distribution functions,

finding the best probabilistic model can be thought as an optimization problem

in space S, defined as the set containing all the distribution functions from our

chosen family of models. So, in order to avoid the complications that arise from

dealing with abstract spaces, it is a common practice to define a bijective mapping

function ϕ from a simpler space Θ, e.g. Rn, to S. We denominate Θ the parameter

space and each θ ∈ Θ a parametric vector, that represents a distribution function

through the relationship ϕ(θ) = F (·|θ), where F (·|θ) is a distribution function from

S. A family of models that have this type of representation is called parametric,

and these families are advantageous because they allow us to change the possibly

complicated problem of optimization in S to a simpler problem of optimization in Θ,

i.e., we can find our estimate F̂ by searching for θ̂, an estimate of the best parameter

value, such that ϕ(θ̂) = F (·|θ̂) = F̂ . So we call parametric inference the process of

finding the parameter that maps to the best model within a parametric family of

distributions. In this section we will consider these inferential processes from the

Bayesian perspective, and for a more detailed picture of this subject we redirect

reader to Chapter 2 of Migon et al. (2014).
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2.1.1 Posterior Distribution

Even though we can, within reason, choose a parametric family of models as

candidate approximations of our phenomenon of interest, more information is re-

quired in order to find the best candidate. Considering the Bayesian perspective,

this additional information can come from two sources: sampled data, assumed to

be generated by an element of S that we wish to estimate, and a subjective prior

belief about the parameter θ, represented in terms of a distribution on Θ. It is

worth mentioning that even the process of choosing the set of distributions S is

itself informative, and different families may lead to divergent results. After choos-

ing a distribution function that represents our prior information, we can combine it

with the information from our obtained sample to update our knowledge about the

parameter, resulting in another distribution called posterior. This new distribution

allows us to assess how likely each parameter θ ∈ Θ is given all of the available

information, and then we can use additional criteria to find our estimate θ̂.

In order to consider a more mathematical representation of this process, suppose

that, given a parametric value θ, a random observation Y of the phenomenon of

interest is distributed according to FY (·|θ). Let y be an observed instance of this

random variable and let Fθ be the prior distribution on Θ assumed for the parametric

vector θ. Also, if for simplicity we assume that FY (·|θ) and Fθ have a probability

density function (p.d.f.) or a probability mass function (p.m.f.), respectively given

by fY (·|θ) and π(θ), then for all observed samples y ∈ SY and parametric values

θ ∈ Θ we can use Bayes’ theorem to obtain the posterior distribution given by

π(θ|y) = π(θ)fY (y|θ)∫
Θ
π(θ)fY (y|θ) dθ

=
π(θ)fY (y|θ)

π(y)
.

Here the integral expression in the denominator is a normalizing constant with

respect to θ, denominated (prior) predictive distribution. And, with the exception

of some well known examples, this integral typically does not have solutions in terms

of elementary functions available, requiring the use of computational methods in

order to circumvent algebraic limitations, such as the ones described in section 2.2.

After obtaining the posterior distribution, we can use it to derive a posterior pre-
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dictive distribution for an unobserved sample Y ∗, commonly assuming conditional

independence of Y given θ, by taking

π(Y ∗|y) =
∫
Θ

π(y∗, θ|y) dθ =

∫
Θ

π(y∗|θ, y)π(θ|y) dθ ind
=

∫
Θ

fY (y
∗|θ)π(θ|y) dθ.

Then the posterior predictive distribution can be used to calculate probabilities with

respect to the unobserved sample, e.g. finding a set that contains the new value with

high probability. Another possibility is using it to assess whether the estimated

model is good enough to explain the already observed sample, since the presence

of observations with particularly low predictive value may indicate atypicality or

even model inadequacy. This concept will be the backbone of the proposed model

presented in Chapter 3.

2.1.2 Elements of Decision Theory

Even though we are able to summarise all of the known information with respect

to the problem through the posterior distribution and use it to calculate predictive

probabilities, we may still desire to find the best model or parameter. So, naturally,

we first need to establish what the best means in this context, specially considering

all of the uncertainties involved. Here we consider the decision theory approach to

estimation, so next we introduce some elements of decision theory and establish its

connection to Bayesian parametric inference. Since we only briefly present this topic,

we redirect the reader to Chapter 4 of Migon et al. (2014) for a better introduction

and to Berger (1985) for a more complete understanding.

Let us first introduce the main spaces considered in a decision problem. We

denote by Ω the set of all possible results of an experiment, representing all of

the possible samples y ∈ Ω that could be obtained; Θ is the parameter space,

representing all of the possible generating mechanisms of our sample y; and the

space of possible actions to be taken we denote by A.

With this concepts at hand, our problem consists of choosing a decision rule

δ : Ω → A, i.e., a function that establishes what action a ∈ A to be taken given

that our observed sample is y ∈ Ω. Next, to differentiate “good” and “bad” decision
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rules, we introduce the loss function L : Θ ×A → R+, that can be interpreted as

the function that numerically attributes a loss to taking an action a ∈ A when the

observed sample was generated by F (·|θ).

Then, in the Bayesian context, we define the risk R of a decision rule δ as the

expected posterior loss, that is,

R(δ) = Eθ|y [L(θ, δ(Y ))|Y = y] =

∫
Θ

L(θ, δ(y))π(θ|y) dθ. (2.1)

We call Bayes rule the decision rule δ∗ that minimizes the risk function, so

δ∗ = argmin
δ
R(δ), (2.2)

and we can choose the Bayes rule as our best decision rule. It is worth noting that,

since the risk function depends on the choice of the loss function, distinct agents

with the same posterior distribution of θ can find different Bayes rules because of a

change in the notion of loss from one perspective to another. Now, returning to the

problem of estimation, we can use decision theory to find the best parameter value

by choosing an appropriate action space A and a loss function.

If we are interested in choosing a single parameter value θ̂, called point estimate

of θ, we take A = Θ. So our action consists of choosing an estimate θ̂ ∈ Θ given

an observed sample y ∈ Ω and we call the resulting Bayes rule an estimator of θ.

Commonly used loss functions for point estimation are: the square loss L2(θ, a) =

(θ−a)2, whose estimator is given by the posterior expected value E[θ|Y ]; the absolute

loss L1(θ, a) = |θ − a|, whose estimator is given by the posterior median med(θ|Y );

and the 0 − 1 loss L∞(θ, a) = lim
ε→0

I[ε,+∞)(|θ − a|), whose estimator is given by the

posterior mode mode(θ|Y ). Here we IA(x) is an indicator function whose output is

1, if x ∈ A, and 0 otherwise.

Acknowledging the uncertainties involved in the process of estimation, one could

be interested in the inclusion of some quantification of these uncertainties. A reason-

able way of achieving this is to choose, for a given observation y ∈ Ω, a corresponding

region C(y) ⊂ Θ as an estimate instead of singular value, meaning that A is the set

of all measurable subsets of Θ. Typically, considering the Bayesian perspective, we

choose Cγ such that P(θ ∈ Cγ(Y )|Y ) ≥ γ, called a 100γ% credibility region for θ.
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Here, γ ∈ (0, 1) represents the credibility level of the region Cγ. It is worth noticing

that a 100γ% credibility region for θ may not be unique, so a common choice is tak-

ing the one with the smallest possible measure, also known as the highest posterior

density (HPD) 100γ% credibility region for θ.

At last, if choose A to be an indicator function IA(θ), then our decision problem

becomes a hypothesis testing. In other words, we choose action 1 if θ ∈ A and choose

action 0 otherwise. Here, 1 and 0 represent any two complementary hypothesis, so to

better illustrate this, we respectively denote them H1 and H0. To decide between the

two hypothesis from the Bayesian perspective, for i ∈ {0, 1} and given an observation

y ∈ Ω, we calculate

P(H1|y) = P(θ ∈ A|y) and P(H0|y) = P(θ /∈ A|y) (2.3)

then choose H1, if P(H1|y) > P(H0|y), and H0 otherwise. Even though this proce-

dure is conceptually straightforward, one must proceed with caution when consider-

ing Θ continuous and either A or Ac is a set of measure zero. In this case, assuming

without loss of generality that the measure of A is zero, choosing a continuous prior

distribution for θ implies P(H1) = P(H1|y) = 0, thus, we would always choose H1.

So, to avoid this problem, one can simply attribute positive prior probability to H0

and H1.

The idea of hypothesis testing is particularly relevant in the context of anomaly

detection, where we want to choose whether to consider an observation from a given

sample anomalous or not. So naturally, we consider these concepts when defining

our proposed model in Chapter 3.

2.2 STOCHASTIC METHODS FOR APPROXIMATE INFERENCE

Recurrently, during the process of inference making, there are analytical limi-

tations to our capability of finding closed form solution to problem of parametric

estimation. In the context of Bayesian inference, this problem usually arises from

the difficulty of obtaining the posterior’s normalizing constant. The most common

way of mitigating this difficulty is to abdicate exact solutions and to develop numeric



17

methods that allow us to control the approximation error.

In this section, we will exclusively focus on stochastic methods for approximate

integration, and more specifically on the class of methods of Markov Chain Monte

Carlo, broadly used for inferential procedures considering the Bayesian paradigm.

Besides this, we will briefly present two of these algorithms used throughout this

work: the Metropolis-Hastings Algorithm and the Gibbs Sampler. For a deeper un-

derstanding of the subject, we recommend the read of Gamerman & Lopes (2006) for

a general comprehension of this class of methods and Liu (2001) for more advanced

topics.

2.2.1 Markov Chain Monte Carlo

The methods of Markov Chain Monte Carlo, commonly referred as MCMC meth-

ods, are a hybridization of two separate techniques: sample generation through the

use of Markov chains and Monte Carlo integration.

Starting with Monte Carlo methods, suppose h : Rd → R is a function we wish

to integrate in a Lebesgue-measurable region S such that µL(S) < +∞, where µL

represents the Lebesgue measure. In other words, our interest is in the quantity

I =

∫
S

h(x) dx.

If I cannot be obtained analytically, we can rewrite I considering that

I =

∫
S

h(x) dx = µL(S)

∫
Rd

h(x)

µL(S)
IS(x) dx = µL(S)E [h(X)] ,

where X ∼ Uniform(S) and µL(S) is the Lebesgue measure of S. Then, we gen-

erate an independent sample x(1), . . . , x(m) uniformly distributed in S to obtain an

approximation Î considering that

I = µL(S)EU [h(U)] ≈ µL(S)

m

m∑
j=1

h
(
x(j)

)
= Î .

In the more general case, denominated importance sampling, we can approximate

I generating our sample from different distributions. Let f be the density function of
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a random variable Y , of which we are able to sample, with support S and such that

∀x ∈ S we have f(x) > 0 if h(x) ̸= 0. Then, we can similarly rewrite I considering

that

I =

∫
S

h(x) dx =

∫
S

[
h(x)

f(x)

]
f(x) dx = E

[
h(Y )

f(Y )

]
.

If the expected value of the above expression is finite, we can again take a simple

random sample
(
y(1), . . . , y(n)

)
with the distribution of Y and approximate our target

value as

I = E
[
h(Y )

f(Y )

]
≈ 1

m

m∑
j=1

h
(
y(j)

)
f (y(j))

.

Here, the finite expected value ensures that the approximation will eventually

improve as m goes to infinity due to the Law of Large Numbers. Futhermore, with

some additional suppositions regarding the distribution of Y , by the Central Limit

Theorem the approximation is of order O
(
m− 1

2

)
, guaranteeing that the error can

be as small as desired for a sufficiently large sample. More details can be found in

Chapter 3 of Gamerman & Lopes (2006).

2.2.2 Sampling Using Markov Chains

The sampling methods using Markov chains consist of building an irreducible

Markovian stochastic process so that the stationary distribution of the process is

the distribution from which you want to sample. Therefore, if after a sufficiently

large number of steps we consider the current state of the chain, it will approximately

be distributed according to our target distribution. For a better understanding of

the subject we recommend the reading of Chapter 4 of Gamerman & Lopes (2006).

Even though these methods are theoretically well established, in the sense that

the forementioned result can be formally proven, it is worth emphasizing that some

practical issues still need to be considered. The first practical limitation arises

when determining what would be a sufficiently large number of chain steps. This

problem is known as finding the mixing time of the Markov chain and, since no

practical general solution can be provided, it is still an active research field. Instead,

we can use a group of techniques that search for signs that the chain is yet to
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converge and, in the absence of those, proceed assuming that the chain reached

convergence. Usually these techniques consist of a combination of procedures, such

as hypothesis testing, graphical analysis and comparison of multiple independent

chains with distinct initial states. We then define burn in as the states generated

before convergence and can take any of the remaining states as a sample point with

the desired distribution.

Another practical issue is the burden of generating a possibly long and compu-

tationally expensive chain to obtain one sample point. So, in order to avoid this

inefficiency, we keep generating states after convergence to increase our sample size.

Notice that this introduces a new problem, since by construction the Markovian

structure of the stochastic process induces a dependency between consecutive chain

states and, consequently, some redundancy in our sample. To mitigate this effect,

the most common procedure is to form the sample considering only states with some

chosen spacing between them, a technique called thinning.

Contextualizing the methods in terms of Bayesian inference, the problem is to

calculate quantities of interest, such as moments, probabilities and quantiles, with

respect to the posterior distribution when the normalizing constant is unknown

or too computationally expensive. We then use Markov chains that only require

knowledge of the posterior’s kernel to generate a sample, and use Monte Carlo

techniques to obtain estimates while controlling the approximation error.

2.2.3 Metropolis-Hastings Algorithm

This algorithm was first proposed by Metropolis et al. (1953) and generalized by

Hastings (1970) and is a method of specifying the transition kernels of the Markov

chain to guarantee convergence to a target stationary distribution π(θ). It basically

consists of proposing the transition to a new state x given the current state y ac-

cording to a chosen distribution q(x|y) and then introducing an acceptance-rejection

step to ensure that the target distribution remains the stationary distribution of the

chain. For more details, Chib & Greenberg (1995) provide an intuitive derivation

of the algorithm, and the topic is also covered in Chapter 6 of Gamerman & Lopes
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(2006) and Chapters 5 and 9 of Liu (2001).

Algorithm 1 Metropolis-Hastings Algorithm

Require: Initial value θ(0) and proposal distribution q(x|y)

for t ∈ {1, . . . , T} do

Sample proposed state θprop from q(θprop|θ(t−1))

Calculate the probability of acceptance α = min

{
1,

π(θprop)q(θ
(t−1)|θprop)

π(θ(t−1))q(θprop|θ(t−1))

}
Sample U ∼ Uniform(0, 1)

if U ≤ α then

Take θ(t) = θprop

end if

if U > α then

Take θ(t) = θ(t−1)

end if

end for

The Metropolis-Hastings, explicitly presented in Algorithm 1, has the advantage

of requiring knowledge regarding the desired stationary distribution only up to a

constant, making it of particular interest for Bayesian inference. The reason for this

propriety can be traced to the acceptance-rejection probability, that only depends

on π(θ) through the ratio
π(θprop)q(θ

(t−1)|θprop)
π(θ(t−1))q(θprop|θ(t−1))

, (2.4)

so any multiplicative constants in π(θ) cancel out.

Even though the Metropolis-Hastings algorithm can generate samples from a

wide variety of choices for π(θ), its main drawback is finding a “good” proposal dis-

tribution. If the variance of the proposal distribution q is too high, it will frequently

generate samples in regions of low posterior density, leading to a high rejection rate.

Conversely, if the variance is too low, then the proposed values tend to be highly cor-

related, effectively increasing the number of chain steps to obtain an approximately

independent sample. Having that in mind, the typical procedure is to fine-tune the

proposal distribution until reaching satisfactory results.

Besides the formulation in Algorithm 1, the Metropolis-Hastings algorithm can
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be expressed in a more general form to sequentially update individual entries of

a parameter vector θ = (θ1, . . . , θp)
′ instead of proposing a single θprop at each

step of the chain. This formulation tends to be more common for application in

the multivariate case because it usually is a simpler problem to choose a proposal

distributions for each entry rather than for the entire vector.

2.2.4 Gibbs Sampler

The Gibbs sampler, originally proposed by Geman & Geman (1984), provides a

way of specifying the transition kernels of the Markov chain with a target multivari-

ate stationary distribution π(θ) and is based on the complete conditional distribu-

tions of each entry. To clarify, if θ = (θ1, . . . , θp)
′, then the conditional distribution

of θj is given by π(θj|θ−j), where θ−j = (θ1, . . . , θj−1, θj+1, . . . , θp)
′. The algorithm

then starts with an initial condition θ(0) =
(
θ
(0)
1 . . . , θ

(0)
p

)′
and then sequentially

sampling from the conditional distributions of each entry given the most recently

sampled value of the others, as described in Algorithm 2. Interestingly, the Gibbs

sampler can be seen as a particular case of the Metropolis-Hastings algorithm, where

we use as the proposal distribution for each entry its full conditional, leading to a

probability of acceptance of 1.

Algorithm 2 Gibbs Sampler

Require: Initial value θ(0) =
(
θ
(0)
1 . . . , θ

(0)
p

)′

for t ∈ {1, . . . , T} do

for j ∈ {1, . . . , p} do

Sample θ(t)j from π
(
θj

∣∣∣θ(t)−j

)
, where θ(t)−j =

(
θ
(t)
1 , . . . , θ

(t)
j−1, θ

(t−1)
j+1 , . . . , θ

(t−1)
p

)′

end for

end for

Some well known variations of the Gibbs sampler can be used to improve the

algorithm’s convergence properties, such as changing the update order of the entries

considering some permutation of the index, blocking highly correlated entries to sam-

ple from their joint full conditional distribution and considering the full conditionals

of the target distribution marginalized with respect to some of the parameters. For
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more details regarding those techniques, we redirect the reader to the Chapter 5 of

Gamerman & Lopes (2006) and Chapter 6 of Liu (2001).

It is worth highlighting that, in contrast with the Metropolis-Hastings algorithm,

the Gibbs sampler lacks an acceptance-rejection step, so all of the “proposed” states

of the chain are accepted with probability 1. Another consequence of this aspect, is

that the algorithm does not require the calibration of hyperparameters, unlike some

common proposals used when considering the Metropolis-Hastings algorithm. The

last noteworthy characteristic of the Gibbs sampler is that sampling from the full

conditionals can be performed without knowing the normalizing constant of π(θ),

making it particularly attractive considering the Bayesian perspective.

2.3 ANOMALY DETECTION USING DISCRETE MIXTURE MODELS

The earliest instance of the utilization of discrete mixture models in the context

of anomaly detection can be traced back to a paper by Newcomb (1886), where the

author proposed using a mixture of normal distributions with different variances

to model the possible variation in the measurement precision for each data point.

Even though he was the first one to propose this treatment to outliers, due to

computational limitations, at the time Newcomb was only able to proceed with

calculations and estimations based on chosen parameter values instead of using the

common inferential procedures known today. It would be only decades later, with

Box & Tiao (1968), Guttman (1973), Abraham & Box (1978) and Guttman et al.

(1978), that the first methods for estimating the parameters of a mixture model

would be proposed, based on the analytical expression of the posterior distribution

when assuming conjugate priors. Even so, since the resulting analytical estimators

require the computation of 2n terms, where n represents the sample size, these

methods were viable only considering either small samples (n ≤ 20) or utilizing

approximations of the posterior distribution, for instance with the assumption that

there were at most a small number of outliers contained in the sample. Considering

the classical point of view, no practical methods for obtaining reasonable estimators

were available, leading to the preference of other statistical methodologies to identify
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anomalies. For a general review of the statistical methods for outlier detection in

this period we refer to Barnett & Lewis (1978).

It was only with the advent of efficient computational methods such as the

EM algorithm and the Gibbs sampler, by Dempster et al. (1977) and Geman &

Geman (1984) respectively, that mixture models became more practical tools for

anomaly identification. Since then, multiple algorithms for fitting mixture models

have been studied, considering both classical (Aitkin & Wilson (1980); Coretto &

Hennig (2011); Yu et al. (2015)) and Bayesian (Verdinelli & Wasserman (1991);

Evans et al. (1992)) perspectives and in many different contexts, including clusteri-

zation (Banfield & Raftery (1993); Coretto & Hennig (2016); Yin & Wang (2016)),

regression (Box & Tiao (1968), Abraham & Box (1978)), functional data (Amovin-

Assagba et al. (2022)), sequential data (Brunot (2020)), and convolutional neural

networks (Lathuilière et al. (2018)). For a general introduction to mixture mod-

els we recommend Frühwirth-Schnatter & Frèuhwirth-Schnatter (2006), which also

presents them in the context of outlier detection in Chapter 7. Next, we present

a brief overview of the components used for anomaly detection in the literature

and we introduce an improper component, proposed independently by Longford &

D’Urso (2011) and Coretto & Hennig (2016) in the context of classical estimation,

and adapted to the Bayesian perspective by Barreto (2022), that is the basis of the

specification of our proposed model in Chapter 3. We could also reference the use of

continuous mixtures for anomaly detection throughout the literature, but this lies

outside the scope of this work.

2.3.1 Mixture Components for Anomaly Detection

The first discrete mixture model with a component dedicated to capture outliers

was the variance inflation model proposed by Tukey (1960) with density

f(x|µ, σ2, k, w) = wϕ(x|µ, σ2) + (1− w)ϕ(x|µ, k2σ2), (2.5)

where µ ∈ R, σ2 > 0, k > 1, w ∈ (0, 1), ϕ(·|µ, σ2) represents the density of

an univariate normal random variables with mean µ and variance σ2, and (1 − w)
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represents the probability of obtaining an imprecise data measurement. Even though

proposed by Tukey (1960), This model was first adjusted by Box & Tiao (1968) to

detect anomalous observations in a data set containing differences of heights of

fifteen plants. A few years later, Guttman (1973) proposed a similar approach with

the location shift model given by

f(x|µ, θ, σ2, w) = wϕ(x|µ, σ2) + (1− w)ϕ(x|µ− θ, σ2). (2.6)

When comparing with the variance inflation model, the parameter k, responsible

for increasing the variance of the second component, was removed and in its place

θ ∈ R was introduced to allow a translation of the second component. It is easy to

see that both the variance inflation and location shift models are particular cases

of the normal mixture model with two components, whose full estimation was first

discussed by Evans et al. (1992).

Next, the first model to consider a discrete mixture of non-normal distributions

for outlier detection was proposed by Banfield & Raftery (1993), considering a prob-

lem of clusterization for multivariate data, with a density of the form

f(x|µ,Σ, w) = w
m∑
j=1

ηjϕd(x|µj,Σj) + (1− w)π(x), (2.7)

where µj ∈ R, Σj is a covariance d × d matrix, w ∈ (0, 1), η = (η1, . . . , ηm) is

such that ηj ≥ 0,
∑m

j=1 ηj = 1, ϕd(·|µ,Σ) represents the density of an d-variate

normal random variable with mean vector µ and covariance matrix Σ and π(x) rep-

resent an uniform distribution on a limited known support of the observations to

capture anomalies. Then, following works introduced discrete mixtures consider-

ing components with Student-t distribution (Stephens (1997); Peel & McLachlan

(2000)), with beta distribution (Bouguessa (2014)) and even mixture of distribu-

tions (Amovin-Assagba et al. (2022)), where each component is given by a variance

inflation model.

More recent works introduced a new type of component for capturing atypical

observations. These were the papers of Longford & D’Urso (2011) and Coretto &

Hennig (2016) that independently proposed the use of an improper component in the

mixture. This alternative component mainly consists of a heavy tailed function that
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achieves relatively low values in the dense regions of the model for typical observa-

tions, allowing it to better accommodate outliers while minimizing competition with

the main model. The simplest specification presented for this improper component

was a constant function over the entire support, representing an uniform improper

distribution over the real line. This same improper component was then used by

other authors such as Lathuilière et al. (2018) and Inverardi & Taufer (2020). An

expression for this model is given by

f(x|θ, δ, w) = wf(x|θ) + (1− w)δ, (2.8)

where, θ represents an unknown parameter, w ∈ (0, 1), f(·|θ) is the main model’s

density function and δ is a positive unknown constant.

Even though the model defined by this mixture with an improper component

does not result in a probabilistic model, when considering the maximum likelihood

estimator for the resulting pseudo-likelihood, usual maximization methods such as

the EM algorithm can be adapted to obtain estimates for the parameters. Never-

theless, when looking at this model from the Bayesian perspective, the choice of an

improper component leads to an improper predictive distribution unless considering

w = 0. To overcome this issue, a numerically equivalent approach was proposed

by Barreto (2022) considering a reinterpretation of the alternative component and,

since it is the basis of our proposed method, we present it in Chapter 3.

2.4 ANOMALY DETECTION USING DEPTH FUNCTION

For any given data set of univariate observations, the maximum and minimum

are usually promising candidates when one wishes to search for anomalies. That is

because, if we consider the common case of an unimodal distribution, we expect to

identify outliers by looking at observations at regions of least density and, in this

case, those happen to be close to the minimum or the maximum of the sample. So

naturally, multiple outlier detection methods rely on statistics of order and quantiles

to identify observations that trespasses a certain established threshold. Despite the

effectiveness of this idea, limitations arise when we consider multivariate data. In
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two or more dimensions, the lack of a natural ordering of points leads to the absence

of an universally agreed upon notion of quantiles, preventing the use of concepts

reliant on ordering, such as the sample minima or maxima. Thus, depth function

were introduced in order to circumvent this issue, providing ways to introduce an

ordering in Rd based on a probability distribution F .

The first to formally define the notion of a depth function were Zuo & Serfling

(2000). Before them, a depth function used to be any function D(x, F ) : Rd×F → R

that induced a F -based center-outward ordering for all x ∈ Rd, where F ∈ F is a

probability distribution and F represents the class of distributions on the Borel

sets of Rd. So, considering that this notion relied on somewhat vague descriptive

properties, Definition 2.1 aims to formalize it in order to provide a “systematic basis

for preferring one function over another”, while also generalizing notions such as

quantiles and centrality of a distribution. Thus, it was imposed that, if a distribution

F has some symmetry around a naturally defined center xc (the distribution does

not have to be symmetric), then xc is the generalized median of the distribution and

it must coincide with the deepest point, i.e., the point x∗ that maximizes D(x, F ).

This definition is presented as follows.

Definition 2.1 (Depth function, Zuo & Serfling (2000)). Let the mapping D :

Rd × F → R be bounded and non-negative. Then D is called a depth function if it

satisfies the following proprieties:

1. (P1) D(Ax + b, FAX+b) = D(x, FX) holds for any d-dimensional real random

vector X, any d× d nonsingular matrix A, and any vector b ∈ Rd,

2. (P2) D(xc, F ) = sup
x∈Rd

D(x, F ) holds for any F ∈ F having center xc,

3. (P3) for any F ∈ F having deepest point x∗, D(x, F ) ≤ D(x∗ + α(x− x∗), F )

holds for all α ∈ [0, 1], and

4. (P4) lim
||x||→+∞

D(x, F ) = 0, for each F ∈ F.

Here (P1) makes the depth function invariant to affine transformations, removing

the effect of changes in location or scale on the induced ordering of data; (P2)
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guarantees that the deepest point lies in the center of the distribution xc, thus

generating a center-outward ordering; (P3) forces the depth function to decrease

monotonically when taking a linear trajectory that moves away from its center; and

(P4) insures that the depth is arbitrarily small for points sufficiently distant from

the center.

It is worth mentioning that, when considering applications, usually the distri-

bution F of the observation is unknown, so estimates of the depth values for each

observation can be obtained using an empirical distribution F̂n. Considering the

context of outlier detection, after calculating the depth values for each observa-

tion, procedures typically consider every observation whose depth is below a certain

threshold γ or the k observations with the smallest estimated depth value as outliers.

Since the first uses of depth functions in the literature, this method have been

used for anomaly detection in many different contexts, such as multivariate statis-

tical quality control (Liu (1995); Cheng et al. (2000); Hamurkaroğlu et al. (2004)),

spatial data (Chen et al. (2008)) and functional data (Febrero et al. (2008); Arribas-

Gil & Romo (2014); Sguera et al. (2016); Kuhnt & Rehage (2016); Dai et al. (2020)).

The following subsections of this chapter will focus on providing a few examples of

recurrently used depth functions in the literature and later will present the likelihood

depth, a pseudo-depth function that will be relevant for constructing the model

proposed in Chapter 3. So, for a more in depth review of the field, we redirect the

reader to Mosler (2013).

2.4.1 Commonly Used Depth Functions

One of the earliest instances of a depth function was the halfspace depth, and

it was first introduced by Tukey (1975). To better understand this depth function,

let us first take all possible divisions of Rd in two regions by a (d − 1)-dimensional

hyperplane P . Then, considering a point x ∈ Rd and a probability distribution F ,

we obtain the depth function by taking each division, looking at the region H that

contains x (if x lies in P we consider both regions) and determining the smallest
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possible value of P(H). In other words, the halfspace depth is the minimal probability

P(H), where H is a closed halfspace containing the observation x ∈ Rd. The idea

here is that, if x is a more central observation, we have a higher value of P(H)

regardless of how we choose a halfspace H containing x, which is not the case for

more distal observations. This depth can more formally be expressed as

HD(x, F ) = inf{P(H) : H is a closed halfspace containing x}, ∀x ∈ Rd. (2.9)

Another important influential depth was the simplicial depth. It was proposed by

Liu (1990) and defined to be, fixing a point x ∈ Rd and a probability distribution

F , the probability of a random simplex in Rd containing x. In other words,

SD(x, F ) = P(x ∈ S[X1, . . . , Xd+1]), ∀x ∈ Rd, (2.10)

where X1, . . . , Xd+1
iid∼ F and S[x1, . . . , xd+1] represents the d-dimensional simplex

with vertices x1, . . . , xd+1, i.e., the smallest d-dimensional convex polytope contain-

ing the points x1, . . . , xd+1. The last depth function we will present on this section

is based on the distance defined by Mahalanobis (1936) and was proposed by Liu &

Singh (1993), called the Mahalanobis depth. It is defined as

MD(x, F ) =
[
1 + d2M(x, µ|Σ)

]−1
=

[
1 + (x− µ)′Σ−1(x− µ)

]−1
, ∀x ∈ Rd,

(2.11)

where µ ∈ Rd is the expected value of a random variable having distribution F and

Σ is its covariance matrix. This depth function belongs to a wider class of distance-

based depth functions and other instances of this class can be obtained by swapping

the Mahalanobis distance dM(·, µ|Σ) in the equation above by any other F -based

distance function.

2.4.2 The Likelihood Pseudo-Depth

Even though Zuo & Serfling (2000) formally introduced a definition for depth

functions, other useful depth-like function can be used to induce an ordering even

without satisfying all of the properties mentioned. So we call pseudo-depth any

depth-like function that violates one of the proprieties of Definition 2.1, but still



29

provides an F -based ordering of multivariate observations. One example that is

relevant for the construction of the proposed model in Chapter 3 is the likelihood

pseudo-depth, proposed by Fraiman et al. (1999). Fixing a distribution F with

probability density function or probability mass function f , the likelihood depth is

given by

LD(x, F ) = f(x), ∀x ∈ Rd, (2.12)

and in their work Fraiman et al. (1999) proposed using a kernel estimate of the

density function instead of assuming a specific family of distributions for the data.

Interestingly, the likelihood depth may satisfy Definition 2.1 depending on whether

or not we impose that F belongs to certain families of distributions. For instance,

if we choose F to be the distribution function of a multivariate normal distribution,

the resulting ordering is the same as the one generated by the Mahalanobis depth

for some choice of µ and Σ, leading to a valid depth function. Conversely, it is not

particularly hard to find a distribution with a density that violates the definition. As

one example, if we choose f to be the density of a Gamma distribution with shape

parameter α < 1, then f is not bounded. Another interesting case is considering

a mixture of 3 bivariate normal distribution with identity covariance matrices and

mean vectors lying on the vertices of an equilateral triangle with center at the origin

and side length greater than 5. In this case, the density function f violates (P2),

because by rotational symmetry the center of f should be located at the origin,

however it differs from the deepest points, that are located near the center of each

normal component. Besides this, f also violates (P3), because tracing a trajectory

from one of the deepest points to another would generate a linear path that moves

away from the deepest point and does not monotonically decrease.

Even though the likelihood pseudo-depth may not satisfy Definition 2.1, it can

be argued that, when considering the context of outlier detection, the most sensible

ordering of data should consider the density information, instead of a notion of

centrality. That is because, assuming we are capable of providing good estimates

of the density function, the observations that are less likely to be generated from

the distribution F are necessarily those in the regions of lower estimated density.
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This makes observations with a particularly low likelihood pseudo-depth reasonable

candidates to be considered atypical and this pseudo-depth an attractive ordering

function for this purpose.
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3 FILTERING MODEL

In this chapter, we present in section 3.1 the construction of the model proposed

in this thesis in three stages. Then, section 3.2 introduces the MCMC algorithm

utilized for parameter estimation, addressing known issues and the corresponding

techniques employed to mitigate them. Lastly, section 3.3 discusses interpretation

of the results, model, prior and hyperparameter specification, prediction for future

observations and anomaly classification.

3.1 MODEL CONSTRUCTION

In this work, we consider the mixture model approach for the estimation of the

probability of an observation being atypical. Even though this is fundamentally

arbitrary, we justify our choice by considering a reasoning similar to De Finetti’s

(1961) when he states that “According to the Bayesian point of view, there exist

no observation to be rejected”, while discussing how outlier rejection should work

within the Bayesian perspective. Loosely following his argument and shifting our

focus to the particular context of mixture models, if we consider an observed sample

y1, . . . , yn, the problem of detecting anomalies is equivalent to estimating an indi-

cator variable zi such that zi = 1 if the corresponding observation yi is typical and

zi = 0 otherwise. Here, it is worth noting that until now, the notion of atypicality

is somewhat vague and arbitrary, so for a more precise meaning we consider the

discrete mixture
Yi|θ, zi = 1 ∼ FYi

(·|θ),

Yi|θ∗, zi = 0 ∼ FY ∗
i
(·|θ∗),

(3.1)

for all i ∈ {1, . . . , n}, where FYi
(·|θ), FY ∗

i
(·|θ∗) are distribution functions with the

same support and θ is our parameter of interest. Now we can specifically call yi

typical if it was generated by FYi
(·|θ) and atypical if it was generated by FY ∗

i
(·|θ∗).

We can then consider estimating θ, θ∗ and z, the collection of all indicators, by

attributing a prior distribution π(θ, θ∗, z) and obtaining the posterior π(θ, θ∗, z|y) via

Bayes’ Theorem. The core idea here is that, if we choose our prior such that π(zi =
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c) ̸= 1 for c ∈ {0, 1}, i.e., if we do not already know what distribution generated yi,

then P(zi = c|y) ̸= 1 for c ∈ {0, 1}. So, since we can never be certain of the value of

zi and knowing that the posterior summarizes all of the available information with

respect to θ and z, inference for θ should consider all observations y1, . . . , yn, albeit

attributing different weights to each observation according to P(zi = 1|y).

Even though we here assume a mixture model for the observations, in general

this reasoning still holds, as presented by De Finetti (1961), which leads us to the

conclusion that no observation should be removed from our sample when estimating

θ, and analogously θ∗. However, if our objective demands a classification, we still

need to decide whether to consider yi typical or not. So, since mixture models

allows us to estimate θ respecting this principle while also generating classifications

in the more generally applicable context of unsupervised learning, we consider this

approach for the proposed model of this work.

In the rest of this section, we iteratively construct our proposed model, consisting

of a mixture between a parametric model of interest and a model-induced noise

component, with a problem-oriented philosophy. Subsection 3.1.1 introduces the

naive filtering model, that represents the core idea of our proposed methodology,

to remove the assumption of identically distributed observations from the model

proposed by Longford & D’Urso (2011) and by Coretto & Hennig (2016). Next,

subsection 3.1.2 discusses shortcomings of the previous approach, related to an excess

removal of observations, and presents the biased filtering model as a solution. And

finally, subsection 3.1.3 further improves the method presenting the filtering model

as a way of controlling the bias generated by the previous correction.

3.1.1 Naive Filtering Model

We begin by returning to the motivating problem established in the introduc-

tion. Figure 2 presents a visualization of the Octane data set, see Esbensen et al.

(2002), colored by their classification as contaminated or not. As we can see, the

typical observations (colored in blue) are well behaved, i.e., they are observations for

which we could find a reasonable parametric family of distributions that somewhat
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accurately represents them, while the atypical ones (colored in red) do not seem

to follow an easily describable pattern. Since we are considering a mixture model

approach to anomaly detection, we must specify a model for typical and atypical

observations, which may be challenging.
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Figure 2: Absorbance curves for gasoline samples from the octane data set at dif-

ferent wavelengths, where in red we highlight the contaminated observations.

Another aspect which is worth considering is that, is this case, from the na-

ture of the data we know that the atypical observations, the ones contaminated

with ethanol, present a similar behavior. However, if we are interested in a model

capable of identifying any form of contamination in a gasoline sample, then our

anomaly detection component must be flexible enough to capture any deviation of

the estimated typical behavior of the data, while having a controlled probability of

capturing normal observations. So, apparently for this exact reason, the literature

gravitated towards heavy-tailed distributions for the anomaly capturing component.

As presented in 2.3, the most extreme case of this trend is the mixture model with

an improper component, proposed independently by Longford & D’Urso (2011) and

Coretto & Hennig (2016).

It is important noticing that, considering the Bayesian perspective, choosing an

improper component leads to an improper predictive distribution, resulting in an

unnecessary layer of complexity to the estimation process. To specifically address
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this issue, Barreto (2022) proposed a reinterpretation of the improper component

that results in the following numerically equivalent model

Yi|θ, zi = 1
ind∼ FYi

(·|θ),

Yi|θ, zi = 0
ind∼ Uniform(S),

µL(S)
−1 = h,

(3.2)

where µL is the Lebesgue measure and the improper uniform distribution on R is

substituted by a proper uniform on an unknown region S. Here, denoting

IA(x) =

 1, if x ∈ A

0, otherwise
, (3.3)

we assumed that IS(yi) = 1, for all i ∈ {1, . . . , n} to ensure that the probability of

each observation being atypical is positive, and the term h is chosen and estimated

considering some heuristics, that are irrelevant for our purposes, to avoid a reduction

to the trivial degenerate case, where µL(S) = 0 and all observations are atypical with

probability 1. Since S is assumed to contain all of the observations regardless of its

measure, this component essentially behaves as a constant when only considering the

points y1, . . . , yn, thus resulting in the same numerical proprieties of the improper

component.
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Figure 3: Visualization of the simulated data set 1 with the first 50 observations

divided by 100000, where the colors indicate the true classification.
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Even though the proposal of Barreto (2022) allows us to consider estimation

from the Bayesian point of view, it still incorporates one limitation inherited from

the mixture model with an improper component: the component is the same for all

observations. In order to emphasize this limitation, we generated a sample such that

the first 50 observations come from a Normal (0, 1000002), while the last 50 come

from a Normal(0, 1), with the exception of the observation of number 76, that was

arbitrarily chosen to be equal to 5 to simulate an anomaly. For future reference,

we refer to this sample as the simulated data set 1. Figure 3 shows the simulated

sample, but we divided the first 50 observations by 100000.

Knowing the true underlying distribution of our data, we assume as the typical

component of our model a Normal (0, 1000002) for observations of index 1 to 50

and a Normal(0, 1) for the remaining observations, including observation 76. Now,

taking π(zi) =
1
2

for all observations, we can directly calculate

P(zi = 1|y) = fYi
(yi|θ)

fYi
(yi|θ) + h

, (3.4)

so we can consider the simple classification procedure of taking zi = 1, if P(zi =

1|y) ≥ P(zi = 0|y), and zi = 0, otherwise.
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Figure 4: Visualization of the simulated data set 1 with the first 50 observations

divided by 100000, where the colors indicate the estimated classification considering

h = 1.4867e− 06.

Then, with this estimation rule, Figure 4 shows the same visualization of our
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sample with the resulting classification when assuming h = 1.4867e−06. Examining

Figure 4, it becomes clear that if we consider higher values of h we would still

remove observations from the first part of the sample, but taking lower values would

not help removing the anomaly. From this, we conclude that we cannot define an

unique threshold that simultaneously identifies our anomaly while not misclassifying

typical observations. This, in spite of being a rather artificial example, showcase the

limitations of this assumption, motivating us to propose a modified version of the

model to circumvent this issue.

Our solution to this problem involves changing the uniform distribution over S to

allow for different levels for each sample point. We achieve this by defining unknown

sets S1, . . . , Sn, one for each observation, with different density levels for each data

point. The resulting model then becomes

Yi|θ, zi = 1
ind∼ FYi

(·|θ),

Yi|θ, zi = 0
ind∼ Uniform(Si),

(θ, z) ∼ π(θ, z),

µL(Si)
−1 = hi(θ),

(3.5)

where π(θ, z) represents the prior distribution of θ and the collection of indicators z.

However, it is worth noticing that, if we choose hi(θ) = ci ∈ R, for all i ∈ {1, . . . , n},

then we cannot estimate the n independent quantities c1, . . . , cn, rendering the model

useless. Instead, we consider, as the notation already suggests, choosing hi(θ) as

a function of the parameter θ from the typical component. The idea here is to

consider a parametric model that accurately depictures the typical behavior of the

data and then chooses hi(θ) to specifically capture observations that seem to be too

unlikely under the typical model. For this reason, we also call main component the

component of the mixture responsible for capturing the typical observations and

alternative component the one used for the anomalies.

In order to guide our choice of hi(θ), we will consider the idealized scenario of

knowing the value of θ and z−i, that denotes the collection of all indicator variables

with the exception of zi. Even though it is unrealistic, since in section 3.2 we

estimate θ and z using MCMC methods, this scenario does occur when sampling zi
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from its full conditional considering a Gibbs step. Having this in mind, we next find

the full conditional distribution of zi, but first, we need to obtain the expression for

the posterior distribution. Now, additionally assuming that FYi
(·|θ) is an absolute

continuous or discrete distribution with density or probability mass function fYi
(·|θ)

for simplicity, our posterior is given by

π(θ, z|y) Bayes
=

π(θ, z)π(y|θ, z)∑
z∈{0,1}n

∫
Θ
π(θ, z)π(y|θ, z) dθ

∝ π(θ, z)π(y|θ, z)

ind
= π(θ, z)

n∏
i=1

[
fYi

(yi|θ)
]zi n∏

i=1

[
µL(Si)

−1 ISi
(yi)︸ ︷︷ ︸
=1

]1−zi

= π(θ, z)
n∏

i=1

[
fYi

(yi|θ)
]zi n∏

i=1

[
hi(θ)

]1−zi

.

(3.6)

So, we can obtain the full conditional of zi as

π(zi|θ, z−i, y) ∝ π(θ, z|y)

= π(zi|θ, z−i)π(θ, z−i)

[
fYi

(yi|θ)
]zi[

hi(θ)

]1−zi

∝ wzi
i (1− wi)

1−zi

[
fYi

(yi|θ)
]zi[

hi(θ)

]1−zi

∝
(

wifYi
(yi|θ)

wifYi
(yi|θ) + (1− wi)hi(θ)

)zi ( (1− wi)hi(θ)

wifYi
(yi|θ) + (1− wi)hi(θ)

)1−zi

(3.7)

where z−i represents all of the indicators with the exception of zi and wi = π(zi =

1|θ, z−i). With this, we can identify that

zi|θ, z−i, y ∼ Bernoulli

(
wifYi

(yi|θ)
wifYi

(yi|θ) + (1− wi)hi(θ)

)
. (3.8)

Now notice that, considering a Gibbs step for zi to sample from the posterior via

MCMC, at every step of the chain we are making a random classification of our

observation yi assuming that θ and z−i are known. We then could consider es-

tablishing an analogy with hypothesis testing, where our null hypothesis would be

H i
0 : zi = 1, or equivalently, H i

0 : Yi ∼ FYi
(·|θ), and our alternative hypothesis would

be H i
1 : zi = 0, or equivalently, H i

1 : Yi was not generated by FYi
(·|θ), to find a natu-

ral way of defining hi(θ). However, if we were to reasonably estimate the probability

of our alternative hypothesis considering the Bayesian approach, we would have to

instantly take P(H i
1|y) = 1, for all i ∈ {1, . . . , n}, since, with the exception of simu-

lated data, our chosen model for typical FYi
(·|θ) is almost surely wrong, forcing us

to classify all observations as atypical.
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As an alternative, we can notice that, considering the derived full conditional and

assuming wi =
1
2
, for all i ∈ {1, . . . , n}, we would not reject our null hypothesis if

P(H i
0|y) ≥ P(H i

1|y), which would be the same as not rejecting H i
0 if fYi

(yi|θ) ≥ hi(θ).

Note however, knowing that fYi
(·|θ) can be interpreted as the predictive distribution

of Yi given θ, that we would reject the null hypothesis if the predictive value fYi
(yi|θ)

assuming our model is too small. So naturally, we are interested in studying the

distribution of the random variable given by the transformation fYi
(Yi|θ), i.e., the

distribution of the predictive distribution of Yi, where Yi ∼ FYi
(·|θ), to understand

which predictive values could be considered too small. Next, in order to simplify

the notation used, we introduce the definition of an autotransformation to better

represent this specific transformation.

Definition 3.1 (Autotransformation). Let X be a d-dimensional random vector

with density or probability mass function fX . Then the autotransformation of X is

defined as TX = fX(X).

For practical purposes, finding the distribution of TX in terms of elementary

functions for a single random variable X is typically an irremediable task, specially

considering that it might be the distribution of a non-trivial irreversible transforma-

tion of X. Having that in mind, the more general case of seeking the autotransfor-

mation for a parametric family of random variables seems to be a fruitless endeavor.

Nevertheless, for a sufficiently simple, general and useful class of families of distri-

butions we can use straightforward properties to find the autotransformation of any

member in terms of only one of them. This is the class of location and scale families

of distributions and the mentioned result can be found in section A.3 of Appendix

A. As a side note, from Definition 3.1 we highlight that TX > 0 almost surely, since

fX is always positive in a set that X belongs to with probability 1.

Going back to our objective, we can then define hi(θ) as the quantile 1 − γ of

TYi
, where γ fills a role similar to the credibility level in the context of hypothesis

testing. This choice allows us to control, how rare an observation yi needs to be with

respect to our assumed model for us to reject H i
0. Even though we are technically

only sampling from the full conditional at every step of the chain, instead of actually
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testing hypothesis, a similar line of thought would allow us to conclude that hi(θ) =

F−1
TYi

(1 − γ|θ) seems to be a reasonable choice in this scenario as well. However,

before formally defining the resulting proposed model, we must first consider under

what conditions this choice of hi(θ) makes sense.

Let us assume, as an example, that Y1, . . . , Yn|θ
ind∼ Bernoulli(θ). In this case

we simply cannot expect to find particularly small values of fYi
(yi|θ) unless θ ≈ 1 or

θ ≈ 0. And even so, as long as θ ∈ (0, 1), for sufficiently large values of γ we would

still expect to find 0’s and 1’s regardless of how improbable those outcomes may be,

leading us to always sample zi = 1 and rendering the method pointless. More intu-

itively, if θ ∈ (0, 1) we cannot differentiate typical and atypical observations because

there is no distinctive characteristic to look for, since all the information available

to make a decision is that Yi is either 0 or 1. With this, we can conclude that, for

practical purposes, searching for anomalies in a sample of Bernoulli random vari-

ables is undesirable. To fix this problem, we can impose as a condition that Yi must

assume values with arbitrarily small positive probabilities, so it is always possible to

find unreasonable predictive values fYi
(yi|θ), allowing us to detect anomalies. This

line of thought culminates in the condition presented below.

Definition 3.2 (Filtering Condition). Let X be a d-dimensional random vector

with density or probability mass function fX . Then X is said to satisfy the filtering

condition if for all ε > 0

P(TX ≤ ε) > 0, or equivalently, P(TX > ε) < 1. (3.9)

Next, we must consider that, since TYi
can be a discrete or even a mixed random

variable, when we define hi(θ) = F−1
TYi

(·|θ) we must determine what this inverse

represent in this context. So, before presenting the proposed model, we must firstly

present one more definition: the definition of Generalized Inverse Function, which

is given below.

Definition 3.3 (Generalized Inverse Function). Let X be a d-dimensional absolutely

continuous or discrete random vector with distribution FX . Then, if X satisfies the
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filtering condition, we define the generalized inverse function of TX , as

F−1
TX

(y) = inf {x ∈ R : FTX
(x) ≥ y} , 0 < y ≤ 1 (3.10)

and F−1
TX

(0) = 0. In other words, F−1
TX

(y) is the smallest value x ∈ R ∪ {−∞,+∞}

for which FTX
(x) is greater than or equal to y.

To provide some intuition for why the Definition 3.3 would be desirable, notice

that our inverse is similar to the left-continuous inverse of FTX
, for which F−1

TX
(0) =

−∞. However, since an autotransformation TX is almost surely positive, we want

F−1
TX

to always assume non-negative values, so considering F−1
TX

(0) = 0 instead fixes

the problem.

Finally, let Y1, . . . , Yn be d-dimensional absolutely continuous or discrete random

vectors with respective distribution functions FY1(·|θ), . . . , FYn(·|θ), where θ is an

unknown parameter vector, and such that Yi satisfy the filtering condition given

θ for all i ∈ {1, . . . , n}. Then, the naive filtering model is given by the following

hierarchical structure:
Yi|θ, zi = 1

ind∼ FYi
(·|θ),

Yi|θ, zi = 0
ind∼ Uniform(Si),

(θ, z) ∼ π(θ, z),

µL(Si)
−1 = F−1

TYi
(1− γ|θ)

(3.11)

where π(θ, z) is the prior distribution for θ and z, µL represents the Lebesgue mea-

sure, F−1
TYi

(·|θ) is the inverse function according to Definition 3.3 and γ ∈ (0, 1) is a

hyperparameter to be chosen. Next, considering once more the simulated data set

1, we use the naive filtering model to generate a classification for each data point.

Here, we choose γ = 0.99, wi = 1
2
, assume θ known and use the expression

for the autotransformation of a normal distribution, presented in section A.4 of

Appendix A, for our calculations. Figure 5 presents the posterior expected value of

the indicator variables considering the naive filtering model, given by

P (zi = 1| θ, y) = E [zi| θ, y] =
fYi

(yi|θ)
fYi

(yi|θ) + F−1
TYi

(1− γ|θ)
. (3.12)

As we can see, the naive filtering model correctly identifies the atypical observation

and attributes a probability of at least 50% to all of the typical observations. So, if
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Figure 5: Visualization of the simulated data set 1 with the first 50 observations

divided by 100000, where the colors indicate the estimated probability of belonging

to the main component according to the naive filtering model.

we were to classify zi = 1, if P (zi = 1| θ, y) ≥ P (zi = 0| θ, y), and zi = 0, otherwise,

the resulting accuracy would be of 100%.

Despite the good result obtained in our first toy example, the naive filtering

model does present an important shortcoming which we will showcase with a simple

example. Let us introduce the simulated data set 2, consisting of 3 samples of the

same distribution Normal(0, 1). The difference between the samples is their size, so

the first sample has a total of 50 observations, the second 500 and the third 5000. We

then apply the naive filtering model with γ = 0.80, wi =
1
2

and assuming θ known

for each one of the three samples. Table 1 summarizes the results for each one of the

samples and Figure 6 presents the posterior expected value of the indicator variables

considering the naive filtering model.

As we can see from table 1, as the sample size increases, the number of removed

observations n−n1 also increases, attaining a proportion of observations close to the

chosen value γ. The overall effect of this removal of observations is essentially a soft

truncation of the distribution we wish to estimate, since, even in the case of knowing

the exact main component distribution, we still expect to remove 100(1 − γ)% of

the typical observations that are closest to the tails. The origin of this phenomenon
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n n1 =
∑n

i=1 zi
n1

n

Sample 1 50 44 0.88

Sample 2 500 406 0.812

Sample 3 5000 4021 0.8042

Table 1: Summary of the estimation for the three samples of the simulated data set

2.
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Figure 6: Visualization of the sample 3 of the simulated data set 2, where the colors

indicate the estimated probability of belonging to the main component according to

the naive filtering model.
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can be traced back to the test of hypothesis considered to define the alternative

component, since we only naively considered controlling the error of rejecting one

typical observation, when we should account for the total rejection error considering

the n decisions made instead.

Another problem worth commenting is masked by our assumption of knowing θ.

But if we also considered the estimation of θ, we could expect to obtain estimates

of θ with a strong bias because of the truncation, which is undesirable. So, in the

next subsection, we discuss how to circumvent this issue with an adaptation of the

alternative component.

3.1.2 Biased Filtering Model

Considering the problem of the soft truncation caused by the naive filtering

model, we can consider altering our choice of γ to account for the fact that we

consider n decisions instead of only one. When considering a hypothesis testing, a

common procedure is to use the Bonferroni correction, however, we provide here a

different approach to this issue. We established in subsection 3.1.1 that, considering

an estimation via MCMC, at every step of the chain we sample zi given θ and z−i

based on the relation between fYi
(yi|θ) and hi(θ). What is interesting to point out

is that the expression fYi
(yi|θ) can also be interpreted as the value of the likelihood

pseudo-depth function for the observation yi. So, taking inspiration from the re-

ordering propriety of depth functions, we can consider defining hi(θ) in terms of

the most extreme observation of our sample of size n. Since, in this case, by most

extreme we mean having the smallest relative predictive value, one could suppose

that we need to compare the predictive values between observations with possibly

distinct distributions. However, we can attain a similar effect if we compare how

extreme an observation yi is with respect to the most extreme observation from a

virtual sample Y 1
i , . . . , Y

n
i

ind∼ FYi
(·|θ). Then, we can define hi(θ) to be the quantile

1 − γ of the random variable given by min{TY 1
i
, . . . , TY n

i
}, representing the distri-

bution of the predictive value of the most extreme observation in an independent

sample of size n. To simplify the notation, we next introduce the definition below.
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Definition 3.4 (Autotransformation of Order n). Let X be a d-dimensional abso-

lutely continuous or discrete random vector. Then the autotransformation of order

n of X is given by T
(n)
X = min{TX1 , . . . , TXn}, where TX1 , . . . , TXn are independent

and identically distributed autotransformations of X.

Considering Definition 3.4 and the soft truncation problem, we can now choose

hi(θ) = F−1

T
(n)
Yi

(1 − γ|θ), but the interesting part about this choice is that our newly

defined function satisfies

hi(θ) = F−1

T
(n)
Yi

(1− γ|θ) = F−1
TYi

(
1− γ

1
n

∣∣∣ θ) , (3.13)

so we can interpret the new hi(θ) as simply using a correction for the value of γ that

accounts for the sample size n. For the result presented above, we use proposition

A.2, formally stated and proved in section A.1 of Appendix A.

Notice, however, that the original motivation for adapting the value of γ was to

control how many observations from the main component are classified as atypical.

This means that our choice of hi(θ) over-corrects the value of γ and a more precise

choice would be to consider taking the minimum of n1 + 1 variables instead of n,

where n1 =
∑n

i=1 zi is the number of typical observations in our sample. Having all

of this in mind, we next propose a correction of the naive filtering model.

Let Y1, . . . , Yn be d-dimensional absolutely continuous or discrete random vectors

with respective distribution functions FY1(·|θ), . . . , FYn(·|θ), where θ is an unknown

parameter vector, and such that Yi satisfy the filtering condition given θ for all

i ∈ {1, . . . , n}. Then, the biased filtering model is given by the following hierarchical

structure:
Yi|θ, zi = 1

ind∼ FYi
(·|θ),

Yi|θ, z−i, zi = 0
ind∼ Uniform(Si),

(θ, z) ∼ π(θ, z),

µL(Si)
−1 = F−1

TYi

(
1− γ(n1+1)−1

∣∣∣ θ)
(3.14)

where π(θ, z) is the prior distribution for θ and z, z−i represents all of the indicators

with the exception of zi, n1 =
∑n

i=1 zi, µL represents the Lebesgue measure, F−1
TYi

(·|θ)

is the inverse function according to Definition 3.3 and γ ∈ (0, 1) is a hyperparameter
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to be chosen. The posterior for this model and the full conditional distribution of

zi, as well as other aspects of inference are presented later in this subsection.

Before returning to the problem involving the simulated data set 2, one may be

interest in comparing how our chosen corrected quantile performs when compared to

the well established Bonferroni correction. In this case, considering a fixed value of

n and the corrections as functions of γ, our interest lies in comparing the functions

fBon(γ) =
1− γ

n
and fours(γ) = 1− γ

1
n . (3.15)

Considering now as a linear approximation of fours the tangent line of fours at γ = 1,

we have

fours(γ) ≈ fours(1) +
dfours(γ)

dγ

∣∣∣∣∣
γ=1

(γ − 1) = 0 +
d

dγ

[
1− γ

1
n

] ∣∣∣∣∣
γ=1

(γ − 1)

=

[
−γ

1
n
−1

n

] ∣∣∣∣∣
γ=1

(γ − 1) =
1− γ

n
= fBon(γ).

(3.16)

Which implies that the Bonferroni correction can be seen as, in some sense, the best

linear approximation of our correction when γ ≈ 1. With this simple result, we can

also expect both approximations to perform similarly when considering relatively

high values of γ and we leave the comparison for lower values of γ for future work.

Considering once more the sample 3 of the simulated data set 2, we use the

biased filtering model to estimate the expected value of the indicators. Our results

are presented in Figure 7, where we used γ = 0.95, wi =
1
2

and assumed θ known.

The estimates were made by sampling from the posterior distribution π(z|θ, y) con-

sidering a Gibbs algorithm and then estimating the expected value via Monte Carlo

integration, as we considered a total of 20000 chain steps and eliminated the first

2000 iterations as burn in. For reference, the approximate computation time re-

quired to obtain the sample via MCMC was of 1 minute and 45 seconds. As we

can see, the improved version of our proposed model essentially removes the soft

truncation, thus providing a satisfactory solution to the problem.

We next present the posterior and the full conditional distribution of zi for the
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Figure 7: Visualization of the sample 3 of the simulated data set 2, where the colors

indicate the estimated probability of belonging to the main component according to

the biased filtering model.

model of equation 3.14. The posterior is given by

π(θ, z|y)
Bayes
=

π(θ, z)π(y|θ, z)∑
z

∫
Θ
π(θ, z)π(y|θ, z) dθ

∝ π(θ, z)π(y|θ, z)

ind
= π(θ)

n∏
i=1

[
π(zi)

] n∏
i=1

[
fYi

(yi|θ)
]zi n∏

i=1

[
µL(Si)

−1 ISi
(yi)︸ ︷︷ ︸
=1

]1−zi

ind
= π(θ)

n∏
i=1

[
wzi

z (1− wz)
1−zi

] n∏
i=1

[
fYi

(yi|θ)
]zi n∏

i=1

[
F−1
TYi

(
1− γ(n1+1)−1

∣∣∣ θ)]1−zi

,

(3.17)

and for the full conditional distribution of zk we have

π(zk|θ, z−k, y) ∝ π(θ, z|y)

ind
= π(zk|θ, z−k)π(θ, z−k)

n∏
i=1

[
fYi

(yi|θ)
]zi n∏

i=1

[
F−1
TYi

(
1− γ(n1+1)−1

∣∣∣ θ)]1−zi

∝ π(zk|θ, z−k)

[
fYk

(yk|θ)
]zk[

F−1
TYk

(
1− γ(n−k

1 +zk+1)−1
∣∣∣ θ)]1−zk

×
∏
i ̸=k

[
F−1
TYi

(
1− γ(n−k

1 +zk+1)−1
∣∣∣ θ)]1−zi

,

(3.18)

where π(zk = 1|θ, z−k) = wk and n−k
j =

∑
i ̸=k I{zi=j}, for j ∈ {0, 1}. To facilitate
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the identification of the resulting Bernoulli distribution, we can calculate

π(zk = 1|θ, z−k, y) ∝ π(θ, z|y)

∝ wkfYk
(yk|θ)

∏
i ̸=k

[
F−1
TYi

(
1− γ(n−k

1 +2)−1
∣∣∣ θ)]1−zi (3.19)

and

π(zk = 0|θ, z−k, y) ∝ π(θ, z|y)

∝ (1− wk)F
−1
TYk

(
1− γ(n−k

1 +1)−1
∣∣∣ θ)∏

i ̸=k

[
F−1
TYi

(
1− γ(n−k

1 +1)−1
∣∣∣ θ)]1−zi

,
(3.20)

which implies

zk|θ, z−k, y ∼ Bernoulli

(
ak

ak + bk

)
(3.21)

where

ak = wkfYk
(yk|θ), and

bk = (1− wk)F
−1
TYk

(
1− γ(n−k

1 +1)−1
∣∣∣ θ)︸ ︷︷ ︸

desired term

∏
i ̸=k

F−1
TYi

(
1− γ(n−k

1 +1)−1
∣∣∣ θ)

F−1
TYi

(
1− γ(n−k

1 +2)−1

∣∣∣ θ)
1−zi

︸ ︷︷ ︸
bias

. (3.22)

As we can see from the equations above, we introduced a bias on the full conditional

when we altered the measure of the unknown regions S1, . . . , Sn from the alternative

component. If we then consider the particular case of independent and identically

distributed response variables, we can better understand the effect of this bias in

the parameter estimation. In this case, we can simplify equation 3.22 as follows:

bk = (1− wk)F
−1
TYk

(
1− γ(n−k

1 +1)−1
∣∣∣ θ)∏

i ̸=k

F−1
TYi

(
1− γ(n−k

1 +1)−1
∣∣∣ θ)

F−1
TYi

(
1− γ(n−k

1 +2)−1

∣∣∣ θ)
1−zi

id
= (1− wk)F

−1
TYk

(
1− γ(n−k

1 +1)−1
∣∣∣ θ)∏

i ̸=k

F−1
TYk

(
1− γ(n−k

1 +1)−1
∣∣∣ θ)

F−1
TYk

(
1− γ(n−k

1 +2)−1

∣∣∣ θ)
1−zi

= (1− wk)F
−1
TYk

(
1− γ(n−k

1 +1)−1
∣∣∣ θ)︸ ︷︷ ︸

desired term

F−1
TYk

(
1− γ(n−k

1 +1)−1
∣∣∣ θ)

F−1
TYk

(
1− γ(n−k

1 +2)−1

∣∣∣ θ)
n−k

0

︸ ︷︷ ︸
bias

.

(3.23)

Here we can see that the bias in equation 3.23 is the ratio between the chosen

quantiles assuming that zk = 0 and zk = 1 to the n−k
0 -th power. Furthermore,
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notice that

n−k
1 + 1 < n−k

1 + 2

⇒ (n−k
1 + 1)−1 > (n−k

1 + 2)−1

⇒ γ(n−k
1 +1)−1

< γ(n−k
1 +2)−1

⇒ 1− γ(n−k
1 +1)−1

> 1− γ(n−k
1 +2)−1

⇒ F−1
TYk

(
1− γ(n−k

1 +1)−1
∣∣∣ θ) > F−1

TYk

(
1− γ(n−k

1 +2)−1
∣∣∣ θ)

⇒

F−1
TYk

(
1− γ(n−k

1 +1)−1
∣∣∣ θ)

F−1
TYk

(
1− γ(n−k

1 +2)−1

∣∣∣ θ)
n−k

0 +1

>

F−1
TYk

(
1− γ(n−k

1 +1)−1
∣∣∣ θ)

F−1
TYk

(
1− γ(n−k

1 +2)−1

∣∣∣ θ)
n−k

0

> 1.

(3.24)

Thus, the bias favors classifying the observations as anomalies and grows exponen-

tially in significance with the number of atypical observations n0. We can more

directly understand the bias when considering that, according to equation 3.24,

F−1
TYi

(
1− γ(n1+1)−1

∣∣∣ θ) decreases with n1, so whenever we choose to classify an ob-

servation as anomalous we end up increasing the contribution of this term for all of

the observations that were already labeled as atypical. In other words, the model

has a greater incentive to reject observations than what was chosen by design and

this tendentious behavior also leads to a positive feedback loop that can potentially

result in the rejection of all observations.

Going back to the more general case of non-identically distributed observations,

we can expect a similar behavior for the bias in equation 3.22, since in principle

the bias-generating mechanism is the same. Next, we showcase with a numerical

example how this bias affects estimation.

Let us consider another simulation study, where we call simulated data set 3 the

sample consisting of 20 independent observations with Normal(0, 1) distribution,

to represent the main component, and then 60 anomalous observations arbitrarily

chosen to be equal to 5. The idea here is to consider a sample with a relatively high

number of atypical observations in order to inflate the bias of the model. Figure 8

shows the sampled values for each indicator at each iteration of the Gibbs algorithm.

Here we used γ = 0.99, wi =
1
2

and assumed θ known to generate a total of 30 steps

of the Markov chain.



49

20

40

60

80

0 10 20 30
Iteration

In
de

x

Typical

Atypical

Figure 8: Visualization of the indicators for each observation of the simulated data

set 3 throughout the Markov chain considering the biased filtering model. Index 1 to

20 correspond to the typical sample and index 21 to 80 correspond to the anomalous

observations.

As Figure 8 shows, even choosing as an initial condition zi = 1, for all i ∈

{1, . . . , n} and γ = 0.99, the chain eventually started sampling every indicator as

0 due to the bias previously discussed. So, in this case, estimation simply becomes

impracticable.

3.1.3 Filtering Model

In this section, we present the last version of our proposed methodology for this

work, the filtering model, which is an improvement over the biased filtering model

because it address the problems arising from the dependency on the indicators z for

the alternative component. With this modification we mitigate the influence of the

bias on parameter estimation and, for some specific cases, are even able to remove

it completely.

In order to achieve the desired bias reduction, we first consider a general family

of modifications to then choose the most effective correction. Having that in mind,

we introduce auxiliary functions g1, . . . , gn : R → R and consider the modification
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of the alternative component of the biased filtering model given by

µL(Si)
−1 = F−1

TYi

(
1− γgi(n1+1)−1

∣∣∣ θ) . (3.25)

If we then assume that gi does not depend on the collection of indicators z, we can

analogously recalculate the full conditional for each indicator zk, obtaining

zk|θ, z−k, y
ind∼ Bernoulli

(
ak

ak + bk

)
(3.26)

where

ak = wkfYk
(yk|θ), and

bk = (1− wk)F
−1
TYk

(
1− γgk(n

−k
1 +1)−1

∣∣∣ θ)∏
i ̸=k

F−1
TYi

(
1− γgi(n

−k
1 +1)−1

∣∣∣ θ)
F−1
TYi

(
1− γgi(n

−k
1 +2)−1

∣∣∣ θ)
1−zi

,

(3.27)

and recalling that n−k
j =

∑
i ̸=k I{zi=j}, for j ∈ {0, 1}. However we still require a

criteria in order to select the most effective auxiliary function. A natural choice

would be, if possible, a function that controls the bias considering a simplifying

hypothesis, for instance the identically distributed case. And so, focusing on this

case we have

ak = wkfY (yk|θ), and

bk = (1− wk)F
−1
TYk

(
1− γgk(n

−k
1 +1)−1

∣∣∣ θ)
F−1

TYk

(
1− γgk(n

−k
1 +1)−1

∣∣∣ θ)
F−1
TYk

(
1− γgk(n

−k
1 +2)−1

∣∣∣ θ)
n−k

0

.

(3.28)

With the expression above, we can establish that our auxiliary function removes the

bias in the independent and identically distributed case if, and only if, it satisfies

the equation

F−1
TYk

(
1− γgk(n

−k
1 +1)−1

∣∣∣ θ)
F−1

TYk

(
1− γgk(n

−k
1 +1)−1

∣∣∣ θ)
F−1
TYk

(
1− γgk(n

−k
1 +2)−1

∣∣∣ θ)
n−k

0

= F−1
TYk

(
1− γ(n−k

1 +1)−1
∣∣∣ θ) ,

(3.29)

for all possible values of n−k
1 . Next, we introduce the somewhat unprompted defini-

tion of a correction function and later we clarify how this function helps us remove

the bias of the filtering model.
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Definition 3.5 (Correction Function). Let Y1, . . . , Yn be an independent sample

from the d-dimensional absolutely continuous or discrete distributions FY1(·|θ), . . . ,

FYn(·|θ) and γ ∈ (0, 1) a real scalar. If Y1, . . . , Yn satisfy the filtering condition given

θ and denoting hi the distribution of the autotransformation of the i-th observa-

tion, then the correction function gi = gi(·|θ, γ) for Yi is the function satisfying the

recursive expression given by

gi(x) =

(
logγ

[
1− hi

([
h−1
i

(
1− γx−1

)] 1
n−x+1

[
h−1
i

(
1− γgi(x+1)−1

)] n−x
n−x+1

)])−1

,

(3.30)

for x ∈ {1, . . . , n− 1}, and satisfying

gi(n) = n, (3.31)

for all i ∈ {1, . . . , n}.

From Definition 3.5 it is unclear whether or not such objects exists or even how

to obtain numerical values from the expression in equation 3.30, since the correction

functions are defined implicitly. So, in section A.2 of Appendix A we will show that

correction functions are well defined and provide proof for all of the claims made

throughout this section.

It is worth noticing that Definition 3.5 does not assume identically distributed

observations, but unfortunately we do not have any specific results to present for

this more general case. However, the correction function for Yi is defined such that

it satisfies

F−1
TYi

(
1− γgi(x)

−1
∣∣∣ θ)

 F−1
TYi

(
1− γgi(x)

−1
∣∣∣ θ)

F−1
TYi

(1− γgi(x+1)−1| θ)

n−x

≤ F−1
TYi

(
1− γx−1

∣∣∣ θ) , (3.32)

for x ∈ {1, . . . , n}. Furthermore, if TYi
is absolutely continuous, then the correction

function for Yi satisfies

F−1
TYi

(
1− γgi(x)

−1
∣∣∣ θ)

 F−1
TYi

(
1− γgi(x)

−1
∣∣∣ θ)

F−1
TYi

(1− γgi(x+1)−1| θ)

n−x

= F−1
TYi

(
1− γx−1

∣∣∣ θ) , (3.33)

for x ∈ {1, . . . , n} and i ∈ {1, . . . , n}. From equations 3.32 and 3.33 we can fi-

nally derive the association between correction functions and the auxiliary functions
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present in equation 3.25 using the relation n−k
1 +n−k

0 = n− 1. Notice that, if Yk is a

d-dimensional absolute continuous or discrete random vector and we choose the aux-

iliary function for Yk to be the correction function for Yk, then for the independent

and identically distributed case we have

ak = wkfY (yk|θ), and

bk = (1− wk)F
−1
TYk

(
1− γgk(n

−k
1 +1)−1

∣∣∣ θ)
F−1

TYk

(
1− γgk(n

−k
1 +1)−1

∣∣∣ θ)
F−1
TYk

(
1− γgk(n

−k
1 +2)−1

∣∣∣ θ)
n−k

0

eq.3.32
≤ (1− wk)F

−1
TYk

(
1− γ(n−k

1 +1)−1
∣∣∣ θ) ,

(3.34)

for k ∈ {1, . . . , n}, allowing us to control the probability of classifying an observation

as atypical, that is, the probability is at most the desired one. What is even more

surprising is that, if TYk
is also absolutely continuous, then for the independent and

identically distributed case we have

ak = wkfY (yk|θ), and

bk = (1− wk)F
−1
TYk

(
1− γgk(n

−k
1 +1)−1

∣∣∣ θ)
F−1

TYk

(
1− γgk(n

−k
1 +1)−1

∣∣∣ θ)
F−1
TYk

(
1− γgk(n

−k
1 +2)−1

∣∣∣ θ)
n−k

0

eq.3.33
= (1− wk)F

−1
TYk

(
1− γ(n−k

1 +1)−1
∣∣∣ θ) ,

(3.35)

for k ∈ {1, . . . , n}, completely removing the bias. It can also be proven that, for

location-scale models with absolutely continuous autotransformations, even with

possibly different location and scale parameters for each data point, the model is also

unbiased. As an extrapolation, we expect the correction functions to approximately

contain the bias’ inflation outside of these cases, speculatively leading to an overall

improvement of the model. However, further investigations lie outside of the scope

of this work, so more research is needed.

Even though the correction functions are useful to control the bias in some

specific cases, for parameter estimation we still require a method to calculate its

values. So, for the correction function gi for Yi consider the following.

1. We only need to evaluate gi at the integer values 1, . . . , n.
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2. Equation 3.30 provides a recursive relation that allows us to find the value of

gi(x) given gi(x+ 1).

3. For the boundary case, from equation 3.31 we have gk(n) = n.

Then, to find the numerical values for the correction function we start taking gi(n) =

n and then iteratively calculate gi(x) given gi(x+1) until obtaining the desired value.

As a side note, even though the recursion in equation 3.30 theoretically allows us to

calculate these values, this expression is typically numerically unstable, so instead

it is recommended using the relation[
h−1
i

(
1− γx−1

)] 1
n−x+1

[
h−1
i

(
1− γgi(x+1)−1

)] n−x
n−x+1

= exp

{
1

n− x+ 1
ln
[
h−1
i

(
1− γx−1

)]
+

n− x

n− x+ 1
ln
[
h−1
i

(
1− γgi(x+1)−1

)]}
(3.36)

for a more stable algorithm. Next, we present the last version of the filtering model

considered for this work.

Let Y1, . . . , Yn be d-dimensional absolutely continuous or discrete random vectors

with respective distribution functions FY1(·|θ), . . . , FYn(·|θ), where θ is an unknown

parameter vector, and such that Yi satisfy the filtering condition given θ for all

i ∈ {1, . . . , n}. Then, the filtering model is given by the following hierarchical

structure:
Yi|θ, zi = 1

ind∼ FYi
(·|θ),

Yi|θ, z−i, zi = 0
ind∼ Uniform(Si),

(θ, z) ∼ π(θ, z),

µL(Si)
−1 = F−1

TYi

(
1− γgi(n1+1)−1

∣∣∣ θ) ,

(3.37)

where π(θ, z) is the prior distributions for θ and z, z−i represents all of the indicators

with the exception of zi, n1 =
∑n

i=1 zi, µL represents the Lebesgue measure, F−1
TYi

(·|θ)

is the inverse function according to Definition 3.3, γ ∈ (0, 1) is a hyperparameter to

be chosen and gi = gi(·|θ, γ) is the correction function presented in Definition 3.5.

Now considering once more the simulated data set 3, Figure 9 shows the sampled

values for each indicator at each iteration of the Gibbs algorithm. Here we used

γ = 0.99, wi = 1
2

and assumed θ known to generate a total of 100 steps of the
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Figure 9: Visualization of the indicators for each observation of the simulated data

set 3 throughout the Markov chain considering the (unbiased) filtering model. Index

1 to 20 correspond to the typical sample and index 21 to 80 correspond to the

anomalous observations.

Markov chain. As we can see, the correction function adopted to control the bias

seems to be working as desired, allowing the model to quickly identify and classify

the observations.

3.2 PARAMETER ESTIMATION

Regarding the filtering model of 3.1.3, in this section we consider parameter

estimation through MCMC methods, and in particular the Metropolis-Hastings al-

gorithm and the Gibbs sampler described in section 2.2.1. In order to use these

methods for model fitting, finding a function proportional to the model’s posterior

is required. However, the filtering model as presented in equation 3.37 still requires

us to choose a model FYi
for the i-th observation and a prior π(θ, z).

We first consider the most general case possible, where we neither assume a

specific distribution for the observations Y1, . . . , Yn nor a particular prior for (θ, z),
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so we proceed to express the posterior distribution as follows:

π(θ, z|y)
Bayes
=

π(θ, z)π(y|θ, z)∑
z

∫
Θ
π(θ, z)π(y|θ, z) dθ

∝ π(θ, z)π(y|θ, z)

ind
= π(θ, z)

n∏
i=1

[
fYi

(yi|θ)
]zi n∏

i=1

[
µL(Si)

−1 ISi
(yi)︸ ︷︷ ︸
=1

]1−zi

ind
= π(θ, z)

n∏
i=1

[
fYi

(yi|θ)
]zi n∏

i=1

[
F−1
TYi

(
1− γgi(n1+1)−1

∣∣∣ θ)]1−zi

.

(3.38)

Now, since we wish to use the Metropolis-Hastings algorithm to generate samples

from the posterior, we wish to find the full conditionals for every parameter of the

model and then proposal distributions for each. So, considering the full conditional

distribution of θ, we have

π(θ|z, y) ∝ π(θ|z, y)π(z|y) = π(θ, z|y)

∝ π(θ|z)π(z)
n∏

i=1

[
fYi

(yi|θ)
]zi n∏

i=1

[
F−1
TYi

(
1− γgi(n1+1)−1

∣∣∣ θ)]1−zi

∝ π(θ|z)
n∏

i=1

[
fYi

(yi|θ)
]zi n∏

i=1

[
F−1
TYi

(
1− γgi(n1+1)−1

∣∣∣ θ)]1−zi

,

(3.39)

and, for the full conditional of zk, from subsection 3.1.3 we have

zk|θ, z−k, y
ind∼ Bernoulli

(
ak

ak + bk

)
(3.40)

where

ak = wkfYk
(yk|θ),

bk = (1− wk)F
−1
TYk

(
1− γgk(n

−k
1 +1)−1

∣∣∣ θ)∏
i ̸=k

F−1
TYi

(
1− γgi(n

−k
1 +1)−1

∣∣∣ θ)
F−1
TYi

(
1− γgi(n

−k
1 +2)−1

∣∣∣ θ)
1−zi

,

(3.41)

and recalling that n−k
j =

∑
i ̸=k I{zi=j}, for j ∈ {0, 1}. Here, for zk we consider a

Gibbs step by using as the proposal distribution its own full conditional, surpassing

the necessity of including an acceptance-rejection step. Nevertheless, we still need

to find a good proposal distribution to sample θ.

Since we made only a few assumptions regarding the distributions of our sam-

ple Y1, . . . , Yn, it is somewhat difficult to provide general guidance on how to find
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reasonable proposals in the general case. So next, in order to help us make some in-

teresting comparisons, we temporarily assume that π(θ, z) = π(θ)π(z) and consider

the modified full conditional of θ given by

π(θ|z, y) ∝ π(θ|z, y)π(z|y) = π(θ, z|y)

∝ π(θ|z)π(z)
n∏

i=1

[
fYi

(yi|θ)
]zi n∏

i=1

[
F−1
TYi

(
1− γgi(n1+1)−1

∣∣∣ θ)]1−zi

∝ π(θ)
n∏

i=1

[
fYi

(yi|θ)
]zi n∏

i=1

[
F−1
TYi

(
1− γgi(n1+1)−1

∣∣∣ θ)]1−zi

= π(θ)f(y1|θ)
n∏

i=1

[
F−1
TYi

(
1− γgi(n1+1)−1

∣∣∣ θ)]1−zi

∝ π(θ|y1)
n∏

i=1

[
F−1
TYi

(
1− γgi(n1+1)−1

∣∣∣ θ)]1−zi

,

(3.42)

where y1 consists of all observations yi such that zi = 1. Even though self-evident, it

is worth pointing out that, if not for the term from the alternative component, the

full conditional for θ would be proportional to the posterior distribution considering

only the observations from the main model. With this in mind, if we assume a small

number of atypical observations, then a good proposal for π(θ|y1) should also work

well for π(θ|z, y). For a large number of atypical observations, however, we still do

not have a general guideline to find good proposals, so this must be considered on

a case-by-case basis.

After performing the Metropolis-Hastings algorithm, assuming that from the

Markov chain we obtain an independent sample (θ(1), z(1)), . . . , (θ(m), z(m)) from the

model’s posterior distribution, we can use this sample to obtain point estimates for

our parameters. Here, we consider standard Monte Carlo estimates for the posterior

expected values of θ and zi, respectively given by

θ̂ =
1

m

m∑
j=1

θ(j) and z̄i =
1

m

m∑
j=1

z
(j)
i , (3.43)

for i ∈ {1, . . . , n}. As presented in section 2.1, we justify this choice considering the

Bayes’ estimator that minimizes the posterior expect square loss. As an alternative

to estimating the expected value of zk, we can more directly estimate the probability
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pk of allocating the k-th observation to main component of the model by taking

p̂k =
1

m

m∑
j=1

a
(j)
k

a
(j)
k + b

(j)
k

, (3.44)

where
a
(j)
k = w

(j)
k fYk

(
yk

∣∣θ(j) ) ,
b
(j)
k = (1− w

(j)
k )F−1

TYk

(
1− γgk(n

−k
1j +1)−1

∣∣∣ θ(j))

×
∏
i ̸=k

F−1
TYi

(
1− γgi(n

−k
1j +1)−1

∣∣∣ θ(j))
F−1
TYi

(
1− γgi(n

−k
1j +2)−1

∣∣∣ θ(j))
1−z

(j)
i

,

n−k
1j =

∑
i ̸=k

z
(j)
i ,

w
(j)
k = π

(
zk = 1

∣∣∣θ(j), z(j)−k

)

(3.45)

for k ∈ {1, . . . , n}. It is worth noting that even though p̂k is expensive to compute,

we already require the calculation of a(j)k and b
(j)
k for the j-th step of the chain in

order to sample from the full conditional of zk, so the additional cost is practically

insignificant in comparison. Besides this, we call attention to the fact that, even

though zi ∈ {0, 1}, in this section we only consider estimating the expected value

of zi, so z̄i ∈ [0, 1]. For a discussion on how to use the sampled values of the chain

to classify an observation as atypical or not, we redirect the reader to section 3.3.

Next, we present some important characteristics of the filtering model, discuss some

of the problems that arise during estimation and then propose a few techniques to

circumvent them.

3.2.1 Proprieties of the Filtering Model

The first interesting property of the filtering model is that, under certain con-

ditions, it presents a highly multimodal posterior. To illustrate this, consider the

histograms presented in Figure 10. Both of them are a graphical representations of

the same sample of size n = 1000 generated from a Normal(0, 1), albeit considering

different bin sizes. The left plot represents what we typically expect from the his-

togram of a normally distributed sample, unimodal and approximately symmetric,

but the right one shows signs of multimodality.
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Figure 10: Histograms of the same sample generated from the standard normal

distribution, but considering a different number of bins for each one.

This contrast seems to be just an arbitrary illusion, since correctly assuming

a normal model for the data forces the likelihood to be unimodal (and for large

n the posterior behaves similarly). However, if we consider the filtering model

with a normal distribution for the main component, the main component is able

to accommodate any specific subset of the observations and then delegate the rest

to the alternative component. So, if at some point of the estimation, the chain

specifically allocates to the main component a subset of the sample that resembles

an isolated mode, it can consistently reject all other observations and get stuck in a

local optimum.

To evaluate this effect, we considered multiple simulation studies fitting the fil-

tering model with mixtures of multivariate normal distributions for the main com-

ponent, but for brevity we omit most of these experiments. From our simulations,

we verified that for the univariate normal distribution this effect can have signifi-

cant impact depending on the initialization, and in section 3.2.2 we showcase one

instance of this phenomenon while suggesting corresponding precautions. However,

it is interesting to notice that this effect seems to vanish for d-variate normal dis-

tributions considering d ≥ 2. We suspect that, with the increase in dimension, it

becomes harder to find isolated subsets capable of trapping the chain.
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Next, we call attention to the fact that µ(Si) has a dependency on θ. So a natural

interest would be determining what is the approximate effect of this dependence on

parameter estimation. To advance with this goal, we consider a minimally complex

model for which we can compare this influence analytically. Unsurprisingly, one

of the simplest nontrivial cases occurs when choosing a normal distribution for the

main component of the filtering model. So, assuming the corresponding conjugate

prior for the mean µ and the precision τ , we attain the following hierarchical model

Yi|µ, τ, zi = 1
ind∼ Normal

(
µ, τ−1

)
,

Yi|µ, τ, z−i, zi = 0
ind∼ Uniform(Si),

µ|τ ∼ Normal
(
β, λ−1τ−1

)
,

τ ∼ Gamma(a, b),

zi
ind∼ Bernoulli(wz),

µL(Si)
−1 = (2π)−

1
2 τ

1
2 exp

{
−1

2
F−1
G

(
γgi(n1+1)−1

)}
,

(3.46)

where G ∼ Gamma
(
1
2
, 1
2

)
. For the model above, it can be shown that the full

conditional of (µ, τ) is given by

µ|τ, z, y ∼ Normal
(
β̄, λ̄−1τ−1

)
,

τ |z, y ∼ Gamma
(
ā, b̄

)
,

(3.47)

where λ̄ = λ+n1, β̄ = λ̄−1 (λβ +
∑n

i=1 ziyi), ā = a+n, b̄ = b+
∑n

i=1 ziy
2
i +λβ2− λ̄β̄2

and nk =
∑n

i=1 I{zi=k}. For more details, see sections A.4 of Appendix A and B.2

of Appendix B. Now, to better understand the effect of this dependency, we can

compare the distribution above with what would have been obtained if µ(Si) did

not depend on θ, i.e., we can compare π(µ, τ |z, y) with π(µ, τ |y1), that is given by

µ|τ, y1 ∼ Normal
(
β̄, λ̄−1τ−1

)
,

τ |y1 ∼ Gamma
(
ā1, b̄

)
,

(3.48)

where ā1 = a + n1 is the only change. Having both expressions at hand, we notice

that the location parameter µ is not affected, so we only need to compare the changes

for τ . For reference, if X ∼ Gamma(a, b), we know that

E[X] =
a

b
and V ar(X) =

a

b2
, (3.49)
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so we can compare the expected value and the variance of these models considering

that

E[τ |z, y] = ā

b̄
=

a+ n

b̄
=

a+ n1 + n0

b̄
=

a+ n1

b̄
+

n0

b̄
= E[τ |y1] + n0

b̄︸︷︷︸
≥0

≥ E[τ |y1]

(3.50)

and

V ar(τ |z, y) = ā

b̄
=

a+ n

b̄2
=

a+ n1 + n0

b̄2
=

a+ n1

b̄0
+

n0

b̄2
= V ar(τ |y1) + n0

b̄2︸︷︷︸
≥0

≥ V ar(τ |y1).
(3.51)

From the inequalities above, it becomes clear that the filtering model increases the

expected value of the precision linearly with n0 and its standard deviation grows

with
√
n0. One possible interpretation of this phenomenon is that the model uses

the observations attributed to the alternative component to implicitly infer which

regions of the sample space are unlikely. Consequently, it augments the expected

precision of our main component to indicate this gain in information, while also

inflating the precision’s variance to account for the somewhat vague nature of this

gain. It is yet unclear if this interpretation does hold and whether the alternative

component exerts other types of influence in the estimation or not. However, since

for all applications in Chapter 4 we consider main components with normal response,

no further investigation will be conducted regarding this matter in the present work.

3.2.2 Known Issues

The first problem we consider here is a particular consequence of our choice for

the alternative component. During the developments of section 3.1, we implicitly

assume that θ(t), the value sampled at the t-th step of the Markov chain, is close

to the “correct” value of θ. However, the model also assumes the presence of atyp-

ical observations in our sample, that is, samples that were not generated by the

distribution of the main component. So, if we assume as an initial condition for z

that z
(0)
i = 1 for all i ∈ {1, . . . , n}, we can expect to sample θ(1) with a bias. The
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question then becomes: can this bias prevent us from properly estimate θ? And

unfortunately the answer is yes, but this effect can be mitigated. To see that this

bias might be a problem, the following experiment presents one extreme instance of

this phenomenon.

Suppose we wish to fit the model of equation 3.46 to the simulated data set 4,

from Figure 11. The first 200 observations were generated from a Normal(0, 100−1)

and the other 100 observations were generated from a Uniform(−2, 2).
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Figure 11: Histograms of the simulated data set 4.

Here, if X1 ∼ Normal(0, 100−1), X2 ∼ Uniform(−2, 2) and X3 is simulated

from the mixture of these distributions, then we have

V ar(X3) =
200

200 + 100
V ar(X1) +

100

200 + 100
V ar(X2)

=
2

3

(
1

100

)
+

1

3

(
(2− (−2))2

12

)
≈ 0.451.

(3.52)

If we assume as an initial condition of the Markov chain that w
(0)
z = 1

2
, µ(0) = 0,

τ (0) = 1
V ar(X3)

and z
(0)
i = 1, for all i ∈ {1, . . . , n}, the value of γ necessary to

have 50% of probability of allocating an observation at yi = 2 to the alternative

component is γ = 0.4180. And, for γ = 0.95, this probability drops to 6.73%, so the

algorithm may have difficulties estimating µ and τ under these conditions.

Having that in mind, we assume as an experiment that the value of γ that

represents our subjective prior information is given by γ = 0.95, then we analyse how
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different techniques and initial conditions lead to different results. Here, our goal is

to determine how to best estimate µ and τ in the presence of atypical observations

that may bias estimation, but without needing to alter our subjective choice for γ.

Even though we could use γ as a fine-tunable quantity, we motivate the treatment

given here in section 3.3. It is worth pointing out that, for this particular model, we

either need to specify the initial values of the chain for µ and τ or for z. However,

since we are interested in consistent estimation in the general case, we focus our

attention on the choice of z(0). The techniques compared in this work are presented

as follows.

1. We consider the naive approach of choosing z
(0)
i = 1, for all i ∈ {1, . . . , n} and

call it the default method.

2. We consider the alleged uninformative initial condition z
(0)
i = 0, for all i ∈

{1, . . . , n}, and refer to it as the null method. This would in theory allow the

chain to slowly converge to the “correct” distribution because the proportion

of anomalies is smaller than 1
2
, however, there are two main issues with this

approach. First, we already established in section 3.2.1 that the posterior

distribution can present multimodality for this case, so the chain might get

stuck in a local optimum. And, reinforcing this phenomenon, we know that

the expected observational precision grows with n0 =
∑n

i=1(1−zi), drastically

decreasing the probability of a transition between modes. Figure 12 shows the

obtained result.

3. We consider a deterministic sequence {γt}t∈N and use γt for the step t of the

chain, and we call it the sequence method. Here, we choose the sequence such

that: for all t < T ∗ we have 0 < γt < γ∗ and for all t ≥ T ∗ we have γt = γ∗,

where γ∗ ∈ (0, 1) and T ∗ is a chosen iteration. The main idea is to temporarily

increase the probability of allocating an observation to the alternative compo-

nent in order the remove atypical observations that may inflate the sampled

observational variance of the model. After a certain number of iterations T ∗,

assuming that all such observations were in fact removed, the sequence turns

into a constant value γ∗ that correspond to the desired choice of prior.
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4. We consider starting the algorithm with only a subset of the sample and pro-

gressively including the other observations using the prior-posterior update

concept from the Bayes’ Theorem, and we call it the slow method. So, we se-

lect k random observations from our sample and choose a velocity v measured

in observations per iteration. Then for the k initial observations we set z(0)i = 1

and consider the rest of them as unobserved (so their indicators is neither 1 nor

0). After initializing, for each iteration t we include new samples to the pos-

terior such that the current number of observation is n(t) = min{n, ⌊k + vt⌋}

and initialize them with their predicted value using the sampled θ(t−1). This

idea comes from the simulated annealing algorithm, but instead of using a no-

tion of temperature, we use the information from the sample. For large sample

sizes we expect the posterior density to concentrate on its modes, reducing the

probability of transition from one mode to another, so we start with a small

sample size to mitigate this effect.
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Figure 12: Histogram of the simulated data set 4 with the estimated density for

each of the considered methods.

Considering the methods previously described, we simulated 20000 chain itera-

tions for each and discarded the first 2000 as burn in. For the sequence method we

took γt = 0.25, if t < 1500 and γt = 0.95 otherwise. For the slow method we took

k = 20 and v = 2. To ensure that all results are comparable, we use the same prior
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hyperparameters wi =
1
2
, θ = −1, λ = 1, a = 1

4
and b = 1

2
for all of them.

Figure 12 shows the density for a normal distribution with the estimated param-

eter values, multiplied by the posterior proportion of observation allocated to the

main component n1

n
, for each one of them. As we can seen, the default method tries

to allocate all of the observations to the main component, consequently obtaining a

poor estimate of τ . The null method gets stuck in local optima, only allocating few

observations to the main component and leading to the highly biased estimates of

both µ and τ . It is interesting to notice that, since for the null method the initial-

ization is z(0)i = 0, for all i ∈ {1, . . . , n}, the sampled value of µ(1) is centered on the

prior expected value θ = −1, so the chain stays close to −1. Considering now the

sequence and the slow methods, we can see that both of them improve our estimates

for τ , although neither of them were able to consistently recuperate the true value

of the parameter (for this specific run of the algorithm the sequence method per-

formed well). This can be explained if notice that both estimates for the proportion

of typical observations n1

n
are significantly greater than the true value of 0.667, i.e.

the algorithm used data from the (now truncated) uniform distribution to estimate

µ and τ . So, since the distribution of the points allocated to the main component

is approximately a mixture of a truncated uniform and a normal distribution, this

results in a smaller estimated precision. Unfortunately, in this case, since there is no

discerning characteristic between typical observations and the remaining anomalies,

the only way correctly estimate µ and τ would be to intentionally classify a random

subset of all observations as atypical at each iteration, but in such a way that the

remaining sample points have on average the correct normal distribution. However,

due to the complexity of such a procedure, we’ll address this possible solution in

future work.

Other important issue of the filtering model is its computational cost. First,

the autotransformation TYi
is a nontrivial transformation of the original random

variable Yi, so calculating values for FTYi
and F−1

TYi
can be expensive. Having that

in mind, for every step of the chain we need to compute quantiles of TYi
for each

sample point and, contributing to the problem, we also do not have a direct way of

calculating the values of the correction functions. The lack of a closed form leads to
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Method µ τ n1

n
Time (s)

True Values 0 100 0.667 −

Default -0.00004 (-0.078, 0.078) 2.19 (1.84, 2.57) 0.997 65.7

Null -1.04052 (-1.096, -0.916) 579.87 (488.36, 677.80) 0.016 37.34

Slow -0.00433 (-0.023, 0.014) 60.08 (43.92, 76.76) 0.735 39.48

Sequence 0.00106 (-0.013, 0.016) 94.82 (77.10, 114.61) 0.720 48.96

Table 2: Summary of the parameter estimation for the simulated data set 4; in

parenthesis we have a 95% credibility sets.

the recursion formula from Definition 3.5, that greatly adds on the number of times

FTYi
and F−1

TYi
need to be evaluated. In order to mitigate this cost, we propose the

universal correction function as an alternative to using the correction function from

Definition 3.5. However, since proposition A.6 allows us to bypass the necessity of

computing the correction function for all of the application of Chapter 4, we present

this function in section A.2 of Appendix A.

Another point worth to be considered is that, since we need to estimate n quan-

tities z1, . . . , zn, the computational cost grows at least linearly with n. As an al-

ternative, we can choose to update a random subset of size m of the indicators at

each iteration, allowing us to reduce the cost of sampling all of them at every step.

We can see that this sampler preserves the stationary distribution by showing that

increasing the probability of remaining in the same state does not alter the detailed

balance equations, but for brevity we omit the proof. It is important noticing that,

as expected, this modification of the sampler comes with the self-evident cost of

increasing the correlation between sampled states, effectively increasing the number

of step of the chain necessary to obtain an approximately independent sample. So,

it is still unclear whether the computational cost per independent observation is

reduced, but we leave this question to be properly addressed in future work.
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3.3 ABOUT THE FILTERING MODEL

In this section we discuss in more detail the impact of the choices for the distri-

bution of the main component, the joint prior for θ and z and the hyperparameter

wz on the filtering model’s capacity for anomaly detection. For the hyperparame-

ter γ, we consider both objective and subjective specification, perform a sensitivity

analysis to determine a good range of default values, and discuss its interpretation.

Next, since by the construction in section 3.1 our model is only partially specified,

we present two alternative options for prediction in this context. At last, in this

section we also discuss how to classify each data point as typical or atypical from

the sampled posterior values.

3.3.1 Main Component and Prior Specification

Considering the model’s construction in section 3.1.3 and the notation of section

3.2, we know that an observation such that p̂i ≈ 0 indicates a low value of the

posterior predictive distribution for that sample point, at least when compared to

what was set according to γ and wz. Having that in mind, the interpretation we

derive from the indicator variables is tightly connected to how we interpret what low

values for the posterior predictive distribution mean, and just declaring observations

with p̂i ≈ 0 as atypical is a somewhat incomplete statement. In this case, we can

more accurately affirm that these observations have a high probability of not having

been generated from the fitted model, and, for observations such that p̂i ≈ 1, the

fitted model could have generated them with a high probability.

Knowing the interpretation of p̂i and that the parametric family of distribu-

tions FYi
(·|θ) determines what models could possibly be fitted, the importance of

the choice of the distribution of the main component becomes clearer. Choosing

an inflexible family of distributions leads to an overall poor fit of the data and,

consequently, the model compensates this by removing the poorly explained obser-

vations. Conversely, if we choose an over-parameterized family, our model will be

able to explain any observed sample, so no observation will be removed. From this,
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we can see that our precision to detect anomalies is proportional to how accurately

the chosen parametric family represents the typical behavior of the data. So, the

filtering model heavily relies on FYi
(·|θ), which is unsurprising when considering that

this is a model-based approach to anomaly detection.
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Figure 13: Histogram of a mixture of normal distributions.

Another important matter to consider when choosing FYi
(·|θ) is a possible prob-

lem of ambiguity. For instance, let us consider fitting the filtering model to the

sample from Figure 13, that was simulated from a mixture of two normal distri-

butions. If we then choose as our main component a normal distribution, then by

construction it is intrinsically unclear which mode should be treated as the typical

behavior of the data, so the filtering model will most likely choose one the modes

depending on the initial value of the chain. Here, since distinct subsets of the data

could be explained by FYi
(·|θ) considering different values of θ, this explains the

multimodal behavior of the posterior, which leads to a complex estimation process

with multiple reasonable answers. Hence, we can avoid this issue by either impos-

ing restrictions to the family of distributions FYi
(·|θ) or informing the model what

are reasonable fits to the data through the use of an informative prior distribution

π(θ, z).

At last, we call attention the fact that the filtering model assumes that the

observations Y1, . . . , Yn all satisfy the filtering condition given θ, so the choice of
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FYi
(·|θ) must take this into consideration.

For the choice of the prior π(θ, z), a simple assumption we can make is inde-

pendence between θ and z, since in principle the estimation of θ and z are distinct

processes, each having its own goal. However, it is not hard to imagine scenarios

where a dependence between them might be useful. As an example, we can imag-

ine that θ somehow quantifies a notion of distance between observations, so a prior

dependence between θ and z might represent the knowledge that close observations

are likely to have the same classification. Nevertheless, since we wish to discuss next

the effect of the prior of θ and of z separately, we assume independence for the rest

of this section.

We already established that π(θ) can have an important role in reducing the

effect of the multimodality of the posterior depending on the choice FYi
(·|θ). But

another aspect worth considering when choosing π(θ) is that, if the prior is highly

informative, it may lead to a competition between the information from the prior

and from the likelihood. This usually is unproblematic during estimation, however,

for the filtering model, since by construction the prior is assumed to be a correct

representation of our uncertainties but the observations can be ignored, in the case

of a conflict the prior will always prevail. Having that in mind, we opt to use

uninformative priors whenever possible in the applications of Chapter 4. As a side

note, even though we recommend using uninformative priors, it is important to

notice that improper priors always result in improper posteriors if π(z) is such that

P(z1 = 0, . . . , zn = 0) > 0, (3.53)

so caution is advisable.

Considering the choice of π(z), we already introduced the concept of distance

to add some dependence on θ, but we could also consider using the index distance

between two indicators zi and zj to convey a similar effect. One natural example is to

use the sequential nature of time series, but we can think of more exotic examples of

prior dependence structure for this purpose, as we show in the application of section

4.3. It is worth noting, that even if we assume π(z) =
∏n

i=1 π(zi), the posterior

may not satisfy π(z|y) =
∏n

i=1 π(zi|y). This implies that part of the dependence
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between indicators is already captured by the posterior distribution, so we should

only introduce dependence on the prior of z if we wish to reinforce it or if we know

of a particular effect that the posterior does not consider.

Another important choice of π(z), which is recurrently assumed throughout this

work, is taking

zi
ind∼ Bernoulli(wz), (3.54)

for all i ∈ {1, . . . , n}, where wz is the prior probability of having an anomaly in

the data. This is a natural choice whenever we wish to assume that all observation

can be anomalies and have no good reason to introduce prior dependence. Here,

it is important to highlight that we do not recommend estimating wz, since the

alternative component already implicitly considers the total proportion of anomalies

in the sample. So estimating wz leads to a undesirable “double counting” of this

information and consequently disturbs the estimation of z.

The last case we consider here is choosing π(z) such that

P(zi = ci) = 1, (3.55)

for all i ∈ S ⊂ {1, . . . , n}, where ci ∈ {0, 1}. In this case, we fixate the value of some

of the indicator variables, and this can be done for a variety of reasons. We can

fixate a subset of the sample in order to remove the ambiguity generated by FYi
(·|θ).

For instance, considering once more the sample for which a histogram is presented

in Figure 13, if we fixate the indicators of some of the observations from the left

mode as 1, then we indicate to the filtering model that this mode represents the

typical behavior of the data. Another case for which we could fixate the indicator

variables is in the context of supervised learning. If we already know beforehand

which observations are atypical we can only concern ourselves with estimating θ and

then use the fitted model to classify future observations. It is also worth mentioning

the particular case of taking

P(zi = 1) = 1, (3.56)

for all i ∈ {1, . . . , n}. Here, we reduce to the case of estimating θ completely

disregarding the alternative component of the filtering model, which is equivalent
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to just estimating the parametric model of the main component with prior π(θ). As

a corollary, we can consider any previously fitted parametric model and convert it

into an anomaly detection model by assuming zi = 1 for all i ∈ {1, . . . , n} and only

estimating the indicator z∗ of a newly observed y∗.

3.3.2 The Threshold of Maximum Uncertainty

Before discussing the choice of the hyparameter γ, let us consider the following.

Going back to the filtering model’s construction in section 3.1, we made a comparison

between the “classification” made when we sample zk at every step of the Markov

chain and hypothesis testing. Considering this analogy, γ performs a similar role

to the level of the credibility region associated with the test (section 6.4 of Migon

et al. (2014) explains the relationship between hypothesis testing and credibility

regions). However, it is important to notice that when we sample zk we do not take

a deterministic decision based on a critical region of the test because the “decision”

made is random. So, if we once more analyze the probability

P (zk| θ, z−k, y) =
ak

ak + bk
, (3.57)

where

ak = wkfYk
(yk|θ) and

bk = (1− wk)F
−1
TYk

(
1− γgk(n

−k
1 +1)−1

∣∣∣ θ)∏
i ̸=k

F−1
TYi

(
1− γgk(n

−k
1 +1)−1

∣∣∣ θ)
F−1
TYi

(
1− γgk(n

−k
1 +2)−1

∣∣∣ θ)
1−zk

,

(3.58)

we can more accurately understand the role of γ as determining for what values of

yk we have a probability of exactly 1
2

of accepting an observation. For this reason,

since γ determines how much evidence we need to have to maximize the uncertainty

in our “decision making”, we name it the threshold of maximum uncertainty.

With this, since we consider γ a hyperparameter from the prior, the choice of γ

should reflect how much evidence is necessary to maximize the subjective uncertainty

of the researcher in question. This interpretation allows us to consider anomaly

detection in the context of unsupervised learning, nevertheless, we must keep in
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mind the issues discussed in subsection 3.2.2. So even though unsupervised, we must

still consider robust estimation techniques allied with thorough model validation to

ensure reliable inference making.

It is worth pointing out that it may be troublesome justifying a purely subjective

choice of γ for some practical applications, specially considering scenarios where the

resulting anomaly classification may lead to highly impactful decision. Knowing

this, we could consider objectively “estimating” the value of γ in the context of

supervised learning, using the common cross-validation or training-validation-test

split techniques. However, since in many scenarios we may need to deal with anomaly

detection within an unsupervised learning context, it may be impractical to consider

either a completely subjective or objective approach to specify γ. So a simple

heuristic, e.g. default range of values to choose from, is often the most useful criteria

for hyperparameter selection. Having this in mind, we next present a sensitivity

analysis on γ to determine its effect across a variety of scenarios.

In our sensitivity analysis, we considered multiple experiments involving simu-

lated data sets to assess how distinct factor affect parameter estimation. For simplic-

ity sake, our data sets consists of n observation generated from a standard normal

distribution, of which the last npout are substituted by an anomalous fixed value

yout. We then choose the hyperparameter γ and fit our model twice: the first time

we consider the model’s mean µ and precision τ known and equal to the true values,

and then we readjust the model to include the estimation of µ and τ with an un-

informative prior. We perform these experiments considering n ∈ {200, 600, 2000},

yout ∈ {5, 6, 7}, pout ∈
{

1
20
, 1
10
, 1
5

}
and γ ∈ {0.01, 0.05, 0.25, 0.75, 0.95}, for a total of

3 × 3 × 3 × 5 × 2 = 270 simulations. For each experiment, we fitted the filtering

model using a particular case of the MCMC algorithm described in section B.2 of

Appendix B with 20000 steps of the chain and a burn in of 2000 iterations, and used

as the initial state of the chain z
(0)
i = 1, for all i ∈ {1, . . . , n}. For reference, the

total time necessary to run all experiments was approximately 1 hour, 44 minutes

and 16 seconds, and we next present some of the main results.

We begin our analysis by considering the the effect of each variable on the total
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time of execution of the MCMC algorithm. Unsurprising, the sample size n had the

greatest effect on the total time, taking an average of approximately 43.52 seconds

for n = 2000, 16.70 seconds for n = 600, and 9.28 seconds for n = 200. Another

interesting comparison is of the time it took to fit the model when µ and τ were

considered known versus when they were estimated. On average, estimating the

mean and precision lead to a 10% increase in the total estimation time, indicating

that most of the computational cost came from estimating the indicators variables.

Next, we analyze how well the model was able to detect anomalies for different

values of γ when considering µ and τ known, and data with a proportion of anomalies

pout = 0.2. From the results presented on Table 3, we can see that, as expected, a

higher value of γ leads to a more conservative detection of anomalies and a better

estimation of the proportion of anomalies. However, it is interesting to notice that,

even for lower values of γ, such as 0.01, 0.05 and 0.25, we still obtain reasonable

results.

γ = 0.01 γ = 0.05 γ = 0.25 γ = 0.75 γ = 0.95

median(p̂out) 0.2561 0.2397 0.2211 0.2054 0.2011

min(p̂out) 0.2214 0.2149 0.2077 0.2019 0.2004

max(p̂out) 0.3217 0.2873 0.2465 0.2117 0.2024

Table 3: Summary statistics for the estimated proportion of anomalies for different

values of γ when considering µ and τ known, and for pout = 0.2.

In section 3.2.2, we established that the presence of atypical observations can bias

the estimates of the model’s parameters, so naturally, the next step is to determine

how the values of γ interfere in the estimation of µ and τ . Tables 4 and 5 present the

estimated proportion of typical observations, and values of µ and τ for all scenarios

considering γ = 0.05 and γ = 0.95 respectively. And from these tables, we can

observe strong biases regarding the estimates of µ and τ that require some explaining,

and, to avoid an entry-by-entry analysis, we group all rows related to a common bias

mechanism to address each group individually.

Firstly, consider all rows of Table 4 such that n = 200. In this case, we have
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(n, yout, 1− pout) p µ IC0.95(µ) τ IC0.95(τ)

(200, 5, 0.95) 5.97e-3 4.72e-3 (−1.35e-1, 1.27e-1) 1.99e4 (1.62e4, 2.39e4)

(200, 5, 0.9) 5.74e-3 3.20e-3 (−1.24e-1, 1.28e-1) 1.99e4 (1.62e4, 2.39e4)

(200, 5, 0.8) 4.72e-3 2.49e-4 (−1.25e-1, 1.29e-1) 1.99e4 (1.62e4, 2.40e4)

(200, 6, 0.95) 5.97e-3 4.72e-3 (−1.35e-1, 1.27e-1) 1.99e4 (1.62e4, 2.39e4)

(200, 6, 0.9) 5.74e-3 3.20e-3 (−1.24e-1, 1.28e-1) 1.99e4 (1.62e4, 2.39e4)

(200, 6, 0.8) 4.72e-3 2.49e-4 (−1.25e-1, 1.29e-1) 1.99e4 (1.62e4, 2.40e4)

(200, 7, 0.95) 5.97e-3 4.72e-3 (−1.35e-1, 1.27e-1) 1.99e4 (1.62e4, 2.39e4)

(200, 7, 0.9) 5.74e-3 3.20e-3 (−1.24e-1, 1.28e-1) 1.99e4 (1.62e4, 2.39e4)

(200, 7, 0.8) 4.72e-3 2.49e-4 (−1.25e-1, 1.29e-1) 1.99e4 (1.62e4, 2.40e4)

(600, 5, 0.95) 0.892 0.0253 (−0.052, 0.104) 1.409 (1.222, 1.620)

(600, 5, 0.9) 0.836 0.0242 (−0.054, 0.104) 1.558 (1.341, 1.807)

(600, 5, 0.8) 0.955 0.942 (0.762, 1.121) 0.234 (0.206, 0.265)

(600, 6, 0.95) 0.892 0.0253 (−0.052, 0.104) 1.409 (1.222, 1.620)

(600, 6, 0.9) 0.836 0.0242 (−0.054, 0.104) 1.558 (1.341, 1.807)

(600, 6, 0.8) 0.952 1.104 (0.891, 1.315) 0.174 (0.152, 0.198)

(600, 7, 0.95) 0.892 0.0253 (−0.052, 0.104) 1.409 (1.222, 1.620)

(600, 7, 0.9) 0.836 0.0242 (−0.054, 0.104) 1.558 (1.341, 1.807)

(600, 7, 0.8) 0.810 0.5357 (−0.066, 1.460) 1.251 (0.120, 2.452)

(2000, 5, 0.95) 0.931 0.0228 (−0.021, 0.066) 1.145 (1.069, 1.225)

(2000, 5, 0.9) 0.879 0.0190 (−0.025, 0.063) 1.238 (1.155, 1.327)

(2000, 5, 0.8) 0.986 0.996 (0.898, 1.093) 0.217 (0.204, 0.231)

(2000, 6, 0.95) 0.931 0.0228 (−0.021, 0.066) 1.146 (1.070, 1.225)

(2000, 6, 0.9) 0.879 0.0190 (−0.025, 0.063) 1.238 (1.155, 1.327)

(2000, 6, 0.8) 0.986 1.187 (1.073, 1.300) 0.159 (0.149, 0.169)

(2000, 7, 0.95) 0.931 0.0228 (−0.021, 0.066) 1.146 (1.070, 1.225)

(2000, 7, 0.9) 0.879 0.0190 (−0.025, 0.063) 1.238 (1.155, 1.327)

(2000, 7, 0.8) 0.985 1.379 (1.247, 1.509) 0.121 (0.113, 0.129)

Table 4: Estimated parameters proportion of typical observations p and parameters

µ and τ for γ = 0.05.
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(n, yout, 1− pout) p µ IC0.95(µ) τ IC0.95(τ)

(200, 5, 0.95) 0.944 −0.00363 (−0.134, 0.127) 1.250 (1.004, 1.523)

(200, 5, 0.9) 0.995 0.488 (0.241, 0.731) 0.338 (0.272, 0.412)

(200, 5, 0.8) 0.997 0.983 (0.683, 1.286) 0.213 (0.174, 0.258)

(200, 6, 0.95) 0.944 −0.00378 (−0.135, 0.127) 1.251 (1.007, 1.523)

(200, 6, 0.9) 0.895 0.00191 (−0.137, 0.145) 1.293 (1.018, 1.591)

(200, 6, 0.8) 0.997 1.181 (0.829, 1.537) 0.155 (0.127, 0.188)

(200, 7, 0.95) 0.944 −0.00378 (−0.135, 0.127) 1.251 (1.007, 1.523)

(200, 7, 0.9) 0.894 −0.00549 (−0.137, 0.126) 1.306 (1.051, 1.592)

(200, 7, 0.8) 0.997 1.380 (0.975, 1.788) 0.118 (0.096, 0.142)

(600, 5, 0.95) 0.949 0.0327 (−0.044, 0.111) 1.144 (1.014, 1.279)

(600, 5, 0.9) 0.998 0.523 (0.383, 0.664) 0.330 (0.294, 0.369)

(600, 5, 0.8) 0.999 1.017 (0.843, 1.191) 0.212 (0.188, 0.236)

(600, 6, 0.95) 0.949 0.0321 (−0.045, 0.110) 1.148 (1.022, 1.281)

(600, 6, 0.9) 0.998 0.619 (0.458, 0.783) 0.251 (0.223, 0.280)

(600, 6, 0.8) 0.999 1.217 (1.013, 1.420) 0.155 (0.137, 0.172)

(600, 7, 0.95) 0.949 0.0321 (−0.045, 0.110) 1.148 (1.023, 1.281)

(600, 7, 0.9) 0.997 0.715 (0.532, 0.900) 0.195 (0.174, 0.219)

(600, 7, 0.8) 0.999 1.416 (1.182, 1.649) 0.117 (0.104, 0.130)

(2000, 5, 0.95) 0.998 0.269 (0.205, 0.331) 0.480 (0.450, 0.512)

(2000, 5, 0.9) 0.999 0.521 (0.442, 0.598) 0.322 (0.302, 0.342)

(2000, 5, 0.8) 1.000 1.016 (0.920, 1.113) 0.211 (0.198, 0.224)

(2000, 6, 0.95) 0.995 0.299 (0.227, 0.371) 0.403 (0.372, 0.437)

(2000, 6, 0.9) 0.999 0.620 (0.530, 0.709) 0.245 (0.230, 0.260)

(2000, 6, 0.8) 1.000 1.216 (1.103, 1.329) 0.154 (0.145, 0.164)

(2000, 7, 0.95) 0.950 0.0268 (−0.017, 0.070) 1.063 (0.999, 1.130)

(2000, 7, 0.9) 0.999 0.719 (0.617, 0.819) 0.191 (0.179, 0.203)

(2000, 7, 0.8) 1.000 1.416 (1.286, 1.545) 0.117 (0.110, 0.124)

Table 5: Estimated parameters proportion of typical observations p and parameters

µ and τ for γ = 0.95.
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an estimated proportion of typical observations smaller than 0.001, which strongly

resembles the estimation obtained for the null initialization method presented in

section 3.2.2. Having this in mind, once the chain reaches a state with a low enough

value of n1, we can safely assume that the chain rejects almost all of the observations

for the same reason. However, this does not explain how the chain reaches such

state. To make sense of this, notice that when the value of γ is sufficiently low,

even considering the true values of µ and τ , the model starts rejecting some of the

typical observations with least density, as shown in Table 3. Because of this, in

the case of the normal distribution, this leads to a truncation of the typical points,

causing the model to underestimate the variance and, consequently, to reject even

more observations until none is left.

To prevent this phenomenon, we could consider an increase in the value of γ, since

it would avoid removing typical observations from the main component. However,

as shown in Table 5, this introduces another type of problem. Recalling once more

section 3.2.2, this resembles the problem with the default initialization method,

leading us to the suspicion that a simple change of initialization might resolve or

mitigate the problem. Nevertheless, from other numerical experiments omitted in

this works, even using as an initialization the true values of µ and τ , for most of

the cases the chain still converges to the undesired solution. It is worth mentioning

that this issue also affected the simulations using γ = 0.05, allowing us to conclude

that no single value of γ is expected to work for all instances.

So, with the considerations above, we propose as an heuristic choosing a low

value of γ, e.g. 0.05, as a starting value and, if the chain ever reaches p ≈ 0,

restart the MCMC algorithm with a bigger value of γ. The main justification for

this heuristic relies on the fact that, from our experiments, it is way easier to detect

a problem when γ is too low compared to the cases for which γ is too high. As an

important side note, Table 4 also indicates that the way the hyperparameter affects

estimation varies significantly with the sample size n, so the initial chosen value of

γ should consider this effect.
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3.3.3 Prediction

Even though the filtering model is defined primarily with anomaly detection in

sight, it is worth noting that, because we consider an approach via mixture models,

it can also be used as a method for robust estimation. That is because we can

interpret our estimate θ̂ as a convex combination of the values θ̂(z) that would have

been obtained for every possible value of z, while pondering the influence of each

scenario by its posterior probability. This becomes clear when we look at expression

of the Bayes estimator θ̂Bayes that minimizes the expected quadratic loss function a

posteriori. Since this is equivalent to taking the posterior mean of θ as an estimator,

it can be expressed as

θ̂Bayes = Eθ [θ|y] = Ez [Eθ [θ|z, y] |y] =
∑
z

π(z|y)Eθ [θ|z, y] =
∑
z

π(z|y)θ̂Bayes(z).

(3.59)

Notice that, if in our sample an observation yi strongly disagrees with the model

from the main component, by construction the filtering model will attribute a small

weight to P(zi = 1|y). So the observation yi will have only a small contribution to

θ̂, thus resulting in a robust estimation.

In this context, we might be interested in obtaining a predictive distribution for

an unobserved Y ∗, instead of using y∗ to estimate z∗. So the inquiry then becomes:

how to make predictions using a partially specified model?

Considering the method for parameter estimation presented in section 3.2, it is

clear that we only have a sample of approximately independent values (θ(1), z(1)),

. . . , (θ(m), z(m)) to obtain estimates, which cannot help us estimate what the un-

known sets S1, . . . , Sn are without introducing more assumptions to the model. And

noticing that one of the advantages of the filtering model is not having to assume

that atypical observations come from an specific region of the support of our obser-

vations, losing this propriety by making further assumptions seems to be a step in

the wrong direction. Anyway, if one does wish to make them, they must still satisfy

ISi
(yi) = 1, for all i ∈ {1, . . . , n}.

The most natural alternative is to assume that every unobserved Y ∗ comes from
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the main component, i.e., its corresponding indicator z∗ is equal to 1. Even though

strong, this is a common assumption implicitly made in the context of prediction,

so it seems to be a reasonable solution. In this case, since the predictive posterior

distribution for the new observation does not depend on the unknown region S∗

(assuming conditional independence of the observations given θ), prediction follows

as usual. We can see this algebraically considering that

π(y∗|y, z∗ = 1)

=
∑

z∈{0,1}n

∫
Θ

π(θ, z, y∗|y, z∗ = 1) dθ

=
∑

z∈{0,1}n

∫
Θ

π(θ, z, y, y∗|z∗ = 1)

π(y|z∗ = 1)
dθ

=
∑

z∈{0,1}n

∫
Θ

π(y, y∗|θ, z, z∗ = 1)π(θ, z|z∗ = 1)

π(y|z∗ = 1)
dθ

ind
=

∑
z∈{0,1}n

∫
Θ

π(y∗|θ, z, z∗ = 1)π(y|θ, z, z∗ = 1)π(θ, z|z∗ = 1)

π(y|z∗ = 1)
dθ

ind
=

∑
z∈{0,1}n

∫
Θ

π(y∗|θ, z∗ = 1)
π(y|θ, z)π(θ, z)

π(y)
dθ

=
∑

z∈{0,1}n

∫
Θ

fY ∗(y∗|θ)π(θ, z|y) dθ = E(θ,z)|y [fY ∗(y∗|θ)] .

(3.60)

It is important to notice that here we are implicitly assuming that our choice of

µL(Si)
−1 stays the same for all i ∈ {1, . . . , n} and, consequently, does not depend

on z∗. From the derived expression, we can then use our sample from the Markov

chain to obtain Monte Carlo estimates considering that

π(y∗|y, z∗ = 1) = E(θ,z)|y [fY ∗(y∗|θ)] ≈ 1

m

m∑
j=1

fY ∗(y∗|θ(j)). (3.61)

Another approach would be to consider an estimate for the proportions of typical

observations, taken as an approximation of the probability p of having a new typical

observation, to determine how to inflate the desired credibility level γ to make

approximate credibility regions regardless of the presence of anomalies. Having that

in mind, let us take

p̂ =
1

n

n∑
i=1

z̃i =
1

mn

m∑
j=1

n∑
i=1

z
(j)
i (3.62)
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as an estimator for p and define an inflated credibility level

γ∗ =
γ

p̂
. (3.63)

Then, if we choose R such that P(Y ∗ ∈ R∗|y, z∗ = 1) = γ∗ and assume that

P(z∗ = 1|y) ≈ p, we have

P(Y ∗ ∈ R|y) = P(Y ∗ ∈ R, z∗ = 1|y) + P(Y ∗ ∈ R, z∗ = 0|y)

= P(Y ∗ ∈ R|y, z∗ = 1)P(z∗ = 1|y) + P(Y ∗ ∈ R|y, z∗ = 0)P(z∗ = 0|y)

≈ P(Y ∗ ∈ R|y, z∗ = 1)︸ ︷︷ ︸
=γ∗

p̂+ P(Y ∗ ∈ R|y, z∗ = 0)︸ ︷︷ ︸
≥0

(1− p̂)

≥ γ∗p̂ =
γ

p̂
p̂ = γ.

(3.64)

It is worth noting that, using this method, we can only find a region R with ap-

proximate credibility level γ if we have γ ≤ p̂. And even in the cases where this is

possible, there is a trade off between the size of the credibility set and its coverage,

so we may obtain a credibility set too large to be informative.

3.3.4 Anomaly Classification

Let us consider the problem of using the sampled chain values (θ(1), z(1)), . . . ,

(θ(m), z(m)) to determine whether the k-th observation of the sample is typical or

not. As an initial thought, notice the following: throughout the generation of the

Markov chain, we already made multiple random classifications by sampling the

values of the indicators zk for each observation at every step of the chain. So, one

approach to classification is to choose the estimator z̃k as the indicator of the event:

zk was classified as 1 more than or as many times as it was classified as 0. This

results in the estimator of zk given by

z̃k =

 1, if z̄k ≥ 1
2
,

0, otherwise,
(3.65)

for i ∈ {1, . . . , n}, where z̄k = 1
m

∑m
j=1 z

(j)
k . However, even though z̃k is an intuitive

estimator, we next consider a more formal approach.
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Our posterior distribution contains all of the information we have regarding the

parameters of the model. So, another idea is to use the marginal posterior distri-

bution of zk to determine whether P(zk = 1|y) ≥ P(zk = 0|y) or not. Nevertheless,

we still need to find a way of using the sampled chain values to calculate these

probabilities. So, consider the following:

π(zk = 1|y)

=
∑

z−k∈{0,1}n−1

∫
Θ

π(θ, zk = 1, z−k|y) dθ

=
∑

z−k∈{0,1}n−1

∫
Θ

π(zk = 1|θ, z−k, y)π(θ, z−k, y) dθ

= E(θ,z−k)|y

[
π(zk = 1|θ, z−k, y)

∣∣∣∣y]
= E(θ,z−k)|y

[(
ak

ak + bk

)zk
(
1− ak

ak + bk

)1−zk
∣∣∣∣∣ zk = 1, y

]
,

= E(θ,z−k)|y

[
ak

ak + bk

∣∣∣∣ y] ,

(3.66)

where

ak = wkfYk
(yk|θ) and

bk = (1− wk)F
−1
TYk

(
1− γgk(n

−k
1 +1)−1

∣∣∣ θ)∏
i ̸=k

F−1
TYi

(
1− γgk(n

−k
1 +1)−1

∣∣∣ θ)
F−1
TYi

(
1− γgk(n

−k
1 +2)−1

∣∣∣ θ)
1−zk

.

(3.67)

Thus, if we consider the approximation

π(zk = 1|y) = E(θ,z−k)|y

[
ak

ak + bk

∣∣∣∣ y]
≈ 1

m

m∑
j=1

a
(j)
k

a
(j)
k + b

(j)
k

= p̂k,

(3.68)
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where
a
(j)
k = w

(j)
k fYk

(
yk

∣∣θ(j) ) ,
b
(j)
k = (1− w

(j)
k )F−1

TYk

(
1− γgk(n

−k
1j +1)−1

∣∣∣ θ(j))

×
∏
i ̸=k

F−1
TYi

(
1− γgi(n

−k
1j +1)−1

∣∣∣ θ(j))
F−1
TYi

(
1− γgi(n

−k
1j +2)−1

∣∣∣ θ(j))
1−z

(j)
i

,

n−k
1j =

∑
i ̸=k

z
(j)
i ,

w
(j)
k = π

(
zk = 1

∣∣∣θ(j), z(j)−k

)
,

(3.69)

we can define our estimator of zk as

ẑk =

 1, if p̂k ≥ 1
2
,

0, otherwise,
(3.70)

for k ∈ {1, . . . , n}. Next, we discuss how to estimate z∗, the indicator of a newly

observed sample point y∗.

The first thing to notice when trying to classify y∗ is that, in our specification

of the alternative component, we choose µL(Si)
−1 as a function of n1, where n1 =∑n

i=1 zi, for all i ∈ {1, . . . , n}. So, since the alternative component for the i-th

observation depends on z−i, it is somewhat unclear how to generalise the alternative

component for a new observation y∗. The most natural way is to consider the

augmented sample Y1, . . . , Yn, Yn+1, where Yn+1 = Y ∗, and re-estimate all of the

parameters assuming that

µL(Si)
−1 = F−1

TYi

(
1− γgi(n

∗
1+1)−1

∣∣∣ θ) , (3.71)

for all i ∈ {1, . . . , n+1}, where n∗
1 =

∑n+1
i=1 zi. Then, we can estimate z∗ = zn+1, by

considering either of the estimators presented previously.

Even though the previous method for estimating z∗ is methodologically consis-

tent, it is impractical for most applications because it adds the computational cost

required to re-estimate the parameters of the model. It can be specially problematic

if our model is already computationally expensive or if the size of the augmented

sample becomes too large. So, as an alternative, we can consider using for Y ∗ an
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adapted alternative component given by

µL(S
∗)−1 = F−1

TY ∗

(
1− γ(n1+1)−1

∣∣∣ θ) , (3.72)

where n1 =
∑n

i=1 zi, while keeping the remaining of the alternative components the

same. Then we can write our marginal posterior distribution for z∗ as

π(z∗ = 1|y, y∗) =
∑

z∈{0,1}n

∫
Θ

π(θ, z, z∗ = 1|y, y∗) dθ

=
∑

z∈{0,1}n

∫
Θ

π(θ, z, z∗ = 1, y, y∗)

π(y, y∗)
dθ =

∑
z∈{0,1}n

∫
Θ

π(θ, z, z∗ = 1, y, y∗) dθ

1∑
k=0

∑
z∈{0,1}n

∫
Θ

π(θ, z, z∗ = k, y, y∗) dθ

=

∑
z∈{0,1}n

∫
Θ

π(y∗|θ, z, z∗ = 1, y)π(y|θ, z, z∗ = 1)π(z∗ = 1|θ, z)π(θ, z) dθ

1∑
k=0

∑
z∈{0,1}n

∫
Θ

π(y∗|θ, z, z∗ = k, y)π(y|θ, z, z∗ = k)π(z∗ = k|θ, z)π(θ, z) dθ

ind
=

∑
z∈{0,1}n

∫
Θ

π(y∗|θ, z, z∗ = 1)π(y|θ, z)π(z∗ = 1|θ, z)π(θ, z) dθ

1∑
k=0

∑
z∈{0,1}n

∫
Θ

π(y∗|θ, z, z∗ = k)π(y|θ, z)π(z∗ = k|θ, z)π(θ, z) dθ

=

∑
z∈{0,1}n

∫
Θ

π(y∗|θ, z, z∗ = 1)π(z∗ = 1|θ, z)π(θ, z|y)π(y) dθ

1∑
k=0

∑
z∈{0,1}n

∫
Θ

π(y∗|θ, z, z∗ = k)π(z∗ = k|θ, z)π(θ, z|y)π(y) dθ

=

∑
z∈{0,1}n

∫
Θ

π(y∗|θ, z, z∗ = 1)π(z∗ = 1|θ, z)π(θ, z|y) dθ

1∑
k=0

∑
z∈{0,1}n

∫
Θ

π(y∗|θ, z, z∗ = k)π(z∗ = k|θ, z)π(θ, z|y) dθ

=

E(θ,z)|y

[
π(y∗|θ, z, z∗ = 1)π(z∗ = 1|θ, z)

∣∣∣∣y∗]
1∑

k=0

E(θ,z)|y

[
π(y∗|θ, z, z∗ = k)π(z∗ = k|θ, z)

∣∣∣∣y∗]
=

E(θ,z)|y[a∗|y∗]
E(θ,z)|y[a∗|y∗] + E(θ,z)|y[b∗|y∗]

,

(3.73)
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where

π(y∗|θ, z, z∗) =
[
fY ∗(y∗|θ)

]z∗ [
F−1
TY ∗

(
1− γ(n1+1)−1

∣∣∣ θ)] ,
a∗ = w∗fY ∗(y∗|θ),

b∗ = (1− w∗)F
−1
TY ∗

(
1− γ(n1+1)−1

∣∣∣ θ) ,

w∗ = π(z∗ = 1|θ, z).

(3.74)

So, if we consider the approximation

π(z∗ = 1|y, y∗) =
E(θ,z)|y

[
π(y∗|θ, z, z∗ = 1)π(z∗ = 1|θ, z)

∣∣∣∣y∗]
1∑

k=0

E(θ,z)|y

[
π(y∗|θ, z, z∗ = k)π(z∗ = k|θ, z)

∣∣∣∣y∗]
.

=
E(θ,z)|y[a∗|y∗]

E(θ,z)|y[a∗|y∗] + E(θ,z)|y[b∗|y∗]
≈

1
m

∑m
j=1 a

(j)
∗

1
m

∑m
j=1 a

(j)
∗ + 1

m

∑m
j=1 b

(j)
∗

= p̂∗,

(3.75)

where
a(j)∗ = w(j)

∗ fY ∗
(
y∗

∣∣θ(j) ) ,
b(j)∗ = (1− w(j)

∗ )F−1
TY ∗

(
1− γ(n

(j)
1 +1)−1

∣∣∣ θ(j)) ,

n
(j)
1 =

n∑
i=1

z
(j)
i

w(j)
∗ = π

(
z∗ = 1

∣∣θ(j), z(j) ) ,
(3.76)

then we can define our estimator of z∗ as

ẑ∗ =

 1, if p̂∗ ≥ 1
2
,

0, otherwise.
(3.77)
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4 APPLICATIONS

Considering the proposed filtering model, we chose three applications to assess

the model’s performance for various scenarios. In section 4.1, we return to our

introductory problem of classifying whether or not a given gasoline sample was

contaminated with ethanol based on its near infrared spectra. In the second appli-

cation, in section 4.2, we consider a problem of unsupervised classification, where

our interest lies in determining whether a given tumor is benign or malign based

on measurements taken from medical image exams. Finally, in section 4.3 we aim

to identify historical events based on their effects on the mortality rates for the

male population of France from 1816 to 2020. We used the softwares R, by R Core

Team (2020), and RStudio, by RStudio Team (2019) for all computational analysis

and simulations mentioned throughout this work, and the visualizations shown were

made with the aid of the package ggplot2, by Wickham (2016).

4.1 FINDING CONTAMINATION IN GASOLINE SAMPLES

In this section we consider fitting the filtering model to the Octane data set, see

Esbensen et al. (2002), consisting of near infrared (NIR) absorbance spectra of n =

39 gasoline samples. The absorbance spectra were measured with a regular spacing

between for d = 226 wavelengths ranging from 1102nm to 1552nm. This data set

is provided by CAMO Software and The UnscramblerX, and is freely available for

download at https://www.impopen.com/software/octane-data-set.

Figure 14 shows a visualization of the data where each one of the n = 39 curves

represent the absorbance spectra of different gasoline sample. From Figure 14, we

can see that some observations detach from the rest for wavelengths above 1390nm.

These, observations 25, 26 and 36-39, are well known outliers consisting of gasoline

samples that were contaminated with ethanol.

Considering now the filtering model, since the uncontaminated observations

present a relatively homogeneous behavior, we initially assume for the main compo-

https://www.impopen.com/software/octane-data-set
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Figure 14: Absorbance curves for gasoline samples from the octane data set at

different wavelengths.

nent observations with a multivariate normal distribution with the mean following

a normal random walk. We use dynamic linear models (West & Harrison (1997)) to

represent the main component, given by

Yij = µj + νij, νij
ind∼ Normal

(
0, ϕ−1

)
,

µj = µj−1 + ωj, ωij
ind∼ Normal

(
0, ϕ−1

ω

)
,

(4.1)

for i ∈ {1, . . . , n} and j ∈ {1, . . . , d}. Here, Yij represents the absorbance spectra

for the j-th wavelength and i-th observation, µj is the common expected absorbance

of for the j-th wavelength, ϕ is the precision for the observational error and ϕω is

the precision for the random walk. Here, it is important highlighting we assume a

constant precision ϕ for all wavelengths for simplicity. For the prior of (θ, z), we

assume

π(θ, z) = π(θ)
n∏

i=1

[
π(zi)

]
= π(θ)

n∏
i=1

[
wzi

z (1− wz)
1−zi

]
, (4.2)

where wz ∈ wz and the choice of the prior π(θ) is detailed in section B.1 of Appendix

B. It is worth noticing that, since our interest is in detecting whether the gasoline

sample is contaminated or not, we consider as a sample unit the 39 226-variate

observations of absorbance spectra.

To fit the model, we were able to use a Gibbs sampler using the full conditionals

described in section B.1 of Appendix B to generate a sample from the posterior
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distribution. However, considering the main component presented in equation 4.1,

regardless of initialization, choices of γ and π(θ), we consistently estimated the

expected value of zi to be approximately 0 for all observations. Interestingly, this

is strong and clear evidence that the chosen main component underfits the typical

data, so adjustments are required in order to obtain non-degenerate estimates.
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Figure 15: Curves of deviation from the average absorbance for gasoline samples

from the octane data set at different wavelengths.

Considering a more detailed exploratory analysis of our data, we were able to

identify the unreasonable assumption made. Figure 15 shows the curves of ab-

sorbance spectra obtained when subtracting the empirical mean of the uncontami-

nated samples for each wavelength. As we can see, the assumption of equal obser-

vational variances is not only completely violated, but also has a clear wavelength

dependence structure. Having this in mind we consider an adapted main component,

given by
Yij = µj + νij, νij

ind∼ Normal
(
0, ϕ−1

j

)
,

µj = µj−1 + ωj, ωij
ind∼ Normal

(
0, ϕ−1

ω

)
,

(4.3)

where the only difference is the inclusion of a precision ϕj for the observational error

of the j-th wavelength. It is worth noting that, for simplicity, we do not model

the dependence structure between the observational precisions, but a more accurate

description of the typical behavior of the data should probably consider it.
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We once more fit the model considering a Gibbs sampler using the full condition-

als described in section B.1 of Appendix B. We took γ = 0.95, wz =
1
2

and simulated

100000 steps of the chain, taking the first 5000 states as burn in and a thinning of

10. For reference, the approximate computation time required to obtain the sample

via MCMC was of 1 hour, 32 minutes and 16 seconds, with most of the cost coming

from the estimation of the parameters from the main component. And, as a side

note, in this case, the choice of a relatively high value of γ is justified by the small

sample size n = 39.

Figure 16 presents the estimated classification for each observation and presents

a 95% predictive credibility interval for a future uncontaminated observation. From

Figure 16 we can also verify that the model was capable of correctly identifying the

anomalous observations with high confidence.
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Figure 16: Absorbance curves for gasoline samples from the octane data set at

different wavelengths, where the colors indicate the estimated classification from

the filtering model.

4.2 BREAST TUMOR CLASSIFICATION

In this section we consider fitting the filtering model to the Breast Cancer Wis-

consin (Diagnostic) data set, see Wolberg et al. (1995), consisting of features com-

puted from a digitized image of a fine needle aspirate (FNA) of a breast mass. This
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data set contains a total of 30 real-value attributes for each one of the n = 569

observations and an indicator of whether the breast mass is benign or malign. And

here, our objective is to estimate these indicator variables.

If we denote the dichotomic quantities we wish to estimate by y1, . . . , yn, where

yi = 1, if the tumor is benign, and yi = 2, otherwise, then it is worth noticing that,

since yi ∈ {1, 2}, for all i ∈ {1, . . . , n}, the quantities we wish to estimate do not

satisfy the filtering condition regardless of the assumed model. However, notice that

this does not necessarily mean that we cannot estimate the yi’s using the filtering

model, since the filtering condition is only required for the response variables of the

model. Our way of circumventing this issue is to indirectly estimate them using a

multivariate mixture model.

Then, if X1, . . . , Xn represent the vectors of attributes to for each observation,

then we can consider the following structure for the main component:

Xi|µj,Ωj, yi = j
ind∼ Normald(µj,Ω

−1
j ),

µj|Ωj
ind∼ Normald(θj, λ

−1
j Ω−1

j ),

Ωj
ind∼ Wishart(νj, Vj),

yi|wy
ind∼ Categorical(wy),

wy ∼ Dirichlet(α),

(4.4)

for the groups j ∈ {1, 2}, where d is the number attributes considered, µj represent

the average feature vector for an observation with classification j, Ωj is the precision

matrix of each group and wy represents the vector containing the probability of

allocating an observation to each group. However, it is still unclear what do we gain

by using the filtering model for the classification.

As an initial justification, we can argue that the filtering model allows for a

more robust estimation of the clusters, which is interesting considering a normal-

based clustering approach, that is known to be sensitive to the presence of anomalies.

However, this could be easily resolved by considering another mixture, for instance,

of Student-t distributions. Nevertheless, what we consider here the main advantage

of using the filtering model is allowing us to treat this task as an open set classifi-

cation problem, i.e., our fitted model is able to classify each observation as benign,
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malign or neither one of them.

Typically, a classification model is used to allocate an unlabeled observation to

one of the groups it was trained to identify. However, this has the arguably unde-

sirable consequence of attributing a label to an observation even if it is completely

isolated from all other sample points. So, in the case of a strong anomaly, unless

the observation has an approximately equal distance to the two closest clusters, the

classification tends to have a high confidence. Thus, only accounting for the uncer-

tainty of the estimation is insufficient to identify these cases. With this in mind,

considering problems that may have a significant impact in someone’s life, for in-

stance determining whether or not an individual should be diagnosed with cancer,

controlling this extrapolation error is seems to be a desirable propriety.
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Figure 17: Scatter plot for the attributes radius_mean and texture_mean, where

the color indicate whether the observation is benign (blue) or malign (red).

Firstly, knowing that our methodology is model based, we need to asses whether

or not the assumed model reasonably describes the typical behavior of the data.

Knowing that for a multivariate normal random vector each subset of the entries

are also normally distributed, we can use some graphical analysis to select attributes

that seem to approximately follow a multivariate normal distribution. So, since we

already know the classification, we analyzed the scatter plot for every pair of at-

tributes and subjectively discarded the variables for which one of the groups seemed
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Figure 18: Scatter plot for the attributes concavity_mean and concavity_se, where

the color indicate whether the observation is benign (blue) or malign (red).

to violate normality. As an example of our analysis, Figure 17 shows the scatter plot

for two of the accepted variables: radius_mean and texture_mean; and Figure 18

shows the scatter plot for two rejected variables: concavity_mean and concavity_se.

To fit the filtering model with main component given by equation 4.4, we were

able to use a Gibbs sampler using the full conditionals described in section B.2 of

Appendix B to generate a sample from the posterior distribution. We took γ = 0.75,

wz = 1
2

and simulated 100000 steps of the chain, taking the first 5000 states as

burn in and a thinning of 10. For reference, the approximate computation time

required to obtain the sample via MCMC was of 10 minutes and 43 seconds, with

approximately 57.85% of the cost coming from the estimation of the parameters

from the main component. And, as a side note, in this case, we consider a relatively

high value of γ because, from the exploratory analysis and pre-treatment of the

data, we could rule out the possibility of a strong bias from a consistent group of

anomalous observations negatively impacting our estimates. Figure 19 presents the

estimated classification for each observation and, comparing with Figure 17, we can

see that the model provided a reasonable classification.

For comparison, we also fitted a conventional normal mixture model to the same

data, i.e. we considered the indicators zi known and equal to 1 for all i, and present
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Figure 19: Scatter plot for the attributes radius_mean and texture_mean, where

the color indicate the estimated classification from the filtering model.

our results in table 6. To construct this table we considered three classifiers: the

filtering model with open set classification, the filtering model with closed set clas-

sification and the conventional normal mixture model. Here, both the open and

closed set classifiers use the fitted filtering model. The different between them is

that the open one use the value of zi and yi to label the i-th observation as either

benign, malign or atypical, while the closed one uses only the information from yi

to determine whether a given sample point is benign or malign.

Model accuracy (%) atypical (%)

Filtering Model (Open) 90.86 3.51

Filtering Model (Closed) 92.97 0.00

Normal Mixture 92.31 0.00

Table 6: Summary of the classification from the estimated models for the Breast

Cancer Wisconsin (Diagnostic) data set.

Considering the accuracy of each of the classifiers we can state that they are

approximately equivalent, however, it is worth reinforcing that the open set classifier

provides us with more information for decision making, allowing us to better quantify

our uncertainties associated with the classification task.
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4.3 IDENTIFICATION OF HISTORIC EVENTS

In this section we consider fitting the filtering model to a data set containing the

mortality rates of the French male population from 1816 to 2020. The mortality rates

we used in this work were obtained at the Human Mortality Database (2000) and

are freely available at https://www.mortality.org/. Figure 20 shows a heatmap

of the mortality rates for ages ranging from 0 to 100 and for years from 1816 to

2020. As we can see, the mortality rates are well behaved, represented by a mostly

smooth heatmap, with the exception of some abrupt changes, so our objective is to

use these sudden changes of behavior in order to identify historic events.
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Figure 20: Heatmap of mortality rates of the French male population for ages ranging

from 0 to 100 and for years from 1816 to 2020.

For our main component, we here consider the Dynamic Improvement Model

(translated from the original name “Modelo de Improvement Dinâmico”) proposed

by Sartório (2018). This model is an extension of the model proposed by Lee &

Carter (1992), that considers estimating the best decomposition of the form

Yit = αi + βiκt + εit, (4.5)

where Yit is the natural logarithm of the mortality rate of for i-th age group and

at the t-th year, the vector α captures the average mortality rate for each age, the

vector κ is the only term dependent on the time, so it is responsible for capturing

https://www.mortality.org/
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the temporal evolution of mortality rates, the vector β modulates the intensity of

the temporal effect from κ for each age and εit represents an homoscedastic normal

error term. In their original article, Lee & Carter (1992) propose the use of a two

step estimation: first a singular value decomposition technique to estimate α and β,

and later using an ARIMA model to estimate κ and make predictions while using

the estimated values of α and β from the first step. Due to an identifiability issue,

the following restriction were added to ensure an unique solution:∑
i

βi = 1 and
∑
t

κt = 0. (4.6)

A few years later, Pedroza (2006) proposed a Bayesian approach to estimation

by rewriting the model in the form of a dynamic linear model. This generalization

allowed for one-step estimation and also provided a consistent framework to flexi-

bilize the original model’s assumptions, such as homoscedasticity. Then, Sartório

(2018) proposed an extension based on this dynamic linear model representation,

which is the model we use as the main component for this application. The resulting

model is given by

Yt = α + βtκt + νt, νt
ind∼ Normal(n+1)(0, diag(ϕ)

−1),

κt = κt−1 + δt−1 + ω
(κ)
t , ω

(κ)
t

ind∼ Normal(0, ϕ−1
κ ),

δt = δt−1 + ω
(δ)
t , ω

(δ)
t

ind∼ Normal(0, ϕ−1
δ ),

β∗
t = β∗

t−1 + ω
(β∗)
t , ω

(β∗)
t

ind∼ Normaln(0, diag(ϕβ∗)−1).

(4.7)

where Yt is a vector representing the natural logarithm of the mortality rates at time

t for all age groups, β becomes a matrix of values for each age group i and time t,

κ follows a random walk with drift δ, to capture a long term consistent mortality

reduction trend, ϕ = (ϕ0, . . . , ϕn)
′ and ϕβ∗ = (ϕβ∗

1
, . . . , ϕβ∗

n
)′ are precision vectors,

we denote by diag(x) the diagonal matrix with elements given by vector x and β∗ is

a transformation of β we explain ahead. It is worth mentioning that the expression

presented here in equation 4.7 is a slight simplification of the original model, so we

refer to the thesis by Sartório (2018) for the complete specification.

As well as in Lee & Carter (1992), Sartório (2018) also imposed restrictions due
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to identifiability issues, given by∑
i

β2
it = 1 and

∑
t

κt = 0, (4.8)

for all t ∈ {1, . . . , T}, however, we adapt these restrictions for computational con-

venience. The first restriction we consider is
n∑

i=0

βit = n+ 1, (4.9)

which means that each βit can be written as an affine combination of the rest, for

a fixed value of t ∈ {1, . . . , T}. Having this in mind, we can impose this restriction

by estimating β∗
t = (β1t, . . . , βnt)

′ instead of βt = (β0t, . . . , βnt)
′ and writing β0t as

function of β∗
t . In matrix form, we equivalently have

βt =



n+ 1

0

0
...

0

0


+



−1 −1 · · · −1 −1

1 0 · · · 0 0

0 1 · · · 0 0
...

... . . . ...
...

0 0 · · · 1 0

0 0 · · · 0 1


β∗
t , (4.10)

for all t ∈ {1, . . . , n}, which is a convenient representation. Next, we adapt the

restriction for κ by taking
T∑
t=1

zitβitκt = 0, (4.11)

for all i ∈ {0, . . . , n}, where the prior for the indicators zit’s will be introduced later

in this section, and we apply it to the full conditional of α, presented in section B.3.

It is interesting to notice that

E

[
1

ni·1

T∑
t=1

zitYit

∣∣∣∣∣ θ, z
]
=

1

ni·1

T∑
t=1

zitE [Yit| θ, z] =
1

ni·1

T∑
t=1

zit

[
αi + βitκt

]

=
1

ni·1

T∑
t=1

zitαi +
1

ni·1

T∑
t=1

βitκt = αi,

(4.12)

where θ is the collection of all of the model’s parameters and ni·1 =
∑T

t=1 zit, so

with this restriction we can interpret αi as the expected average log-mortality rate

for the age group i considering only the typical observations.
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We then consider the filtering model with main component given by the model

presented in 4.7. The full model specification along with the prior structure is de-

tailed in section B.3 of Appendix B. For the choice of prior for the matrix of indica-

tors z, we consider two distinct structures. The first, which we call the independent

indicator structure, treats the classification of any two indicators as independent

tasks, and is given by

zit
ind∼ Bernoulli

(
wz

)
, (4.13)

for all age groups i ∈ {0, . . . n} and year indexes t ∈ {1, . . . , T}, where wz represents

the prior probability of classifying an observation as atypical. As an alternative, we

next consider the correlated indicator structure, given by

zit|z(i−1)t, ρ ∼ Bernoulli

(
z(i−1)tρ+ (1− z(i−1)t)(1− ρ)

)
,

z(−1)t
ind∼ Bernoulli(ρ0),

ρ ∼ Beta(a, b),

(4.14)

for all age groups i ∈ {0, . . . n} and year indexes t ∈ {1, . . . , T}, where z(−1)t are

virtual indicators used as auxiliary variables for algebraic convenience, ρ, ρ0 ∈ (0, 1)

and a, b > 0. Here, this structure represents the assumption that, for a given year

t, the classification for observations at age groups i and i − 1 should be correlated

with some intensity ρ.

To fit the filtering model with main component given by equation 4.7, we con-

sidered a Gibbs sampler, using the full conditionals described in section B.3 of

Appendix B to generate a sample from the posterior distribution. Here we took

γ = 0.05, wz = 1
2
, ρ0 ∈ 1

2
, a = 1000, b = 1000 and simulated 10000 steps of the

chain, taking the first 1000 states as burn in and a thinning of 10. For reference, the

approximate computation time required to obtain the sample via MCMC was of 11

hour, 48 minutes and 50 seconds for the model with independent indicator structure

and of 12 hours, 34 minutes and 32 seconds for the model with correlated indicator

structure, with most of the cost coming from the estimation of the parameters from

the main component. And, as a side note, in this case, a relatively low value of γ

was chosen in an attempt to compensate the possible bias generated by the presence

of highly anomalous observations known to be present in the data, e.g. mortality
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Figure 21: Heatmap of the estimated classification made by the filtering model with

independent indicator structure for each age group and year considered.
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Figure 22: Heatmap of the estimated classification made by the filtering model with

correlated indicator structure for each age group and year considered.
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during World Wars I and II.

Figures 21 and 22 present the heatmap with estimated classification considering

the model with independent and correlated indicator structures, respectively. As we

can see, both fitted models were able to indentify some well known historic events,

such as World War I, between years 1914 and 1918, and World War II, from 1939 to

1945, satisfactorily, even though the classifications are qualitatively different when

comparing the prior structures considered. For the independent indicator structure,

we can see a more noisy and error-prone classification, while the one provided by

the correlated indicator structure is smoother. However, it is interesting to notice

that the added structure in the correlated estimation necessarily is an improvement,

since it ends up being more hesitant to classify an observation as an anomaly.
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5 FINAL CONSIDERATIONS

In this work we propose a Bayesian model-based anomaly detection using a mix-

ture of a chosen parametric model and an uniform distribution, whose measure is

given by a quantile of the autotransformation of the response variable. Our method-

ology is flexible, dealing with the case of non-identically distributed observations,

models with significant hierarchical complexity and even dependence structure on

the indicator variables, at the cost of assuming independent response variables satis-

fying the filtering condition. Estimation is considered using MCMC methods, with

the Metropolis-Hastings algorithm or, under some rare and specific circumstances,

the Gibbs sampler, and accounts for all of the uncertainties involved in the process.

The method also has a broad scope of applications, dealing with problems of clus-

terization, unsupervised and/or open set classification and regression. However, it is

important pointing out that the filtering model still has important issues and poorly

understood properties that require further studies.

We already established that the analytical and computational cost may prevent

the practical use of our method in more general scenarios and, as evidence, we

recall that all of the applications presented in this work relied on assuming normally

distributed response variables. To address this, in future work we hope to use a

combination of Extreme Value Theory and approximate inference techniques, such

as variational methods, to propose reasonable and practical approximations of the

filtering model.

Another important issue is the multimodality and possible lack of identifiability

of the proposed model, as both of them contribute to the complexity of the estima-

tion and sensibility to the initial condition of the MCMC algorithms. As a path to

mitigate this problem, we wish to consider reinforcement learning techniques to find

a better balance between allocating observations to the alternative component and

seeking a better fit to our data. Another related matter is the understanding of how

the alternative component affects the posterior distribution of the parameter from

the main component, which may have a relevant role in the estimation complexity

problem.
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Lastly, we highlight that, since we consider a model-based approach, our results

heavily rely on an appropriate choice of the distribution family of the main com-

ponent and, depending on the case, may be sensitive to the specification of the

prior distribution. In particular, the choice of the threshold of maximum uncer-

tainty showed to be sensitive and requires further analysis. Having this in mind,

even though the method is able to perform complete unsupervised anomaly identi-

fication, we strongly recommend thorough model validation and, if possible, using

supervision to ensure proper inference and decision making.
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A AUTOTRANSFORMATIONS AND CORRECTION FUNCTIONS

In this Appendix we will provide some additional information to better introduce

some of the definitions presented in Chapter 3. In section A.1 we will provide the

proof of some the results stated in section 3.1 related to autotrasformations. Section

A.2 shows some results related to correction functions and presents, in some sense,

a convenient universal correction function based on the Weibull distribution. Then,

section A.3 particularizes some results regarding the general class of location and

scale models and section A.4 further considers these results for the multivariate

normal distribution, that has significant importance for all of the applications in

Chapter 4.

A.1 GENERAL PROPRIETIES OF AUTOTRANSFORMATIONS

We begin stating and proving proposition A.1, that shows us how to write the

distribution of an autotransformation of order n in terms of the distribution of the

autotransformation of the same random variable.

Proposition A.1. Let X be a d-dimensional absolutely continuous or discrete ran-

dom vector. Then the distribution function of T (n)
X is given by the expression

F
T

(n)
X

(x) = 1− [1− FTX
(x)]n . (A.1)

Proof. The following proof is equivalent to the one used to find the distribution of

the minimum of independent random variables. So, we have

FTn
X
(x) = P (T n

X ≤ x) = P (min{TX1 , . . . , TXn} ≤ x)

= 1− P (min{TX1 , . . . , TXn} > x)

= 1− P (TX1 > x, . . . , TXn > x)

ind
= 1−

n∏
i=1

P (TXi
> x) = 1−

n∏
i=1

[1− P (TXi
≤ x)]

id
= 1− [1− FTX

(x)]n .

(A.2)
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Next, analogously to what we obtained in proposition A.1, we can find the quan-

tile function of TY (n) in terms of the quantile function of the autotransformation TY ,

as stated in propositions A.2.

Proposition A.2. Let X be a d-dimensional absolutely continuous or discrete ran-

dom vector. Then, the quantile function of T (n)
X is given by the expression

F−1

T
(n)
X

(x) = F−1
TX

(
1− (1− x)

1
n

)
. (A.3)

Proof. From propositions A.1 and we have

F
T

(n)
X

(x) ≥ y ⇐⇒ 1− [1− FTX
(x)]n ≥ y

⇐⇒ 1− FTX
(x) ≤ (1− y)

1
n

⇐⇒ FTX
(x) ≥ 1− (1− y)

1
n ,

(A.4)

so we can infer that, for all y ∈ (0, 1],

F−1

T
(n)
X

(y) = inf
{
x ∈ R : F

T
(n)
X

(x) ≥ y
}

= inf
{
x ∈ R : FTX

(x) ≥ 1− (1− y)
1
n

}
= F−1

TX

(
1− (1− y)

1
n

) (A.5)

and for y = 0 the equality

F−1

T
(n)
X

(y) = F−1

T
(n)
X

(0)
def
= 0

def
= F−1

TX
(0) = F−1

TX

(
1− (1− 0)

1
n

)
= F−1

TX

(
1− (1− y)

1
n

)
(A.6)

is satisfied by definition, so we have

F−1

T
(n)
X

(x) = F−1
TX

(
1− (1− x)

1
n

)
. (A.7)

Both propositions A.1 and A.2 are useful because they lead to an important

reduction on the number of distribution functions considered in the filtering model’s

definition, which substantially diminishes the analytical and/or computational bur-

den of the method’s implementation.
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A.2 CORRECTION FUNCTIONS

In this section we will clarify some of the results presented in subsection 3.1.3

related to correction functions. But first, we will introduce and prove a necessary

proposition related to the generalized inverse function of Definition 3.3 that follows.

Proposition A.3. Let X be a d-dimensional absolutely continuous or discrete ran-

dom vector with distribution FX and satisfying the filtering condition. Then, the

generalized inverse of F
T

(n)
X

must satisfy

F−1

T
(n)
X

(y) ≤ t ⇐⇒ y ≤ F
T

(n)
X

(t) (A.8)

for all 0 ≤ y ≤ 1, t ≥ 0 and n ∈ N∗.

Proof. The generalized inverse function of Definition 3.3 is a modification of the

generalized inverse presented in Definition 3.11 of Magalhães (2006) and both defi-

nitions coincide for 0 < y ≤ 1. So the proof of this proposition for 0 < y ≤ 1 is the

same as the one from proposition 3.4 of Magalhães (2006), and for this reason the

proof for this case will be omitted. Then, considering y = 0, we need to show that

F−1

T
(n)
X

(0) ≤ t ⇐⇒ 0 ≤ F
T

(n)
X

(t), (A.9)

for all t ≥ 0 and n ∈ N∗. Considering the left-hand side of the equivalence we notice

that, since t ≥ 0 and by definition F−1

T
(n)
X

(0) = 0, the inequality always holds. Now,

looking at the right-hand side of the equivalence we know that the inequality always

holds for t ≥ 0, because T
(n)
X > 0 almost surely. So, since both sides are always true,

the equivalence holds for y = 0.

Next, we show that the correction functions according to equations 3.30 and 3.31

are well defined. To do this, we need to show that the operations from the recursive

relation in equation 3.30, given the initial value gi(n) = n, do not violate the domain

constraints of the generalized inverse of FTYi
(·|θ) and provide clarification on some

edge cases, where the definition is unclear. For simplicity we will recurrently adopt

the notation: hi = FTYi
(·|θ).

First, we establish as a convention that
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• 1− γ0−1
= 1− γ+∞ = 1,

•
[
logγ(0)

]−1
= [+∞]−1 = 0, and

•
[
logγ(1)

]−1
= 0−1 = +∞.

Now, we need to show that, for all x ∈ {1, . . . , n},

0 < 1− γgi(x)
−1 ≤ 1. (A.10)

Notice that, considering our convention we have

0 < 1− γgi(x)
−1 ≤ 1 ⇐⇒ −1 < −γgi(x)

−1 ≤ 0

⇐⇒ 1 > γgi(x)
−1 ≥ 0

⇐⇒ 0 < gi(x)
−1 ≤ +∞

⇐⇒ 0 ≤ gi(x) < +∞

(A.11)

So instead, we prove the equivalent condition 0 ≤ g(x) < +∞, for all x ∈ {1, . . . , n},

by induction in x.

Before following with the proof, it is important highlighting that from the filtering

condition we have that FTYi
(ε|θ) > 0, for all ε > 0, and we know that TYi

> 0 almost

surely, which imply that

FTYi
(x) = 0 ⇐⇒ x ≤ 0. (A.12)

From the equivalence above and using that distribution functions are right-continuous,

we can also conclude that, for y ∈ (0, 1],

F−1
TYi

(y) = inf
{
x ∈ R : FTYi

(x) ≥ y > 0
}
> 0. (A.13)

So, considering that F−1
TYi

(0) = 0, we similarly infer that

FTYi
(y) = 0 ⇐⇒ y = 0. (A.14)

Now, back to the proof by induction we have:

Proof. Fixating n ∈ N∗, for the initial case we know that 0 ≤ gi(n) = n < +∞.

Next, we need to show that, for all x ∈ {1, . . . , n− 1},

0 ≤ g(x+ 1) < +∞ =⇒ 0 ≤ g(x) < +∞. (A.15)
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Consider the following:

0 ≤ gi(x+ 1) < +∞

⇒ 0 < 1− γgi(x+1)−1 ≤ 1

⇒ 0 < h−1
i

(
1− γgi(x+1)−1

)
≤ h−1(1)

⇒ 0 <
[
h−1
i

(
1− γgi(x+1)−1

)] >0︷ ︸︸ ︷
n− x

n− x+ 1 ≤
[
h−1
i (1)

] n−x
n−x+1

⇒ 0 <
[
h−1
i

(
1− γx−1

)] 1
n−x+1︸ ︷︷ ︸

>0

[
h−1
i

(
1− γgi(x+1)−1

)] n−x
n−x+1

≤
[
h−1
i

(
1− γx−1

)] 1
n−x+1 [

h−1
i (1)

] n−x
n−x+1 ≤

[
h−1
i (1)

] 1
n−x+1

[
h−1
i (1)

] n−x
n−x+1 = h−1

i (1)

⇒ 0 < hi

([
h−1
i

(
1− γx−1

)] 1
n−x+1

[
h−1
i

(
1− γgi(x+1)−1

)] n−x
n−x+1

)
≤ hi

(
h−1
i (1)

)
≤ 1

⇒ 0 ≤ 1− hi

([
h−1
i

(
1− γx−1

)] 1
n−x+1

[
h−1
i

(
1− γgi(x+1)−1

)] n−x
n−x+1

)
< 1

⇒ 0 < logγ

[
1− hi

([
h−1
i

(
1− γx−1

)] 1
n−x+1

[
h−1
i

(
1− γgi(x+1)−1

)] n−x
n−x+1

)]
≤ +∞

⇒ 0 < [gi(x)]
−1 ≤ +∞

⇒ 0 ≤ gi(x) < +∞.

(A.16)

The next proposition is the main result regarding correction functions of this

work. It allows us to control or even eliminate the bias from the filtering model

considering the identically distributed case and it is restated below.

Proposition A.4. Let Y1, . . . , Yn be an independent sample from the d-dimensional

absolutely continuous or discrete distributions FY1(·|θ), . . . , FYn(·|θ) and γ ∈ (0, 1)

a real scalar. If Y1, . . . , Yn satisfy the filtering condition given θ, then the correction

function gi = gi(·|θ, γ) for the i-th observation satisfies

F−1
TYi

(
1− γgi(x)

−1
∣∣∣ θ)

 F−1
TYi

(
1− γgi(x)

−1
∣∣∣ θ)

F−1
TYi

(1− γgi(x+1)−1| θ)

n−x

≤ F−1
TYi

(
1− γx−1

∣∣∣ θ) , (A.17)

for x ∈ {1, . . . , n}. Furthermore, if TYi
is absolutely continuous, then correction
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function gi = gi(·|θ, γ) for the i-th observation satisfies

F−1
TYi

(
1− γgi(x)

−1
∣∣∣ θ)

 F−1
TYi

(
1− γgi(x)

−1
∣∣∣ θ)

F−1
TYi

(1− γgi(x+1)−1| θ)

n−x

= F−1
TYi

(
1− γx−1

∣∣∣ θ) , (A.18)

for x ∈ {1, . . . , n}.

Proof. Regarding the first statement, adopting the notation hi = FTYi
(·|θ), consider

that

gi(x) =

[
logγ

[
1− hi

([
h−1
i

(
1− γx−1

)] 1
n−x+1

[
h−1
i

(
1− γgi(x+1)−1

)] n−x
n−x+1

)]]−1

⇒ gi(x) ≥
[
logγ

[
1− hi

([
h−1
i

(
1− γx−1

)] 1
n−x+1

[
h−1
i

(
1− γgi(x+1)−1

)] n−x
n−x+1

)]]−1

⇔ gi(x)
−1 ≤ logγ

[
1− hi

([
h−1
i

(
1− γx−1

)] 1
n−x+1

[
h−1
i

(
1− γgi(x+1)−1

)] n−x
n−x+1

)]
⇔ γgi(x)

−1 ≥ 1− hi

([
h−1
i

(
1− γx−1

)] 1
n−x+1

[
h−1
i

(
1− γgi(x+1)−1

)] n−x
n−x+1

)
⇔ 1− γgi(x)

−1 ≤ hi

([
h−1
i

(
1− γx−1

)] 1
n−x+1

[
h−1
i

(
1− γgi(x+1)−1

)] n−x
n−x+1

)
⇔ h−1

i

(
1− γgi(x)

−1
)
≤

[
h−1
i

(
1− γx−1

)] 1
n−x+1

[
h−1
i

(
1− γgi(x+1)−1

)] n−x
n−x+1

⇔

[
h−1
i

(
1− γgi(x)

−1
)]n−x+1

[
h−1
i (1− γgi(x+1)−1)

]n−x ≤ h−1
i

(
1− γx−1

)

⇔ h−1
i

(
1− γgi(x)

−1
) h−1

i

(
1− γgi(x)

−1
)

h−1
i (1− γgi(x+1)−1)

n−x

≤ h−1
i

(
1− γx−1

)
,

(A.19)

for all x ∈ {1, . . . , n} and i ∈ {1, . . . , n}. It is worth pointing out that this relation

does hold for x = n even though gi(n + 1) is undefined. For clarity, notice that
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considering x = n we have

h−1
i

(
1− γgi(n)

−1
) h−1

i

(
1− γgi(n)

−1
)

h−1
i (1− γgi(n+1)−1)

n−n

≤ h−1
i

(
1− γn−1

)
⇔ h−1

i

(
1− γgi(n)

−1
)
≤ h−1

i

(
1− γn−1

)
⇔ 1− γgi(n)

−1 ≤ hi

(
h−1
i

(
1− γn−1

))
⇔ γgi(n)

−1 ≥ 1− hi

(
h−1
i

(
1− γn−1

))
⇔ gi(n)

−1 ≤ logγ

[
1− hi

(
h−1
i

(
1− γn−1

))]
⇔ gi(n) ≥

(
logγ

[
1− hi

(
h−1
i

(
1− γn−1

))])−1

(A.20)

and
h−1
i

(
1− γn−1

)
≤ h−1

i

(
1− γn−1

)
⇔ 1− γn−1 ≤ hi

(
h−1
i

(
1− γn−1

))
⇔ γn−1 ≥ 1− hi

(
h−1
i

(
1− γn−1

))
⇔ n−1 ≤ logγ

[
1− hi

(
h−1
i

(
1− γn−1

))]
⇔ n ≥

(
logγ

[
1− hi

(
h−1
i

(
1− γn−1

))])−1

,

(A.21)

so, since gi(n) = n, we have

gi(n) = n ⇒ h−1
i

(
1− γgi(n)

−1
) h−1

i

(
1− γgi(n)

−1
)

h−1
i (1− γgi(n+1)−1)

n−n

≤ h−1
i

(
1− γn−1

)
.

(A.22)

Now, considering the case where TYi
is absolutely continuous we can obtain analogous

results substituting the inequalities from equivalences A.19 and A.22 for equalities.

For brevity, we skip to the conclusion that

gi(x) =

[
logγ

[
1− hi

([
h−1
i

(
1− γx−1

)] 1
n−x+1

[
h−1
i

(
1− γgi(x+1)−1

)] n−x
n−x+1

)]]−1

⇔ h−1
i

(
1− γgi(x)

−1
) h−1

i

(
1− γgi(x)

−1
)

h−1
i (1− γgi(x+1)−1)

n−x

= h−1
i

(
1− γx−1

)
,

(A.23)

and

gi(n) = n ⇔ h−1
i

(
1− γgi(n)

−1
) h−1

i

(
1− γgi(n)

−1
)

h−1
i (1− γgi(n+1)−1)

n−n

= h−1
i

(
1− γn−1

)
.

(A.24)
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The equivalences A.23 and A.24 also allows us to state that, if TYi
is an absolutely

continuous random variable, the correction function gi is the unique function satis-

fying the desired propriety.

Next we will introduce the universal correction function g∗, prove some of its

interesting proprieties, and provide some intuition regarding its supposed “univer-

sality”.

In section 3.1.3 the correction function is usually denoted by gi to avoid an over-

loaded notion, however, a more precise notation for the function would be gi(·|θ, γ),

since it has a dependence on the parametric vector θ and on the hyperparameter

γ but does not depend on the collection of indicators z. With this explicit depen-

dence, it becomes clear, considering the Metropolis-Hastings algorithm considered

in section 3.2, that the values of the correction function need to be recalculated at

every iteration for the acceptance-rejection step, due to the change of the current

value θ(t−1) and/or the proposed value θprop. Furthermore, we know that no general

analytical solution for the correction, quantile and distribution functions for auto-

transformations can be provided, drastically increasing the expected computational

cost of model. Having that in mind, if instead we were able to provide a reasonable

approximation g∗ of the correction function that had no dependence on θ, γ and

z, only depending on the total sample size n, we could avoid the additional cost

of recalculating the value of gi(·|θ, γ) for each iteration of the Metropolis-Hastings

algorithm and each sample. Better yet, the values g∗(1), . . . , g∗(n) could be calcu-

lated preceding the algorithm’s initialization, then stored and accessed on demand,

completely surpassing the need of computing the correction function throughout the

iterations.

Even though we do not have a proven best approximation or even the error

control for our proposed universal correction function g∗, we do have theoretical

reasons to believe that g∗(x) is a good approximation of gi(x|θ, γ) for large values

of n and x. Our proposal relies on Extreme Value Theory, see de Haan & Ferreira

(2006) for an introduction on the topic, and uses a correction function based on

the Weibull distribution as an approximation. Consider now the following central
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theorem from Extreme Value Theory:

Theorem A.1 (Fisher & Tippett (1928) and Gnedenko (1943)). Let X1, X2 . . . be a

sequence of independent and identically distributed random variables. Suppose there

exists a sequence of constants an > 0, and bn ∈ R (for n ∈ {1, . . . , n}) such that

max{X1, . . . , Xn} − bn
an

(A.25)

has a non degenerate limit distribution, i.e.

lim
n→+∞

F n(anx+ bn) = G(x), (A.26)

for every point x of G, and G a non degenerate distribution function. Then, the

class of possible limiting distributions G is given by

G(x|a, b, ξ) = exp

{
−
(
1 + ξ

(
x− b

a

))− 1
ξ

}
, 1 + γx > 0, (A.27)

where a > 0, b, ξ ∈ R and the expression inside the exponent should be interpreted

as exp{−x−b
a
}.

With the theorem above we know that, if we consider the normalized maximum of

any random variable it can only converge to a fairly restricted family of distributions,

which is the generalized extreme value distribution. As a side note, the limit of

the appropriately normalized minimum of independent random variables can be

obtained from the results for maximum using that

min{X1, . . . , Xn} = −max{−X1, . . . ,−Xn}. (A.28)

Now, since for any d-dimensional absolutely continuous or discrete random variable

X we have T
(n)
X = min{TX1 , . . . , TXn}, where TX1 , . . . , TXn are independent auto-

transformations of X, we can speculate that for large n the autotransformation of

order n will behave similarly to one of the possible limits of G for the minimum.

It can also be proven, see de Haan & Ferreira (2006) for more details, that if the

limit exists in this context, the Gumbel and the Weibull are the only possible lim-

iting distributions, because T
(n)
X > 0 almost surely, justifying the use of the Weibull
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distribution for our next results. So, if we take Y ∼ Weibull(α, β), considering the

parametrization for the density given by

fY (y|α, β) = βαyα−1 exp {−βxα} , y > 0, (A.29)

where α > 0 and β > 0, we know that for its quantile function we have

F−1
Y (x) =

[
− 1

β
ln(1− x)

] 1
α

. (A.30)

Next, we define the universal correction function based on the Weibull distribution

as follows.

Definition A.1 (Universal Correction Function). Let Y1, . . . , Yn be independent d-

dimensional absolutely continuous or discrete distributions random variables satisfy

the filtering condition given a parameteric vector θ. Then the universal correction

function g∗ for any of the Yi’s is given by

g∗(x) = x
1

n−x+1 [g∗(x+ 1)]
n−x

n−x+1 , (A.31)

for x ∈ {1, . . . , n}.

It is worth highlighting from A.1 that the universal correction function does not

depend on the unknown parametric vector θ or on a hypeparameter γ ∈ (0, 1), unlike

most of the correction functions, thus accomplishing our simplification goal. It also

does not depend in any form on the distribution of the sample Y1, . . . , Yn, only on

its size, hence the universal in its name. Next, we provide a result analogous to

proposition A.4, that allows us to better understand the purpose of Definition A.1

and establish its connection to the Weibull distribution.

Proposition A.5. Let Y1, . . . , Yn be independent random variables, g∗ the universal

correction function and γ ∈ (0, 1) a real scalar. If Y1, . . . , Yn are such that TYi
∼

Weibull(αi, βi) for i ∈ {1, . . . , n}, then the correction function for Yi satisfies:

gi(x|α, β, γ) = g∗i (x), (A.32)

for all x ∈ {1, . . . , n}.
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Proof. First, notice that for x = n we have

g∗(n) = n
1

n−n+1 [g∗(n+ 1)]
n−n

n−n+1 = n = gi(n). (A.33)

Now, from proposition A.4 we know that gi = gi(·|αi, βi) is the only function that

satisfies

F−1
TYi

(
1− γgi(x)

−1
∣∣∣αi, βi

) F−1
TYi

(
1− γgi(x)

−1
∣∣∣αi, βi

)
F−1
TYi

(1− γgi(x+1)−1|αi, βi)

n−x

= F−1
TYi

(
1− γx−1

∣∣∣αi, βi

)
(A.34)

for all x ∈ {1, . . . , n}, so we have

F−1
TYi

(
1− γgi(x)

−1
∣∣∣αi, βi

) F−1
TYi

(
1− γgi(x)

−1
∣∣∣αi, βi

)
F−1
TYi

(1− γgi(x+1)−1|αi, βi)

n−x

= F−1
TYi

(
1− γx−1

∣∣∣αi, βi

)

⇔
[
− 1

βi

ln
(
1−

(
1− γgi(x)

−1
))] 1

αi


[
− 1

βi
ln
(
1−

(
1− γgi(x)

−1
))] 1

αi[
− 1

βi
ln (1− (1− γgi(x+1)−1))

] 1
αi


n−x

=

[
− 1

βi

ln
(
1−

(
1− γx−1

))] 1
αi

⇔

− 1

βi

ln
(
γgi(x)

−1
) − 1

βi
ln
(
γgi(x)

−1
)

− 1
βi
ln (γgi(x+1)−1)

n−x


1
αi

=

[
− 1

βi

ln
(
γx−1

)] 1
αi

⇔ ln
(
γgi(x)

−1
) ln

(
γgi(x)

−1
)

ln (γgi(x+1)−1)

n−x

= ln
(
γx−1

)
⇔ gi(x)

−1 ln (γ)

[
gi(x)

−1 ln (γ)

gi(x+ 1)−1 ln (γ)

]n−x

= x−1 ln (γ)

⇔ gi(x)
−1 gi(x)

−(n−x)

gi(x+ 1)−(n−x)
= x−1

⇔ gi(x) = x
1

n−x+1 [gi(x+ 1)]
n−x

n−x+1

(A.35)

Since gi and g∗ coincide for the initial value x = n and their recursive formulas are

identical, then they must be the same for all x ∈ {1, . . . , n}.

It is worth noting that proposition A.5 shows that the universal correction func-

tion does not depend on the choices of αi, βi and γ. This allows us to conclude that,
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if there is a Weibull distribution with parameters αi(θ, γ) and βi(θ, γ) that approxi-

mates well the distribution FTYi
(·|θ), then g∗ should be a reasonable approximation

of gi(·|θ, γ).

As a side note, the numerical values for the universal correction function can

also be computed using its initial value and then the recursive formula, but we

recommend using the equivalent, albeit more numerically stable, expression given

by

g∗(x) = exp

{
1

n− x+ 1
ln(x) +

n− x

n− x+ 1
ln [g∗(x+ 1)]

}
, (A.36)

for x ∈ {1, . . . , n}.

A.3 LOCATION-SCALE MODELS

In this section we will present some useful proprieties related to the autotransfor-

mations of location-scale models. So let Z be a d-dimensional absolutely continuous

random vector, µ ∈ Rd be a location parameter and A be a d × d lower triangu-

lar matrix with positive diagonal entries such that Σ = AA′ is a positive-definite

matrix. Then, if X = AZ + µ, the density of X is given by

fX(x|µ,Σ) = [det(Σ)]−
1
2 fZ

(
A−1(x− µ)

)
. (A.37)

With the expression above, we can easily rewrite the autotransformation of X in

terms of the autotransformation of Z considering that

TX = fX(X|µ,Σ) = [det(Σ)]−
1
2 fZ

(
A−1(X − µ)

)
= [det(Σ)]−

1
2 fZ (Z)

= [det(Σ)]−
1
2 TZ .

(A.38)

Here, it is worth noting that TX does not depend on the location parameter µ and

its dependence on Σ is only multiplicative, leading to some straightforward way

of finding the distribution and quantile functions of TX . And this can be done

considering that

FTX
(x|Σ) = P (TX ≤ x|Σ) = P

(
[det(Σ)]−

1
2 TZ ≤ x

∣∣∣Σ)
= P

(
TZ ≤ [det(Σ)]

1
2 x

∣∣∣Σ) = FTZ

(
[det(Σ)]

1
2 x

) (A.39)
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and, consequently, we have

F−1
TX

(x|Σ) = [det(Σ)]−
1
2 F−1

TZ
(x) . (A.40)

Let us now consider the case of discrete d-dimensional random vector X whose

domain is the set SX ⊂ Rd. In this case, the autotransformation TX is also a discrete

random variable whose domain is the set

STX
= {y ∈ R : S∗

X(y) ̸= ∅} , (A.41)

where

S∗(y) =
{
x ∈ Rd : P(X = x) = y

}
. (A.42)

With this, we can calculate probabilities involving TX noticing that, for all y ∈ R,

P(TX = y) =
∑

x∈S∗
X(y)

P(X = x). (A.43)

Interestingly, if we then consider Y = t(X), where t is a reversible function, then

P(TY = y) =
∑

x∈S∗
Y (y)

P(Y = x) =
∑

x∈S∗
Y (y)

P(t(X) = x)

=
∑

x∈S∗
Y (y)

P(X = t−1(x)) =
∑

x∈S∗
X(y)

P(X = x) = P(TX = y)
(A.44)

for all y ∈ R, which implies that TY has the same distribution of TX . And, in par-

ticular, if we consider an affine reversible transformation the resulting distribution

will not change as well, so the autotransformation of a discrete random variable

with location and scale parameters does not depend on either of them. We can also

interpret this propriety as a “label invariance” of discrete distributions, i.e., if we

rename the elements of SX and change the notion of order the distribution of the

autotransformation does not change, since we do not alter the way we distribute

probabilities in the transformed set when compared to the original one. Next we

present the last result related to location-scale models of this work.

Proposition A.6. Let Y1, . . . , Yn be an independent sample from the d-dimensional

absolutely continuous or discrete distributions FY1(·|θ), . . . , FYn(·|θ) and γ ∈ (0, 1)

a real scalar. Besides, let µ1, . . . , µn ∈ Rd be location vectors, A1, . . . , An be d × d
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lower triangular matrices with positive diagonal entries such that Σk = AkA
′
k is a

positive-definite matrix, for all k ∈ {1, . . . , n}, and θ = (A1, . . . , An, µ1, . . . , µn). If

a d-dimensional random vector Z whose distribution does not depend on θ and such

that Yk = AkZ + µk exists for all k ∈ {1, . . . , n}, then the correction function gk for

Yk satisfies

F−1
TYk

(
1− γgk(n

−k
1 +1)−1

∣∣∣ θ)∏
i ̸=k

F−1
TYi

(
1− γgi(n

−k
1 +1)−1

∣∣∣ θ)
F−1
TYi

(
1− γgi(n

−k
1 +2)−1

∣∣∣ θ)
1−zi

≤ F−1
TYk

(
1− γ(n−k

1 +1)−1
∣∣∣ θ) ,

(A.45)

for all n−k
1 ∈ {0, . . . , n − 1} and k ∈ {1, . . . , n}, where z1, . . . , zn ∈ {0, 1} and are

such that n−k
1 =

∑
i ̸=k zi. Furthermore, if TZ is absolutely continuous we have

F−1
TYk

(
1− γgk(n

−k
1 +1)−1

∣∣∣ θ)∏
i ̸=k

F−1
TYi

(
1− γgi(n

−k
1 +1)−1

∣∣∣ θ)
F−1
TYi

(
1− γgi(n

−k
1 +2)−1

∣∣∣ θ)
1−zi

= F−1
TYk

(
1− γ(n−k

1 +1)−1
∣∣∣ θ) ,

(A.46)

for all n−k
1 ∈ {0, . . . , n− 1} and k ∈ {1, . . . , n}.

Proof. Let us first show that the correction functions does not depend on θ. For

the discrete case we already know that TYk
= TZ , so, since the correction function

gk depends on Yk only through FTYk
(·|θ) = FTZ

, we can trivially see that it does not

depend on θ. Now, assuming Yk absolutely continuous and adopting the notation

hk = FTYk
(·|θ) for simplicity, from Definition 3.5 and equations A.39 and A.40 we

have

gk(x) =

(
logγ

[
1− hk

([
h−1
k

(
1− γx−1

)] 1
n−x+1

[
h−1
k

(
1− γgk(x+1)−1

)] n−x
n−x+1

)])−1

⇔ 1− γgk(x)
−1

= hk

([
h−1
k

(
1− γx−1

)] 1
n−x+1

[
h−1
k

(
1− γgk(x+1)−1

)] n−x
n−x+1

)
= hk

([
[det(Σk)]

− 1
2 F−1

TZ

(
1− γx−1

)] 1
n−x+1

[
[det(Σk)]

− 1
2 F−1

TZ

(
1− γgk(x+1)−1

)] n−x
n−x+1

)
= FTZ

[
[det(Σk)]

1
2 [det(Σk)]

− 1
2

[
F−1
TZ

(
1− γx−1

)] 1
n−x+1

[
F−1
TZ

(
1− γgk(x+1)−1

)] n−x
n−x+1

]
= FTZ

([
F−1
TZ

(
1− γx−1

)] 1
n−x+1

[
F−1
TZ

(
1− γgk(x+1)−1

)] n−x
n−x+1

)
,

(A.47)
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which implies that

gk(x) =

[
logγ

[
1− FTZ

([
F−1
TZ

(
1− γx−1

)] 1
n−x+1

[
F−1
TZ

(
1− γgk(x+1)−1

)] n−x
n−x+1

)]]−1

(A.48)

for all x ∈ {1, . . . , n − 1}, and, since gk(n) = n, that the correction functions are

identical for all k ∈ {1, . . . , n}. We can also notice, from the expressions obtained

in absolutely continuous case and from the argument used in the discrete case, that

gk is the same as the correction function for Z (assuming a sample of n independent

random variables with the same distribution), so we denote it g instead.

Now, from proposition A.4 we have

F−1
TZ

(
1− γg(x)−1

) F−1
TZ

(
1− γg(x)−1

)
F−1
TZ

(1− γgi(x+1)−1)

n−x

≤ F−1
TZ

(
1− γx−1

)
, (A.49)

so, assuming Y1, . . . , Yn discrete, we obtain that

F−1
TYk

(
1− γgk(n

−k
1 +1)−1

∣∣∣ θ)∏
i ̸=k

F−1
TYi

(
1− γgi(n

−k
1 +1)−1

∣∣∣ θ)
F−1
TYi

(
1− γgi(n

−k
1 +2)−1

∣∣∣ θ)
1−zi

= F−1
TZ

(
1− γg(n−k

1 +1)−1
)∏

i ̸=k

F−1
TZ

(
1− γg(n−k

1 +1)−1
)

F−1
TZ

(
1− γg(n−k

1 +2)−1
)
1−zi

= F−1
TZ

(
1− γg(n−k

1 +1)−1
)F−1

TZ

(
1− γg(n−k

1 +1)−1
)

F−1
TZ

(
1− γg(n−k

1 +2)−1
)
n−(n−k

1 +1)

≤ F−1
TZ

(
1− γ(n−k

1 +1)−1
)
= F−1

TYk

(
1− γ(n−k

1 +1)−1
∣∣∣ θ) ,

(A.50)

for all n−k
1 ∈ {0, . . . , n− 1} and k ∈ {1, . . . , n}. Then, assuming Y1, . . . , Yn continu-
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ous, we have

F−1
TYk

(
1− γgk(n

−k
1 +1)−1

∣∣∣ θ)∏
i ̸=k

F−1
TYi

(
1− γgi(n

−k
1 +1)−1

∣∣∣ θ)
F−1
TYi

(
1− γgi(n

−k
1 +2)−1

∣∣∣ θ)
1−zi

= [det(Σk)]
− 1

2 F−1
TZ

(
1− γg(n−k

1 +1)−1
)∏

i ̸=k

 [det(Σi)]
− 1

2 F−1
TZ

(
1− γg(n−k

1 +1)−1
)

[det(Σi)]
− 1

2 F−1
TZ

(
1− γg(n−k

1 +2)−1
)
1−zi

= [det(Σk)]
− 1

2 F−1
TZ

(
1− γg(n−k

1 +1)−1
)F−1

TZ

(
1− γg(n−k

1 +1)−1
)

F−1
TZ

(
1− γg(n−k

1 +2)−1
)
n−(n−k

1 +1)

≤ [det(Σk)]
− 1

2 F−1
TZ

(
1− γ(n−k

1 +1)−1
)
= F−1

TYk

(
1− γ(n−k

1 +1)−1
∣∣∣ θ) ,

(A.51)

for all n−k
1 ∈ {0, . . . , n − 1} and k ∈ {1, . . . , n}. At last, assuming TZ absolutely

continuous, from proposition A.4 we also know that

F−1
TZ

(
1− γg(x)−1

) F−1
TZ

(
1− γg(x)−1

)
F−1
TZ

(1− γgi(x+1)−1)

n−x

= F−1
TZ

(
1− γx−1

)
. (A.52)

So we can obtain the desired result repeating the procedures above, but considering

the equality instead. For brevity, with jump to conclude that

F−1
TYk

(
1− γgk(n

−k
1 +1)−1

∣∣∣ θ)∏
i ̸=k

F−1
TYi

(
1− γgi(n

−k
1 +1)−1

∣∣∣ θ)
F−1
TYi

(
1− γgi(n

−k
1 +2)−1

∣∣∣ θ)
1−zi

= F−1
TYk

(
1− γ(n−k

1 +1)−1
∣∣∣ θ) ,

(A.53)

for all n−k
1 ∈ {0, . . . , n− 1} and k ∈ {1, . . . , n}, finishing our demonstration.

At last, considering the full conditional distribution in equation 3.26, it is not

hard to see that proposition A.6 implies that the filtering model is always unbiased

for location-scale models, regardless of whether the observations are identically dis-

tributed or not. Furthermore, proving of proposition A.6 we also show that the

correction function for each observation depends only on the distribution of Z and

on the hyperparameter γ, losing its dependence on the models parameters.
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A.4 MULTIVARIATE NORMAL DISTRIBUTION

Considering the case of the multivariate normal distribution, we can find its

distribution in terms of a known distribution function. Let X ∼ Normald(µ,Σ),

then it is known that Y = (X − µ)′Σ−1(X − µ) ∼ Gamma
(
d
2
, 1
2

)
, see Chapter

4 of Gamerman & Lopes (2006) for instance. Now let TX = fX(X|µ,Σ) be the

autotransformation of X. We can then obtain fTX
considering that, for 0 < x <

(2π)−
d
2 [det(Σ)]−

1
2 ,

FTX
(x) = P (TX ≤ x) = P (fX(X|µ,Σ) ≤ x)

= P
(
(2π)−

d
2 [det(Σ)]−

1
2 exp

{
−1

2
(X − µ)Σ−1(X − µ)

}
≤ x

)
= P

(
(2π)−

d
2 [det(Σ)]−

1
2 exp

{
−Y

2

}
≤ x

)
= P

(
exp

{
−Y

2

}
≤ (2π)

d
2 [det(Σ)]

1
2 x

)
= P

(
Y ≥ −2 ln

[
(2π)

d
2 [det(Σ)]

1
2 x

])
= 1− FY

(
−2 ln

[
(2π)

d
2 [det(Σ)]

1
2 x

])
.

(A.54)

Besides this, after noticing that 0 ≤ fX(x) ≤ (2π)−
d
2 [det(Σ)]−

1
2 , for all x ∈ Rd,

it can be trivially seen that FTX
(x) = 0, for all x ≤ 0, and that FTX

(x) = 1, for

x ≥ (2π)−
d
2 [det(Σ)]−

1
2 .

We can find the quantile function as well, considering that

FTX
(x) = y ⇐⇒ 1− FY

(
−2 ln

[
(2π)

d
2 [det(Σ)]

1
2 x

])
= y

⇐⇒ −2 ln
[
(2π)

d
2 [det(Σ)]

1
2 x

]
= F−1

Y (1− y)

⇐⇒ (2π)
d
2 [det(Σ)]

1
2 x = exp

{
−1

2
F−1
Y (1− y)

}
⇐⇒ x = (2π)−

d
2 [det(Σ)]−

1
2 exp

{
−1

2
F−1
Y (1− y)

}
,

(A.55)

and thus, we conclude that

F−1
TX

(x) = (2π)−
d
2 [det(Σ)]−

1
2 exp

{
−1

2
F−1
Y (1− x)

}
. (A.56)

Besides, we can use proposition A.2 to obtain

F−1

T
(n)
X

(x) = (2π)−
d
2 [det(Σ)]−

1
2 exp

{
−1

2
F−1
Y

(
(1− x)

1
n

)}
. (A.57)
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B MODELS FOR APPLICATIONS

In this Appendix we detail the models used for the applications in Chapter 4,

including the priors used and the necessary full conditionals for the derivation of the

Gibbs sampler.

B.1 RANDOM WALK MODEL

Let us consider the filtering model with the normal random walk model as the

main component. We can represent the resulting model, including all of the chosen

prior distributions for each parameter, in the hierarchical form given by

Yi|µ, ϕ, zi = 1
ind∼ Normald

(
µ, diag(ϕ)−1

)
,

Yi|ϕ, z−i, zi = 0
ind∼ Uniform(Si),

µj|µj−1, ϕω ∼ Normal
(
µj−1, ϕ

−1
ω

)
,

µ0 ∼ Normal(m0, C0),

ϕj
ind∼ Gamma

(
aj
2
,
bj
2

)
,

ϕω ∼ Gamma

(
aω
2
,
bω
2

)
,

zi
ind∼ Bernoulli(wz),

µL(Si)
−1 = (2π)−

d
2

[
d∏

j=1

ϕj

] 1
2

exp

{
−1

2
F−1
G

(
γgi(n1+1)−1

)}
.

(B.1)

for i ∈ {1, . . . , n} and j ∈ {1, . . . , d}, where n1 =
∑n

i=1 zi, FG represents the dis-

tribution function of a Gamma
(
d
2
, 1
2

)
, gi is the correction function considering the

assumed distribution for each sample element and µL is the Lebesgue measure.

We also denote µ the collection of scalars (µ0, . . . , µd), ϕ the d-dimensional vector

(ϕ1, . . . , ϕd)
′ and z the collection of indicators z1, . . . , zn. Here, the real scalar m0,

the positive scalars C0, a1, . . . , ad, b1, . . . , bd, aω, bω and the scalars wz, γ ∈ (0, 1)

are hyperparameters that require specification. It is also worth restating that the

function diag : R → Mn×n(R), where Mn×n(R) is the set of all real valued n × n
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matrices, is defined as

diag(x) = diag ((x1, . . . , xn)
′) =



x1 0 · · · 0 0

0 x2 · · · 0 0
...

... . . . ...
...

0 0 · · · xn−1 0

0 0 · · · 0 xn


, (B.2)

for every vector x = (x1, . . . , xn)
′ ∈ Rn. Furthermore, we assume the dependence

structure necessary to obtain the following prior factorization:

π(µ, ϕ, ϕω, z)
ind
= π(µ, ϕω)π(ϕ)π(z) = π(µ|ϕω)π(ϕω)π(ϕ)π(z)

ind
=

d∏
j=1

[
π(µj|µj−1, ϕω)

]
π(µ0)π(ϕω)

d∏
j=1

[
π(ϕj)

] n∏
i=1

[
π(zi)

]
.

(B.3)

Next, assuming an observed sample y, a collection of d-dimensional vector y1, . . . , yn,

and representing our parameters Θ = (µ, ϕ, ϕω, z), we can use Bayes’ Theorem to

express the posterior as

π(Θ|y) Bayes
=

π(Θ)π(y|Θ)∫
π(Θ)π(y|Θ) dΘ

∝ π(Θ)π(y|Θ)

= π(µ, ϕ, ϕω, z)π(y|µ, ϕ, ϕω, z)

=
d∏

j=1

[
π(µj|µj−1, ϕω)

]
π(µ0)π(ϕω)

d∏
j=1

[
π(ϕj)

] n∏
i=1

[
π(zi)

]

×
n∏

i=1

[
π(yi|µ, ϕ, zi = 1)

]zi n∏
i=1

[
π(yi|ϕ, zi = 0, z−i)

]1−zi

(B.4)

Then, with the expression for the posterior acquired, we begin obtaining the full

conditional for µ by noticing that, given ϕ, ϕω and z, we can rewrite the model

in the form of a dynamic linear model with known evolution matrices, covariance

matrices and drift vectors as follows:

Y 1
t = F 1

t θt + ν1
t , ν1

t
ind∼ Normaln1

(
v1t , V

1
t

)
,

θt = Gtθt−1 + ωt, ωt
ind∼ Normaln(wt,Wt),

θ0 ∼ Normaln(m0, C0),

(B.5)

where n1 =
∑n

i=1 zit, θt = µt, the superscript 1 indicates that only the rows i such

that zi = 1 are considered from the corresponding column vectors/matrices and we
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have

Ft =


1
...

1


n×1

, Vt = diag(ϕ)−1, vt =


0
...

0


n×1

,

Gt =
[
1
]
1×1

, Wt =
[
ϕ−1
ω

]
1×1

, wt =
[
0
]
1×1

.

(B.6)

Then, we are able to apply the FFBS algorithm described in Chapter 15 of West &

Harrison (1997) to directly sample from the full conditional of µ.

As a side note, since the filtering component does not depend on location param-

eters, the full conditional of µ is the usual full conditional obtained for the original

random walk model, with the modification of only taking the observations from the

main component in consideration, i.e., it considers all of the yi’s such that zi = 0 as

if they were not observed.

Then, considering the full conditional of ϕ, notice that

π(ϕ|µ, ϕω, z, y) ∝ π(µ, ϕ, ϕω, z|y)

∝
d∏

j=1

[
π(ϕj)

] n∏
i=1

[
π(yi|µ, ϕ, zi = 1)

]zi n∏
i=1

[
π(yi|ϕ, zi = 0, z−i)

]1−zi

∝
d∏

j=1

[
ϕ

aj
2
−1

j exp

{
−bj

2
ϕj

}] n∏
i=1

(2π)− d
2

[
d∏

j=1

ϕj

] 1
2

exp

{
−1

2

d∑
j=1

ϕj(yij − µj)
2

}zi

×
n∏

i=1

(2π)− d
2

[
d∏

j=1

ϕj

] 1
2

exp

{
−1

2
F−1
G

(
γgi(n1+1)−1

)}1−zi

∝
d∏

j=1

[
ϕ

aj
2
−1

j ϕ
n1
2
j ϕ

n−n1
2

j exp

{
−bj

2
ϕj

}
exp

{
−1

2

n∑
i=1

I{zi=1}ϕj(yij − µj)
2

}]

∝
d∏

j=1

[
ϕ

aj+n

2
−1

j exp

{
−1

2

[
bj +

n∑
i=1

I{zi=1}(yij − µj)
2

]
ϕj

}]
,

(B.7)

and thus, identifying the distribution’s kernel we have

ϕj|µ, ϕω, z, y
ind∼ Gamma

(
āj
2
,
b̄j
2

)
, (B.8)

where āj = aj + n and b̄j = bj +
∑n

i=1 I{zi=1}(yij − µj)
2.
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Now, taking the full conditional of ϕω into consideration, notice that

π(ϕω|µ, ϕ, z, y) ∝ π(µ, ϕ, ϕω, z|y)

∝
d∏

j=1

[
π(µj|µj−1, ϕω)

]
π(ϕω)

∝
d∏

j=1

[
ϕ

1
2
ω exp

{
−ϕω

2
(µj − µj−1)

2

}]
ϕ

aω
2
−1

ω exp

{
−bω

2
ϕω

}

= ϕ
aω
2
−1

ω ϕ
d
2
ω exp

{
−bω

2
ϕω

}
exp

{
−ϕω

2

d∑
j=1

(µj − µj−1)
2

}

= ϕ
aω+d

2
−1

ω exp

{
−1

2

[
bω +

d∑
j=1

(µj − µj−1)
2

]
ϕω

}
(B.9)

and thus, identifying the distribution’s kernel we have

ϕω|µ, ϕ, z, y ∼ Gamma

(
āω
2
,
b̄ω
2

)
, (B.10)

where āω = aω + d and b̄ω = bω +
∑d

j=1(µj − µj−1)
2.

At last, for the full conditional of z notice that

π(zk|µ, ϕ, ϕω, z−k, y) ∝ π(µ, ϕ, ϕω, z|y)

∝
n∏

i=1

[
π(zi)

] n∏
i=1

[
π(yi|µ, ϕ, zi = 1)

]zi n∏
i=1

[
π(yi|ϕ, zi = 0, z−i)

]1−zi

=
n∏

i=1

[
wzi

z (1− wz)
1−zi

] n∏
i=1

(2π)− d
2

[
d∏

j=1

ϕj

] 1
2

exp

{
−1

2

d∑
j=1

ϕj(yij − µj)
2

}zi

×
n∏

i=1

(2π)− d
2

[
d∏

j=1

ϕj

] 1
2

exp

{
−1

2
F−1
G

(
γgi(n1+1)−1

)}1−zi

∝
n∏

i=1

[
wzi

z (1− wz)
1−zi

] n∏
i=1

[
exp

{
−1

2

d∑
j=1

ϕj(yij − µj)
2

}]zi

× exp
{
−n0

2
F−1
G

(
γg(n1+1)−1

)}
∝

[
wzk

z (1− wz)
1−zk

]
exp

{
−zk

2

d∑
j=1

ϕj(yij − µj)
2

}

× exp

{
−n−k

0 + 1− zk
2

F−1
G

(
γg(n−k

1 +zk+1)−1
)}

(B.11)
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where n−k
j =

∑
i ̸=k I{zi=j} and g = gi (recall that all of the observations are identi-

cally distributed). Since we will use the Gumbel-max trick, see Huijben et al. (2022)

for a description of the method, to sample from the resulting categorical distribu-

tion, we will also calculate the logarithm of the non-normalized probabilities for each

indicator function. So, for k ∈ {1, . . . , n}, we have

ln

[
π(zk = 1|µ, ϕ, ϕω, z−k, y)

]
= ln(wz)−

1

2

d∑
j=1

ϕj(yij − µj)
2 + C (B.12)

and

ln

[
π(zk = 0|µ, ϕ, ϕω, z−k, y)

]
= ln(1− wz)

− 1

2

[
(n−k

0 + 1)F−1
G

(
γgi(n

−k
1 +1)−1

)
− n−k

0 F−1
G

(
γgi(n

−k
1 +2)−1

)]
+ C

= ln(1− wz)−
1

2
F−1
G

(
γ(n−k

1 +1)−1
)
+ C.

(B.13)

It is worth pointing out that simplified expression for the equation B.13 is due to

proposition A.4, as detailed in section A.2.

B.2 MULTIVARIATE NORMAL MIXTURE MODEL

Let us consider the filtering model with a multivariate normal mixture model as

the main component. We can represent this model, including all of the chosen prior

distributions for each parameter, in the hierarchical form given by

Xi|µj,Ωj, yi = j, zi = 1
ind∼ Normald(µj,Ω

−1
j )

Xi|µ,Ω, z−i, yi = j, zi = 0
ind∼ Uniforme(Si)

µj|Ωj
ind∼ Normald(θj, λ

−1
j Ω−1

j )

Ωj
ind∼ Wishart(νj, Vj)

yi|wy
ind∼ Categorica(wy)

wy ∼ Dirichlet(α)

zi
ind∼ Categorica(wz)

µL(Si)
−1 = (2π)−

d
2 [det(Ωj)]

1
2 exp

{
−1

2
F−1
G

(
γgi(n·1+1)−1

)}
,

(B.14)
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for i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}, where n·k =
∑n

i=1 I{zi=k}, FG represents the

distribution function of a Gamma
(
d
2
, 1
2

)
, gi is the correction function considering

the assumed distribution for the i-th observation and µL is the Lebesgue measure.

We also denote µ the collection of d-dimensional vectors µ1, . . . , µm, Ω the collec-

tion of d× d matrices Ω1, . . . ,Ωm, y the collection of class indicators y1, . . . , yn and

z the collection of anomaly indicators z1, . . . , zn. Here, the d-dimensional vectors

θ1, . . . , θm, the positive scalars λ1, . . . , λm, the scalar ν1, . . . , νm > d − 1, the d × d

matrices V1, . . . , Vm, the m-dimensional vector α = (α1, . . . , αn)
′, the prior anomaly

probability wz and the scalar γ ∈ (0, 1) are hyperparameters that require specifi-

cation. Furthermore, we assume the dependence structure necessary to obtain the

following prior factorization:

π(µ,Ω, wy, y, z)
ind
= π(µ,Ω)π(y, wy)π(z)

ind
=

n∏
j=1

[
π(µj,Ωj)

]
π(y|wy)π(wy)π(z)

ind
=

m∏
j=1

[
π(µj|Ωj)π(Ωj)

] n∏
i=1

[
π(yi|wy)π(zi)

]
π(wy).

(B.15)

Next, assuming an observed sample x from this model, that is a collection of d-

dimensional vectors x1, . . . , xn, and representing our parameters as Θ = (µ,Ω, wy, y, z),

we can use Bayes’s Theorem to express the posterior as

π(Θ|x) Bayes
=

π(Θ)π(x|Θ)∫
π(Θ)π(x|Θ) dΘ

∝ π(Θ)π(y|Θ)

= π(µ,Ω, wy, y, z)π(x|µ,Ω, wy, y, z)

ind
=

n∏
i=1

[
π(xi|µ,Ω, wy, yi, z)π(yi|wy)π(zi)

] m∏
j=1

[
π(µj|Ωj)π(Ωj)

]
π(wy)

ind
=

m∏
j=1

1∏
k=0

n∏
i=1

[
π(xi|µ,Ω, wy, yi = j, zi = k, z−i)π(yi = j|wy)π(zi = k)

]I{yi=j}I{zi=k}

×
m∏
j=1

[
π(µj|Ωj)π(Ωj)

]
π(wy).

(B.16)

To start the process of identifying the full conditionals, we will first consider a

blocking technique, briefly presented in section 2.2.4, to improve the mixing propri-

eties by sampling from the joint conditional π(µ,Ω|y, z, wy, x). This can be accom-
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plished using the product rule decomposition

π(µ,Ω|wy, y, z, x) = π(µ|Ω, wy, y, z, x)π(Ω|wy, y, z, x), (B.17)

i.e., by sequentially sampling

Ω∗ ∼ π(Ω|wy, y, z, x) (B.18)

and then

µ∗ ∼ π(µ|Ω∗, wy, y, z, x). (B.19)

to obtain a sample (µ∗,Ω∗) from the desired distribution. So we begin obtaining the

full conditional for µ by combining the quadratic form from the likelihood with the

one from the prior, as shown below:∑
i∈Cj1

(xi − µj)
′Ωj(xi − µj) + λj(µj − θj)

′Ωj(µj − θj)

=
∑
i∈Cj1

x′
iΩjxi −

∑
i∈Cj1

x′
iΩjµj − µ′

jΩj

∑
i∈Cj1

xi + nj1µ
′
jΩjµj

+ λjµ
′
jΩjµj − λjθ

′
jΩjµj − λjµ

′
jΩjθj + λjθ

′
jΩjθj

= (λj + nj1)µ
′
jΩjµj − µ′

jΩj

( ∑
i∈Cj1

xi + λjθj

)
−
( ∑

i∈Cj1

xi + λjθj

)′

Ωjµj

+
∑
i∈Cj1

x′
iΩjxi + λjθ

′
jΩjθj

=
(
µj − θ̄j

)′
Ω̄j

(
µj − θ̄j

)
+

∑
i∈Cj1

x′
iΩjxi + λjθ

′
jΩjθj − θ̄′jΩ̄j θ̄j,

(B.20)

where Ω̄j = (λj + nj1)Ωj, θ̄j = 1
λj+nj1

[
λjθj +

∑
i∈Cj1

xi

]
, Cjk = {i ∈ {1, . . . , n} :

yi = j, zi = k} and njk =
∑n

i=1 I{yi=j}I{zi=k}. With the new quadratic form obtained,
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notice that

π(µ|Ω, wy, y, z, x)

∝
m∏
j=1

∏
i∈Cj1

[
π(xi|µj,Ωj, yi = j, zi = 1)

] m∏
j=1

[
π(µj|Ωj)

]

∝
m∏
j=1

exp

−1

2

∑
i∈Cj1

(xi − µj)
′Ωj(xi − µj)


m∏
j=1

exp

{
−1

2
λj(µj − θj)

′Ωj(µj − θj)

}

=
m∏
j=1

exp

−1

2

∑
i∈Cj1

(xi − µj)
′Ωj(xi − µj) + λj(µj − θj)

′Ωj(µj − θj)


∝

m∏
j=1

exp

{
−1

2

(
µj − θ̄j

)′
Ω̄j

(
µj − θ̄j

)}
,

(B.21)

and thus, identifying the distribution’s kernel we have

µj|Ω, wy, y, z, x
ind∼ Normald

(
θ̄j, Ω̄

−1
j

)
. (B.22)

As a side note, since the filtering component does not depend on location parameters,

the full conditional of µ is the usual full conditional obtained for the multivariate

normal mixture model, with the modification of only taking the observations from

the main component in consideration, i.e., it considers all of the xi’s such that zi = 0

as if they were not observed. Next, notice that

π(Ω|wy, y, z, x) =

∫
π(Ω, µ|wy, y, z, x) dµ

=

∫ m∏
j=1

1∏
k=0

n∏
i=1

[
π(xi|µ,Ω, wy, yi = j, zi = k)

]I{yi=j}I{zi=k} m∏
j=1

[
π(µj|Ωj)π(Ωj)

]
dµ

∝
∫ m∏

j=1

∏
i∈Cj1

[
(2π)−

d
2 [det(Ωj)]

1
2 exp

{
−1

2
(xi − µj)

′Ωj(xi − µj)

}]

×
m∏
j=1

∏
i∈Cj0

[
(2π)−

d
2 [det(Ωj)]

1
2 exp

{
−1

2
F−1
G

(
γgi(n·1+1)−1

)}]

×
m∏
j=1

[
(2π)−

d
2 [det(Ωj)]

1
2 exp

{
−λj

2
(µj − θj)

′Ωj(µi − θj)

}]

×
m∏
j=1

[
[det(Ωj)]

νj−d−1

2 exp

{
−1

2
tr (ΩjVj)

}]
dµ

∝
∫ m∏

j=1

∏
i∈Cj1

[
exp

{
−1

2
(xi − µj)

′Ωj(xi − µj)

}]
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×
m∏
j=1

[
[det(Ωj)]

1
2 exp

{
−λj

2
(µj − θj)

′Ωj(µi − θj)

}]
dµ

×
m∏
j=1

[
[det(Ωj)]

νj+nj·−d−1

2 exp

{
−1

2
tr (ΩjVj)

}]

∝
m∏
j=1

∫ [
(2π)−

d
2

[
det(Ω̄j)

] 1
2 exp

{
−1

2
(µj − θ̄j)

′Ω̄j(µi − θ̄j)

}]
dµj︸ ︷︷ ︸

=1, density of a Normald(µ̄j ,Ω̄
−1
j )

×
m∏
j=1

exp
−1

2

∑
i∈Cj1

x′
iΩjxi + λjθ

′
jΩjθj − θ̄′jΩ̄j θ̄j




×
m∏
j=1

[
[det(Ωj)]

νj+nj·−d−1

2 exp

{
−1

2
tr (ΩjVj)

}]

=
m∏
j=1

[det(Ωj)]
νj+nj·−d−1

2 exp

−1

2
tr

Ωj

Vj +
∑
i∈Cj1

xix
′
i + λjθjθ

′
j − λ̄j θ̄j θ̄

′
j




=
m∏
j=1

[
[det(Ωj)]

ν̄j−d−1

2 exp

{
−1

2
tr
(
ΩjV̄j

)}]
, (B.23)

and thus, identifying the distribution’s kernel we have

Ωj|µ, y, z, wy, x
ind∼ Wishart

(
ν̄j, V̄j

)
, (B.24)

where ν̄j = νj + nj·, V̄j = Vj +
∑

i∈Cj1
xix

′
i + λjθjθ

′
j − λ̄j θ̄j θ̄

′
j, λ̄j = λj + nj1, θ̄j =

1
λj+nj1

[
λjθj +

∑
i∈Cj1

xi

]
and nj· =

∑n
i=1 I{yi=j}.

Now, for the full conditional of wy, notice that

π(wy|µ,Ω, y, z, x)

∝
m∏
j=1

n∏
i=1

[
π(yi = j|wy)

]I{yi=j}
π(wy) ∝

m∏
j=1

w
nj·
yj w

αj−1
yj =

m∏
j=1

w
αj+nj·−1
yj ,

(B.25)

and thus, identifying the distribution’s kernel we have

wy|µ,Ω, y, z, x
ind∼ Dirichlet (ᾱ) , (B.26)

where ᾱ = (ᾱ1, . . . , ᾱm)
′ = (α1 + n1·, . . . , αm + nm·)

′.

And at last, for the full conditional of y and z we will once more consider

blocking to improve the chain mixing properties by sampling from the joint full
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conditional π(yl, zl|µ,Ω, wy, y−l, z−l, x), where y−l = (y1, . . . , yl−1, yl+1, . . . , yn)
′ and

z−l = (z1, . . . , zl−1, zl+1, . . . , zn)
′.

π(yl, zl|µ,Ω, wy, y−l, z−l, x)

∝
m∏
j=1

1∏
k=0

n∏
i=1

[
π(xi|µ,Ω, yi = j, zi = k)π(yi = j|wy)π(zi = k)

]I{yi=j}I{zi=k}

∝
m∏
j=1

n∏
i=1

[
wyjwzϕd(xi|µj,Ω

−1
j )

]I{yi=j}I{zi=1}
[
wyj(1− wz)µL(Si)

−1

]I{yi=j}I{zi=0}

=
m∏
j=1

n∏
i=1

[
wyjwz(2π)

− d
2 [det(Ωj)]

1
2 exp

{
−1

2
(xi − µj)

′Ωj(xi − µj)

}]I{yi=j}I{zi=1}

×
m∏
j=1

n∏
i=1

[
wyj(1− wz)(2π)

− d
2 [det(Ωj)]

1
2 exp

{
−1

2
F−1
G

(
γgi(n·1+1)−1

)}]I{yi=j}I{zi=0}

∝
m∏
j=1

[
wyjwz [det(Ωj)]

1
2 exp

{
−1

2
(xl − µj)

′Ωj(xl − µj)

}]I{yl=j}I{zl=1}

×
m∏
j=1

n∏
i=1

[
wyj(1− wz) [det(Ωj)]

1
2

]I{yi=j}I{zi=0}

×
[
exp

{
−1

2
F−1
G

(
γgi(n−l

·1 +I{zl=1}+1)
−1)}]n−l

·0 +I{zl=0}

∝
m∏
j=1

[
wyj [det(Ωj)]

1
2

]I{yl=j}
w

I{zl=1}
z (1− wz)

I{zl=0}

× exp

{
−
I{zl=1}

2
(xl − µyl)

′Ωyl(xl − µyl)

}
× exp

{
−
n−l
·0 + I{zl=0}

2
F−1
G

(
γg(n−l

·1 +I{zl=1}+1)
−1)}

,

(B.27)

where n−l
·k =

∑
i ̸=l I{zi=k} and g = gi (recall that equality is attained because for

the normal distribution the correction function does not depend on the location or

scale parameters, so g is the same regardless of the class attribution yi). Since we

will use the Gumbel-max trick, see Huijben et al. (2022) for a description of the

method, to sample from the resulting categorical distribution, we will also calculate

the logarithm of the non-normalized probabilities for each possible category. So, for
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j ∈ {1, . . . ,m}, we have

ln

[
π(yl = j, zl = 1|µ,Ω, wy, y−l, z−l, x)

]
= ln(wyj) +

1

2
ln [det(Ωj)] + ln(wz)−

1

2
(xl − µj)

′Ω−1
j (xl − µj) + C,

(B.28)

and

ln

[
π(yl = j, zl = 0|µ,Ω, wy, y−l, z−l, x)

]
= ln(wyj) +

1

2
ln [det(Ωj)] + ln(1− wz)

− 1

2

[
(n−l

·0 + 1)F−1
G

(
γgi(n−l

·1 +1)
−1)

− n−l
·0 F

−1
G

(
γgi(n−l

·1 +2)
−1)]

+ C

= ln(wyj) +
1

2
ln [det(Ωj)] + ln(1− wz)−

1

2
F−1
G

(
γ(n

−l
·1 +1)

−1)
+ C.

(B.29)

It is worth pointing out that simplified expression for the equation B.29 is due to

proposition A.4, as detailed in section A.2.

B.3 DYNAMIC IMPROVEMENT MODEL

Let us consider the filtering model with the dynamic improvement model of

Sartório (2018) as the main component. We can represent this model, including all

of the chosen prior distributions for each parameter, in the hierarchical form given
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by

Yit|α, β∗
t , κt, ϕi, zit = 1

ind∼ Normal(αi + βitκt, ϕ
−1
i ),

Yit|ϕi, z−(it), zit = 0,
ind∼ Uniform(Sit),

κt|κt−1, δt−1, ϕκ
ind∼ Normal(κt−1 + δt−1, ϕ

−1
κ ),

δt|δt−1, ϕδ
ind∼ Normal(δt−1, ϕ

−1
δ ),

β∗
t |β∗

t−1, ϕβ∗ ,
ind∼ Normal(β∗

t−1, diag(ϕβ∗)−1),

αi
ind∼ Normal(µαi

, ϕ−1
αi
),κ0

δ0

 ∼ Normal2(m0, C0),

β∗
0 ∼ Normaln(m

∗
0, C

∗
0),

ϕ
ind∼ Gamma

(
ai
2
,
bi
2

)
,

ϕκ
ind∼ Gamma

(
aκ
2
,
bκ
2

)
,

ϕδ
ind∼ Gamma

(
aδ
2
,
bδ
2

)
,

ϕβ∗
i

ind∼ Gamma

(
aβi

2
,
bβi

2

)
,

zit|z(i−1)t, ρ ∼ Bernoulli

(
z(i−1)tρ+ (1− z(i−1)t)(1− ρ)

)
,

z(−1)t
ind∼ Bernoulli(ρ0),

ρ ∼ Beta(a, b),

µL(Sit)
−1 = (2π)−

1
2ϕ

1
2
i exp

{
−1

2
F−1
G

(
γgit(n··1+1)−1

)}
.

(B.30)

for i ∈ {0, . . . , n} representing the age and t ∈ {1, . . . , T} representing a time

index, where n··k =
∑n

i=0

∑T
t=1 I{zit=k}, FG represents the distribution function of a

Gamma
(
1
2
, 1
2

)
, git is the correction function considering the assumed distribution

for the mortality rate at age i and year given by index t and µL is the Lebesgue

measure. We also denote α the (n + 1)-dimensional vector (α0, . . . , αn)
′, β∗ the

collection of n-dimensional vectors β∗
0 , . . . , β

∗
T , β the collection of (n+1)-dimensional

vectors β0, . . . , βT , κ the collection of real valued scalars κ0, . . . , κT , δ the collection

of real valued scalars δ0, . . . , δT , ϕ the (n+1)-dimensional vector with positive entries

(ϕ0, . . . , ϕn)
′, ϕβ∗ the n-dimensional vector with positive entries (ϕβ∗

1
, . . . , ϕβ∗

n
)′, z the
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(n+ 2)× T indicator matrix such that [z]it = zit (here the rows’ index starts at −1

and the columns’ at 1) and z−(it) the collection of all entries of z with the exception

of zit. Here, the (n+ 1)-dimensional vector µα = (µα0 , . . . , µαn)
′, the (n+ 1)-vector

with positive entries ϕα = (ϕα0 , . . . , ϕαi
)′, the positive scalars a0, . . . , an, b0, . . . , bn,

aβ1 , . . . , aβn , bβ1 , . . . , bβn , aκ, bκ, aδ, bδ, the 2-dimensional vector m0, the 2×2 matrix

C0, the n-dimensional vector m∗
0, the n× n matrix C∗

0 , the positive scalars a, b and

the scalars ρ0, γ ∈ (0, 1) are hyperparameters that require specification. It is also

worth restating that

βt =



β0t

β1t

β2t

...

β(n−1)t

βnt


=



n+ 1

0

0
...

0

0


+



−1 −1 · · · −1 −1

1 0 · · · 0 0

0 1 · · · 0 0
...

... . . . ...
...

0 0 · · · 1 0

0 0 · · · 0 1


β∗
t . (B.31)

and that the function diag : Rn → Mn×n(R), where Mn×n(R) is the set of all real

valued n× n matrices, is defined as

diag(x) =



x1 0 · · · 0 0

0 x2 · · · 0 0
...

... . . . ...
...

0 0 · · · xn−1 0

0 0 · · · 0 xn


, (B.32)
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for every vector x = (x1, . . . , xn) ∈ Rn. Furthermore, we assume the dependence

structure necessary to obtain the following prior factorization:

π(α, β∗, κ, δ, ϕ, ϕβ∗ , ϕκ, ϕδ, z, ρ)

ind
= π(α)π(β∗, ϕβ∗)π(κ, δ, ϕκ, ϕδ)π(ϕ)ϕ(z, ρ)

ind
=

n∏
i=0

[
π(αi)

]
π(β∗|ϕβ∗)π(ϕβ∗)π(κ, δ|ϕκ, ϕδ)π(ϕκ, ϕδ)

n∏
i=0

[
π(ϕi)

]
ϕ(z|ρ)π(ρ)

ind
=

n∏
i=0

[
π(αi)

] T∏
t=1

[
π(β∗

t |β∗
t−1, ϕβ∗)

]
π(β∗

0)
n∏

i=1

[
π(ϕβ∗

i
)

]

×
T∏
t=1

[
π(κt, δt|κt−1, δt−1, ϕκ, ϕδ)

]
π(κ0, δ0)π(ϕκ, ϕδ)

n∏
i=0

[
π(ϕi)

]

×
T∏
t=1

[
n∏

i=0

[
ϕ(zit|z(i−1)t, ρ)

]
π(z(−1)t)

]
π(ρ)

ind
=

n∏
i=0

[
π(αi)

] T∏
t=1

[
π(β∗

t |β∗
t−1, ϕβ∗)

]
π(β∗

0)
n∏

i=1

[
π(ϕβ∗

i
)

] T∏
t=1

[
π(κt|κt−1, δt−1, ϕκ)

]

×
T∏
t=1

[
π(δt|δt−1, ϕδ)

]
π(κ0, δ0)π(ϕκ)π(ϕδ)

n∏
i=0

[
π(ϕi)

]

×
T∏
t=1

[
n∏

i=0

[
ϕ(zit|z(i−1)t, ρ)

]
π(z(−1)t)

]
π(ρ).

(B.33)

Next, assuming an observed (n + 1) × T sample matrix y of mortality rates, and

representing our parameters Θ = (α, β∗, κ, δ, ϕ, ϕβ∗ , ϕκ, ϕδ, z, ρ), we can use Bayes’
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Theorem to express the posterior as

π(Θ|y) Bayes
=

π(Θ)π(y|Θ)∫
π(Θ)π(y|Θ) dΘ

∝ π(Θ)π(y|Θ)

= π(α, β∗, κ, δ, ϕ, ϕβ∗ , ϕκ, ϕδ, z, ρ)π(y|α, β∗, κ, δ, ϕ, ϕβ∗ , ϕκ, ϕδ, z, ρ)

=
n∏

i=0

[
π(αi)

] T∏
t=1

[
π(β∗

t |β∗
t−1, ϕβ∗)

]
π(β∗

0)
n∏

i=1

[
π(ϕβ∗

i
)

]

×
T∏
t=1

[
π(κt|κt−1, δt−1, ϕκ)

] T∏
t=1

[
π(δt|δt−1, ϕδ)

]
π(κ0, δ0)π(ϕκ)π(ϕδ)

×
n∏

i=0

[
π(ϕi)

] T∏
t=1

[
n∏

i=0

[
ϕ(zit|z(i−1)t, ρ)

]
π(z(−1)t)

]
π(ρ)

×
n∏

i=0

T∏
t=1

[
π(yi|αi, β

∗
t , κt, ϕi, zit = 1)

]zit n∏
i=0

T∏
t=1

[
π(yi|ϕi, z−(it), zit = 0)

]1−zit

.

(B.34)

Then, with the expression for the posterior acquired, we begin obtaining the full

conditional for α by combining the quadratic form from the likelihood with the one

from the prior, as shown below:

ϕαi
(αi − µαi

)2 + ϕi

T∑
t=1

zit(yit − αi − βitκt)
2

= ϕαi
(α2

i − 2αµαi
µ2
αi
) + ϕi

T∑
t=1

zit(αi − (yit − βitκt))
2

= ϕαi
α2
i − 2ϕαi

αiµαi
+ ϕαi

µ2
αi
+ ϕi

T∑
t=1

zit(α
2
i − 2αi(yit − βitκt) + (yit − βitκ)

2)

= ϕαi
α2
i − 2ϕαi

αiµαi
+ ϕαi

µ2
αi
+ ϕini·1α

2
i − 2ϕiαi

T∑
t=1

zityit + 2ϕiαi

T∑
t=1

zitβitκt︸ ︷︷ ︸
=0

+ ϕi

T∑
t=1

zit(yit − βitκt)
2

= (ϕαi
+ ϕini·1)α

2
i − 2αi(ϕini·1ȳi·1 + ϕαi

µαi
) + ϕi

T∑
t=1

zit(yit − βitκt)
2 + ϕαi

µ2
αi

= (ϕαi
+ ϕini·1)

(
αi −

ϕαi
µαi

+ ϕini·1ȳi·1
ϕαi

+ ϕini·1

)2

+ ϕi

T∑
t=1

zit(yit − βitκt)
2 + ϕαi

µ2
αi

− (ϕαi
+ ϕini·1)

(
ϕαi

µαi
+ ϕini·1ȳi·1

ϕαi
+ ϕini·1

)2



138

= ϕ̄αi
(αi − µ̄αi

)2 + ϕi

T∑
t=1

zit(yit − βitκt)
2 + ϕαi

µ2
αi
− ϕ̄αi

µ̄2
αi

(B.35)

where ni·1 =
∑T

t=1 zit, ȳi·1 =
1

ni·1

∑T
t=1 zityit, ϕ̄αi

= ϕαi
+ϕini·1 and µ̄αi

=
ϕαiµαi+ϕini·1ȳi·1

ϕαi+ϕini·1
.

With the new quadratic form obtained, notice that

π(α|β∗, κ, δ, ϕ, ϕβ∗ , ϕκ, ϕδ, z, ρ, y) ∝ π(α, β∗, κ, δ, ϕ, ϕβ∗ , ϕκ, ϕδ, z, ρ|y)

∝
n∏

i=0

[
π(αi)

] n∏
i=0

T∏
t=1

[
π(yi|αi, β

∗
t , κt, ϕi, zit = 1)

]zit
∝

n∏
i=0

[
(2π)−

1
2ϕ

1
2
αi exp

{
−ϕαi

2
(αi − µαi

)2
}]

×
n∏

i=0

T∏
t=1

[
(2π)−

1
2ϕ

1
2
i exp

{
−ϕi

2
(yit − αi − βitκt)

2

}]zit
∝

n∏
i=0

[
exp

{
−1

2

[
ϕαi

(αi − µαi
)2 + ϕi

T∑
t=1

zit(yit − αi − βitκt)
2

]}]

∝
n∏

i=0

[
exp

{
− ϕ̄αi

2
(αi − µ̄αi

)2
}]

,

(B.36)

and thus, identifying the distribution’s kernel we have

αi|β∗, κ, δ, ϕ, ϕβ∗ , ϕκ, ϕδ, z, ρ, y
ind∼ Normal

(
µ̄αi

, ϕ̄−1
αi

)
. (B.37)

Now, for the full conditional of β∗ we can notice that, given α, κ, ϕ, ϕβ∗ and

z, we can rewrite the model in the form of a dynamic linear model with known

evolution matrices, covariance matrices and drift vectors as follows:

Y 1
t = (F ∗

t )
1θ∗t + (ν∗

t )
1, (ν∗

t )
1 ind∼ Normaln·t1

(
(v∗t )

1, (V ∗
t )

1
)
,

θ∗t = G∗
t θ

∗
t−1 + ω∗

t , ω∗
t

ind∼ Normaln(w
∗
t ,W

∗
t ),

θ∗0 ∼ Normaln(m
∗
0, C

∗
0),

(B.38)

where n·t1 =
∑n

i=0 zit, θ
∗
t = β∗

t , the superscript 1 indicates that only the rows i such

that zit = 1 are considered from the corresponding column vectors/matrices and we
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have

F ∗
t = κt



−1 −1 · · · −1 −1

1 0 · · · 0 0

0 1 · · · 0 0
...

... . . . ...
...

0 0 · · · 1 0

0 0 · · · 0 1


(n+1)×n

, G∗
t =



1 0 · · · 0 0

0 1 · · · 0 0
...

... . . . ...
...

0 0 · · · 1 0

0 0 · · · 0 1


n×n

,

v∗t = α + κt


(n+ 1)

0
...

0


(n+1)×1

, w∗
t =


0

0
...

0


n×1

,

(B.39)

V ∗
t = diag(ϕ)−1 and W ∗

t = diag(ϕβ∗)−1. Then, we are able to apply the FFBS

algorithm described in Chapter 15 of West & Harrison (1997) to directly sample

from the full conditional of β∗. It is worth mentioning that in the case where n1
·t = 0

for some t, we can still obtain a sample using the Kalman filter adapted for missing

observations in the forward filtering part of the FFBS algorithm. For a precise

description we direct the reader to Chapter 4 of West & Harrison (1997).

Next, for the joint full conditional of κ and δ we can similarly notice that, given α,

β∗, ϕ, ϕκ, ϕδ and z, we can rewrite the model in the form of a dynamic linear model

with known evolution matrices, covariance matrices and drift vectors as follows:

Y 1
t = F 1

t θt + ν1
t , ν1

t
ind∼ Normaln·t1

(
v1t , V

1
t

)
,

θt = Gtθt−1 + ωt, ωt
ind∼ Normaln(wt,Wt),

θ0 ∼ Normaln(m0, C0),

(B.40)

where n·t1 =
∑n

i=0 zit, θt = (κt, δt)
′, the superscript 1 indicates that only the rows

i such that zit = 1 are considered from the corresponding column vectors/matrices

and we have

Ft = κt


β0t 0
...

...

βnt 0


(n+1)×2

, Gt =

1 1

0 1


2×2

, (B.41)
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vt = α, wt = (0, 0)′, Vt = diag(ϕ)−1 and Wt = diag((ϕκ, ϕδ)
′)−1. Then, we again

are able to apply the FFBS algorithm described in Chapter 15 of West & Harrison

(1997) to directly sample from the joint full conditional of κ and δ. It is worth

mentioning that in the case where n·t1 = 0 for some t, we can still obtain a sample

using the Kalman filter adapted for missing observations in the forward filtering

part of the FFBS algorithm. For a more precise description we direct the reader to

Chapter 4 of West & Harrison (1997).

As a side note, since the filtering component does not depend on location pa-

rameters, the full conditionals of α, β∗ and κ are the usual full conditionals obtained

for the original dynamic improvement model, with the modification of only taking

the observations from the main component in consideration, i.e., it considers all of

the yit’s such that zit = 0 as if they were not observed.

Then, considering the full conditional of ϕ, notice that

π(ϕ|α, β∗, κ, δ, ϕβ∗ , ϕκ, ϕδ, z, ρ, y) ∝ π(α, β∗, κ, δ, ϕ, ϕκ, ϕδ, ϕβ∗ , z, ρ|y)

∝
n∏

i=0

[
π(ϕi)

] n∏
i=0

T∏
t=1

[
π(yi|αi, β

∗
t , κt, ϕi, zit = 1)

]zit
×

n∏
i=0

T∏
t=1

[
π(yi|ϕi, z−(it), zit = 0)

]1−zit

∝
n∏

i=0

[
ϕ

ai
2
−1

i exp

{
−bi
2
ϕi

}] n∏
i=0

T∏
t=1

[
(2π)−

1
2ϕ

1
2
i exp

{
−ϕi

2
(yit − αi − βitκt)

2

}]zit
×

n∏
i=0

T∏
t=1

[
(2π)−

1
2ϕ

1
2
i exp

{
−1

2
F−1
G

(
γgit(n··1+1)−1

)}]1−zit

∝
n∏

i=0

[
ϕ

ai
2
−1

i exp

{
−bi
2
ϕi

}
ϕ

ni·1
2

i ϕ
T−ni·1

2
i exp

{
−ϕi

2

T∑
t=1

zit(yit − αi − βitκt)
2

}]

∝
n∏

i=0

[
ϕ

ai+T

2
−1

i exp

{
−1

2

[
bi +

T∑
t=1

zit(yit − αi − βitκt)
2

]
ϕi

}]
,

(B.42)

and thus, identifying the distribution’s kernel we have

ϕi|α, β∗, κ, δ, ϕβ∗ , ϕκ, ϕδ, z, ρ, y
ind∼ Gamma

(
āi
2
,
b̄i
2

)
, (B.43)

where āi = ai + T and b̄i = bi +
∑T

t=1 zit(yit − αi − βitκt)
2.
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Now, taking the full conditional of ϕβ∗ into consideration, notice that

π(ϕβ∗|α, β∗, κ, δ, ϕϕκ, ϕδ, z, ρ, y) ∝ π(α, β∗, κ, δ, ϕ, ϕβ∗ , ϕκ, ϕδ, z, ρ|y)

∝
T∏
t=1

[
π(β∗

t |β∗
t−1, ϕβ∗)

] n∏
i=1

[
π(ϕβ∗

i
)

]

∝
n∏

i=1

T∏
t=1

[
(2π)−

1
2ϕ

1
2
β∗
i
exp

{
−
ϕβ∗

i

2
(β∗

it − β∗
i(t−1))

2

}] n∏
i=1

[
ϕ

aβi
2

−1

β∗
i

exp

{
−bβi

2
ϕβ∗

i

}]

∝
n∏

i=1

[
ϕ

aβi
2

−1

β∗
i

ϕ
T
2
β∗
i
exp

{
−bβi

2
ϕβ∗

i

}
exp

{
−
ϕβ∗

i

2

T∑
t=1

(β∗
it − β∗

i(t−1))
2

}]

∝
n∏

i=1

[
ϕ

aβi
+T

2
−1

β∗
i

exp

{
−1

2

[
bβi

+
T∑
t=1

(β∗
it − β∗

i(t−1))
2

]
ϕβ∗

i

}]
(B.44)

and thus, identifying the distribution’s kernel we have

ϕβ∗
i
|α, β∗, κ, δ, ϕ, ϕκ, ϕδ, z, ρ, y

ind∼ Gamma

(
āβi

2
,
b̄βi

2

)
, (B.45)

where āβi
= aβi

+ T and b̄βi
= bβi

+
∑T

t=1(β
∗
it − β∗

i(t−1))
2. Alternatively, we can

use a discount factors to obtain estimates of the precision of β∗ instead of directly

estimating the ϕβ∗ , as presented in Chapters 2 and 6 of West & Harrison (1997).

Next, for the full conditional of ϕκ notice that

π(ϕκ|α, β∗, κ, δ, ϕ, ϕβ∗ , ϕδ, z, ρ, y) ∝ π(α, β∗, κ, δ, ϕ, ϕβ∗ , ϕκ, ϕδ, z, ρ|y)

∝
T∏
t=1

[
π(κt|κt−1, δt−1, ϕκ)

]
π(ϕκ, ϕδ)

∝
T∏
t=1

[
(2π)−

1
2ϕ

1
2
κ exp

{
−ϕκ

2
(κt − κt−1 − δt−1)

2

}]
ϕ

aκ
2
−1

κ exp

{
−bκ

2
ϕκ

}

∝ ϕ
aκ
2
−1

κ ϕ
T
2
κ exp

{
−bκ

2
ϕκ

}
exp

{
−ϕκ

2

T∑
t=1

(κt − κt−1 − δt−1)
2

}

∝ ϕ
aκ+T

2
−1

κ exp

{
−1

2

[
bκ +

T∑
t=1

(κt − κt−1 − δt−1)
2

]
ϕκ

}
(B.46)

and thus, identifying the distribution’s kernel we have

ϕκ|α, β∗, κ, δ, ϕ, ϕβ∗ , ϕδ, z, ρ, y
ind∼ Gamma

(
āκ
2
,
b̄κ
2

)
, (B.47)

where āκ = aκ + T and b̄κ = bκ +
∑T

t=1(κt − κt−1 − δt−1)
2. Alternatively, we can

use a discount factors to obtain estimates of the precision of κ instead of directly

estimating the ϕκ, as presented in Chapters 2 and 6 of West & Harrison (1997).



142

Now, for the full conditional of ϕδ notice that

π(ϕδ|α, β∗, κ, δ, ϕ, ϕβ∗ , ϕκ, z, ρ, y) ∝ π(α, β∗, κ, δ, ϕ, ϕβ∗ , ϕκ, ϕδ, z, ρ|y)

∝
T∏
t=1

[
π(δt|δt−1, ϕδ)

]
π(ϕδ)

∝
T∏
t=1

[
(2π)−

1
2ϕ

1
2
δ exp

{
−ϕδ

2
(δt − δt−1)

2

}]
ϕ

aδ
2
−1

δ exp

{
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2
ϕδ

}
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2
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δ exp
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exp
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}
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2
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δ exp
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2
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(δt − δt−1)
2

]
ϕδ

}
(B.48)

and thus, identifying the distribution’s kernel we have

ϕδ|α, β∗, κ, δ, ϕ, ϕβ∗ , ϕκ, z, ρ, y
ind∼ Gamma

(
āδ
2
,
b̄δ
2

)
, (B.49)

where āδ = aδ+T and b̄δ = bδ+
∑T

t=1(δt−δt−1)
2. Alternatively, we can use a discount

factors to obtain estimates of the precision of δ instead of directly estimating the

ϕδ, as presented in Chapters 2 and 6 of West & Harrison (1997).

For the full conditional of ρ, notice that

π(ρ|α, β∗, κ, δ, ϕ, ϕβ∗ , ϕκ, ϕδ, z, y) ∝ π(α, β∗, κ, δ, ϕ, ϕβ∗ , ϕκ, ϕδ, z, ρ|y)

∝
T∏
t=1

[
n∏

i=0

ϕ(zit|z(i−1)t, ρ)

]
π(ρ)

=
Γ(a+ b)

Γ(a)Γ(b)
ρa−1(1− ρ)b−1

T∏
t=1

n∏
i=0

[
z(i−1)tρ+ (1− z(i−1)t)(1− ρ)

]zit
×

T∏
t=1

n∏
i=0

[
1− z(i−1)tρ− (1− z(i−1)t)(1− ρ)

]1−zit

∝ ρa−1(1− ρ)b−1

T∏
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n∏
i=0

[
ρ
I{zit=z(i−1)t}(1− ρ)

I{zit ̸=z(i−1)t}
]

∝ ρā−1(1− ρ)b̄−1

(B.50)

and thus, identifying the distribution’s kernel we have

ρ|α, β∗, κ, δ, ϕ, ϕβ∗ , ϕκ, ϕδ, z, y ∼ Beta
(
ā, b̄

)
, (B.51)

where

ā = a+
T∑
t=1

n∑
i=0

I{zit=z(i−1)t}, and b̄ = b+
T∑
t=1

n∑
i=0

I{zit ̸=z(i−1)t}. (B.52)
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At last, for the full conditional of z notice that

π(z|α, β∗, κ, δ, ϕ, ϕβ∗ , ϕκ, ϕδ, ρ, y) ∝ π(α, β∗, κ, δ, ϕ, ϕβ∗ , ϕκ, ϕδ, z, ρ|y)

∝
T∏
t=1

[
n∏

i=0

[
ϕ(zit|z(i−1)t, ρ)

]
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]
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∝
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]
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[
(2π)−

1
2ϕ

1
2
i exp
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2
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2
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1
2ϕ

1
2
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∝
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i=0
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exp
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G

(
γg(n··1+1)−1

)}
,

(B.53)

where n··k =
∑n

i=0

∑T
t=1 I{zit=k} and g = git (recall that equality is attained because

for the normal distribution the correction function does not depend on the location

or scale parameters, so g is the same regardless of the indexes i and t). We will now

split the calculations in three distinct cases. Let us first consider j ∈ {0, . . . , n− 1}
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and k ∈ {1, . . . , T}, then

π(zjk|α, β∗, κ, δ, ϕ, ϕβ∗ , ϕκ, ϕδ, z−(jk), ρ, y) ∝ π(α, β∗, κ, δ, ϕ, ϕβ∗ , ϕκ, ϕδ, z, ρ|y)

∝
T∏
t=1

n∏
i=0

[
ρ
I{zit=z(i−1)t}(1− ρ)

I{zit ̸=z(i−1)t}
] T∏
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ρ
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∝ ρ
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I{z(j+1)k ̸=zjk} + I{zjk ̸=z(j−1)k}

× exp

{
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2
(yjk − αj − βjkκk)

2

}
× exp

{
−n

−(jk)
··0 + (1− zjk)

2
F−1
G

(
γg(n

−(jk)
··1 +zjk+1)−1

)}
.

(B.54)

where n
−(jk)
··l =

∑n
i=0

∑T
t=1 I{zit=l} − I{zjk=l}. Next, considering j = n and k ∈

{1, . . . , T}, we have

π(znk|α, β∗, κ, δ, ϕ, ϕβ∗ , ϕκ, ϕδ, z−(nk), ρ, y) ∝ π(α, β∗, κ, δ, ϕ, ϕβ∗ , ϕκ, ϕδ, z, ρ|y)

∝
T∏
t=1

n∏
i=0

[
ρ
I{zit=z(i−1)t}(1− ρ)
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] T∏
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ρ
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]
×
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2
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2
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I{znk ̸=z(n−1)k}

× exp
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2
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G

(
γg(n

−(nk)
··1 +znk+1)−1

)}
.

(B.55)
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And now, considering j = −1 and k ∈ {1, . . . , T} we have

π(z(−1)k|α, β∗, κ, δ, ϕ, ϕβ∗ , ϕκ, ϕδ, z−((−1)k), ρ, y) ∝ π(α, β∗, κ, δ, ϕ, ϕβ∗ , ϕκ, ϕδ, z, ρ|y)

∝
T∏
t=1

n∏
i=0

[
ρ
I{zit=z(i−1)t}(1− ρ)

I{zit ̸=z(i−1)t}
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ρ
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×
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2

}
.

(B.56)

Since we will use the Gumbel-max trick, see Huijben et al. (2022) for a description

of the method, to sample from the resulting categorical distribution, we will also cal-

culate the logarithm of the non-normalized probabilities for each possible category.

So, for j ∈ {0, . . . , n− 1} and k ∈ {1, . . . , T}, we have

ln

[
π(zjk = 1|α, β∗, κ, δ, ϕ, ϕβ∗ , ϕκ, ϕδ, z−(jk), ρ, y)
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)
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2
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2 + C

(B.57)

and

ln

[
π(zjk = 0|α, β∗, κ, δ, ϕ, ϕβ∗ , ϕκ, ϕδ, z−(jk), ρ, y)

]
=
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)
ln(ρ) +

(
I{z(j+1)k=1} + I{z(j−1)k=1}

)
ln(1− ρ)

− 1

2

[(
n
−(jk)
··0 + (1− zjk)

)
F−1
G

(
γg(n

−(jk)
··1 +1)−1

)
− n

−(jk)
··0 F−1

G

(
γg(n

−(jk)
··1 +2)−1

)]
+ C
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(
I{z(j+1)k=0} + I{z(j−1)k=0}

)
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)
ln(1− ρ)

− 1

2
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G

(
γg(n

−(jk)
··1 +1)−1

)
+ C.

(B.58)

Next, for j = n and k ∈ {1, . . . , T} we have

ln

[
π(znk = 1|α, β∗, κ, δ, ϕ, ϕβ∗ , ϕκ, ϕδ, z−(nk), ρ, y)

]
= I{z(n−1)k=1} ln(ρ) + I{z(n−1)k=0} ln(1− ρ)− ϕj

2
(ynk − αn − βnkκk)

2 + C

(B.59)
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and

ln

[
π(znk = 0|α, β∗, κ, δ, ϕ, ϕβ∗ , ϕκ, ϕδ, z−(nk), ρ, y)

]
= I{z(n−1)k=0} ln(ρ) + I{z(n−1)k=1} ln(1− ρ)

− 1

2
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2
F−1
G

(
γg(n

−(nk)
··1 +1)−1

)
+ C.

(B.60)

And finally, for j = −1 and k ∈ {1, . . . , T} we have

ln

[
π(z(−1)k = 1|α, β∗, κ, δ, ϕ, ϕβ∗ , ϕκ, ϕδ, z−((−1)k), ρ, y)

]
= I{z0k=1} ln(ρ) + I{z0k=0} ln(1− ρ) + ln(ρ0) + C

(B.61)

and
ln

[
π(z(−1)k = 1|α, β∗, κ, δ, ϕ, ϕβ∗ , ϕκ, ϕδ, z−((−1)k), ρ, y)

]
= I{z0k=0} ln(ρ) + I{z0k=1} ln(1− ρ) + ln(1− ρ0) + C.

(B.62)

It is worth pointing out that simplified expressions for the equations B.58 and B.60

is due to proposition A.4, as detailed in section A.2.
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