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Intransitive Dice 4
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Rock, paper, scissors? 6
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Motivation 7

▶ It looks counter-intuitive

However, it is related to ‘real world problems’:

- Testing different drugs; - Comparing soccer teams;



Motivation 8

▶ Ludic aspect / popularization of math

- Numberphile (YouTube channel) - Quanta Magazine (2023)



Motivation 9

▶ Interesting math

- Polymath Project



Some questions 10

▶ Deterministic conditions for intransitivity?

▶ What is the probability that a random set of dice is intransitive?

▶ How many sets of dice with intransitive cycles are there?



Deterministic conditions
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Checking intransitivity – honest dice, no ties 12
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Without ties: intransitivity ⇐⇒ counting strings
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Existence of intransitive dice 13

▶ Die with n faces: D = (D1, . . . , Dn);

▶ Collection of ℓ dice: D = (D(1), . . . , D(ℓ));

▶ When there are no ties: D(i) has ni faces =⇒ total of n1 + . . .+ nℓ faces;

▶ Associated string: a permutation of n1 + . . .+ nℓ letters (with repetitions).

▶ Dℓ(n) = {D = (D(1), . . . , D(ℓ)); D(i) ∈ Zn, {D(j)
i }i,j = [ℓn]}.

▶ D▷,ℓ(n) = {D = (D(1), . . . , D(ℓ));D(1) ▷ . . . ▷ D(ℓ) ▷ D(1)}.

Theorem (Existence)

(i) For every ℓ ≥ 3, we have D▷,ℓ(2) = ∅.

(ii) For every ℓ ≥ 3 and n ≥ 3, we have D▷,ℓ(n) ̸= ∅.
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Existence of intransitive dice – proof of (i) 14

We have n = 2. Whenever D(j) ▷ D(k), the substring on D(j) and D(k) is

D(j)D(j)D(k)D(k) or D(j)D(k)D(j)D(k).

In any case, there is a D(j) to the left of the two copies of D(k).

D(1) ▷ . . . ▷ D(ℓ) ▷ D(1) =⇒ a D(1) to the left of both D(k) for k ∈ [ℓ],

=⇒ no D(ℓ) to the left of both D(1),

=⇒ D(ℓ) ̸ ▷D(1).



Existence of intransitive dice – proof of (ii) 15

Lemma (More dice)

If W▷,ℓ(n) is non-empty, then W▷,ℓ+1(n) is non-empty.

▶ From W ∈ W▷,ℓ(n) make W̃ ∈ W▷,ℓ+1(n) by replacing every D(ℓ) by
D(ℓ)D(ℓ+1).



Existence of intransitive dice – proof of (ii) 16

Lemma (More faces)

If W▷,ℓ(n) is non-empty, then W▷,ℓ(n+ 2) is non-empty.

▶ For a word W, its dual word is W∗ obtained by reversing the order in W;

▶ Number of wins of D(j) over D(k) is Nj,k(W);

▶ Word W is neutral if Nk,j(W) = Nj,k(W) for every j, k.

▶ If S = D(1) . . . D(ℓ) then the concatenation SS∗ ∈ Wℓ(2) is neutral.

▶ Given any word W ∈ Wℓ(n), the concatenation WSS∗ ∈ Wℓ(n+ 2) is neutral.



Existence of intransitive dice – proof of (ii) 17
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Counting intransitive sets

�



On the number of intransitive words 19

Question: Can we estimate |D▷,ℓ(n)|?

▶ A simple combinatorial argument and Stirling’s approximation ensures

|D▷,ℓ(n)| ≤ |Dℓ(n)| =
(ℓn)!

(n!)ℓ
∼ ℓ1/2

(2πn)(ℓ−1)/2
· enℓ log ℓ.

▶ Does |D▷,ℓ(n)| grow exponentially?

Theorem
For each ℓ ≥ 3, there exists a constant L(ℓ) ≥ 0 for which

|D▷,ℓ(n)| = enL(ℓ)+o(n) as n → ∞ .



On the number of intransitive words – proof of Theorem 20

Take W1 ∈ W▷,ℓ(n1) and W2 ∈ W▷,ℓ(n2). Then, W1W2 ∈ W▷,ℓ(n1 + n2).

Ni,i+1(W1W2) = Ni,i+1(W1) + n1n2 +Ni,i+1(W2)

>
n2
1

2
+

2n1n2

2
+

n2
2

2

=
(n1 + n2)

2

2
.

(W1,W2) 7→ W1W2 is injection of W▷,ℓ(n1)×W▷,ℓ(n2) into W▷,ℓ(n1 + n2)

=⇒ |D▷,ℓ(n1 + n2)| ≥ |D▷,ℓ(n1)||D▷,ℓ(n2)|,

hence |D▷,ℓ(n)| is supermultiplicative! Use Fekete’s lemma. □



On the number of intransitive words – value of L(ℓ) 21

By the previous theorem, we have

L(ℓ) = sup
n

log |D▷,ℓ(n)|
n

≤ sup
n

log |Dℓ(n)|
n

= ℓ log ℓ.

By computational methods we got:

▶ Exact computations:
2.445 < L(3) ≤ 3 log 3.

▶ Simulations for larger values of n:

∆L3(n) :=
log |D▷(n)|

n
−

log |D▷,ℓ(n)|
n

seems to go to zero.



On the number of intransitive words – value of L(ℓ) 22

0 200 400 600 800 1,000
10−2

10−1

100

n

∆L3(n)

Simulated Values
Actual Values

Figure: ∆L3(n) for various values of n. The blue data points are exact, and the red data
points were generated through a stochastic simulation. The vertical axis is represented in a
logarithmic scale



On the number of intransitive words – value of L(ℓ) 23

On our arxiv version of the paper:

▶ Simulations lead to conjecture that L(3) = 3 log 3.

▶ Maybe the same would hold for ℓ ≥ 4.

Currently unpublished:

Theorem
For ℓ ≥ 3 it holds that L(ℓ) = ℓ log ℓ.

▶ Application of our CLT!
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Random sets of dice
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IID Dice 25

A and B are n-faced IID dice:

NA>B =

n∑
i=1

n∑
j=1

χAi>Bj

A

A1A2

A3

B

B1B2

B3



IID Dice – no ties 26

NA>B +NB>A = n2

A ▷ B ⇐⇒ NA>B >
n2

2

Assuming (Ai) and (Bj) have a common distribution:

ENA>B =
n∑

i,j=1

P(Ai > Bj) =
n2

2

A ▷ B ⇐⇒ NA>B > ENA>B
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IID Dice – intransitive cycle 27

Hence:

A ▷ B ⇐⇒ ÑA>B =
NA>B − ENA>B

(VarNA>B)1/2
> 0

If we have ℓ ≥ 3 dice:

D(1) ▷ D(2) ▷ . . . ▷ D(ℓ) ▷ D(1)

⇕
(Ñ1, Ñ2, . . . , Ñℓ) ∈ (0,∞)ℓ

Main question: As n → ∞,

(Ñ1, Ñ2, . . . , Ñℓ)
d−→ ?
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IID Dice – Central Limit Theorem 28

Theorem (Uniform case, ℓ = 3)

Suppose (Ai), (Bi), (Ci) are iid. with distribution Unif(0, 1).

(ÑA>B, ÑB>C , ÑC>A)
d−→ N (0,Σ)

where

Σ =

 1 −1
2 −1

2
−1

2 1 −1
2

−1
2 −1

2 1

 .



IID Dice – asymptotic transitivity 29

Plane x+ y + z = 0

Matrix Σ is singular: 1 −1
2 −1

2
−1

2 1 −1
2

−1
2 −1

2 1

 ·

 1
1
1

 =

 0
0
0


Corollary (Uniform case, ℓ = 3)

P(A▷B▷C▷A)
n→ P(N (0,Σ) ∈ (0,∞)3) = 0.



Back to counting strings 30

D3(n) : 3n-letter strings, with n letters A, B and C.

D▷,3(n) : intransitive strings in D3(n).

Corollary (Uniform case, ℓ = 3) =⇒ |D▷,3(n)|
|D3(n)|

→ 0.



Proof ideas – method of moments 31

ÑA>B
d−→ N (0, 1)

⇕

E[(ÑA>B)
t] → E[N (0, 1)t] =

{
0 if t is odd

(t− 1)!! if t is even
,

VarNA>B = n3σ +O(n2)

ÑA>B =
NA>B − ENA>B

(VarNA>B)1/2
=⇒ E[(ÑA>B)

t] =
E
[(∑n

i,j

ei,j︷ ︸︸ ︷
(χAi>Bj − 1

2)
)t]

n3t/2(σ + o(1))
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Proof ideas – using graphs 32

E
[(∑

i,j

ei,j

)t]
=

∑
i1,j1

· · ·
∑
it,jt

E[ei1,j1 . . . eit,jt ]

e1,1 e2,3 e2,1 . . . eit,jt

▶ Connected components ↔ independence

E[(ei1,j1 . . . eit1 ,jt1 )︸ ︷︷ ︸
G1

. . . Gk] =
k∏

i=1

E[Gi]

▶ Isolated edges:

E[ei,j ] = P(Ai > Bj)− 1
2 = 0.

A

...

B

...



Proof ideas – using graphs 32

E
[(∑

i,j

ei,j

)t]
=

∑
i1,j1

· · ·
∑
it,jt

E[ei1,j1 . . . eit,jt ]

e1,1 e2,3 e2,1 . . . eit,jt

▶ Connected components ↔ independence

E[(ei1,j1 . . . eit1 ,jt1 )︸ ︷︷ ︸
G1

. . . Gk] =
k∏

i=1

E[Gi]

▶ Isolated edges:

E[ei,j ] = P(Ai > Bj)− 1
2 = 0.

A

...

B

...



Proof ideas – using graphs 32

E
[(∑

i,j

ei,j

)t]
=

∑
i1,j1

· · ·
∑
it,jt

E[ei1,j1 . . . eit,jt ]

e1,1 e2,3 e2,1 . . . eit,jt

▶ Connected components ↔ independence

E[(ei1,j1 . . . eit1 ,jt1 )︸ ︷︷ ︸
G1

. . . Gk] =
k∏

i=1

E[Gi]

▶ Isolated edges:

E[ei,j ] = P(Ai > Bj)− 1
2 = 0.

A

...

B

...



Proof ideas – using graphs 32

E
[(∑

i,j

ei,j

)t]
=

∑
i1,j1

· · ·
∑
it,jt

E[ei1,j1 . . . eit,jt ]

e1,1 e2,3 e2,1 . . . eit,jt

▶ Connected components ↔ independence

E[(ei1,j1 . . . eit1 ,jt1 )︸ ︷︷ ︸
G1

. . . Gk] =
k∏

i=1

E[Gi]

▶ Isolated edges:

E[ei,j ] = P(Ai > Bj)− 1
2 = 0.

A

...

B

...



Proof ideas – using graphs 32

E
[(∑

i,j

ei,j

)t]
=

∑
i1,j1

· · ·
∑
it,jt

E[ei1,j1 . . . eit,jt ]

e1,1 e2,3 e2,1 . . . eit,jt

▶ Connected components ↔ independence

E[(ei1,j1 . . . eit1 ,jt1 )︸ ︷︷ ︸
G1

. . . Gk] =
k∏

i=1

E[Gi]

▶ Isolated edges:

E[ei,j ] = P(Ai > Bj)− 1
2 = 0.

A

...

B

...



Proof ideas – using graphs 32

E
[(∑

i,j

ei,j

)t]
=

∑
i1,j1

· · ·
∑
it,jt

E[ei1,j1 . . . eit,jt ]

e1,1 e2,3 e2,1 . . . eit,jt

▶ Connected components ↔ independence

E[(ei1,j1 . . . eit1 ,jt1 )︸ ︷︷ ︸
G1

. . . Gk] =

k∏
i=1

E[Gi]

▶ Isolated edges:

E[ei,j ] = P(Ai > Bj)− 1
2 = 0.

A

...

B

...



Proof ideas – using graphs 32

E
[(∑

i,j

ei,j

)t]
=

∑
i1,j1

· · ·
∑
it,jt

E[ei1,j1 . . . eit,jt ]

e1,1 e2,3 e2,1 . . . eit,jt

▶ Connected components ↔ independence

E[(ei1,j1 . . . eit1 ,jt1 )︸ ︷︷ ︸
G1

. . . Gk] =

k∏
i=1

E[Gi]

▶ Isolated edges:

E[ei,j ] = P(Ai > Bj)− 1
2 = 0.

A

...

B

...



Proof ideas – counting cherries 33

Sufficient to count cherry graphs!

▶ More than t/2 connected components:

At least one with one edge.

▶ Less than t/2 connected components:

#graphs = O(n
3t−1

2 ) ≪ n
3t
2 .

Since |E[G]| is bounded, can be ignored.

▶ Focus on

- Exactly t/2 components;
- At least 2 edges in each;

A

...

B

...
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Proof ideas – convergence of random vector 34

By the Cramér-Wold criteria:

(ÑA>B, ÑB>C , ÑC>A) = (Ñ1, Ñ2, Ñ3)
d−→ N (0,Σ)

⇕

For every α = (α1, α2, α3):

3∑
i=1

αiÑi
d−→

3∑
i=1

αiXi, where X = (X1, X2, X3)
T ∼ N (0,Σ).

⇕

For every α = (α1, α2, α3):

E
[( 3∑

i=1

αiÑi

)t]
→ E

[( 3∑
i=1

αiXi

)t]
=

{
0 if t is odd

(αTΣα)t/2(t− 1)!! if t is even
,



CLT – General case 35

We allow quite general sequence of dice!

▶ ℓ ≥ 3 dice: D = (D(1), D(2), . . . , D(ℓ));

▶ We look at the laws of sequence of dice {Dm}m;

▶ Different laws: D(j)(m) has iid faces with law L(j)
m ;

▶ Different dice are independent;

▶ Different number of faces: nj(m);
(for convenience, nj = fj ·m, with fj ≤ 1.)
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Single edge:

k k + 1

pk = p(L(k),L(k+1)) := P
(
D

(k)
1 > D

(k+1)
1

)
= E

(
1
D

(k)
1 >D

(k+1)
1

)

Cherry of type (k + 1, 3):

k k + 1

qk = q(L(k),L(k+1)) := P
(
D

(k)
1 > D

(k+1)
1 , D

(k)
2 > D

(k+1)
1

)
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Cherry of type (k, 2):

k k + 1

rk = r(L(k),L(k+1)) := P
(
D

(k)
1 > D

(k+1)
1 , D

(k)
1 > D

(k+1)
2

)

Cherry of type (k, 1):

k − 1 k k + 1

sk = s(L(k−1),L(k),L(k+1)) := P
(
D

(k−1)
1 > D

(k)
1 > D

(k+1)
1

)
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From pk,qk, rk, sk we have many important quantities. Let:

σk :=
[
fkfk+1

(
fk(qk − p2

k) + fk+1(rk − p2
k)
) ]1/2

γk :=
1

σk−1σk
fk−1fkfk+1(sk − pk−1pk) .

Then, we have

E(Nk) = fkfk+1m
2pk ,

Var (Nk) = σ2
km

3 + o(m3) , and

Corr (Nk−1, Nk) = γk + o(1) .
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Assumptions

Fix ℓ ≥ 3. Assume the sequence {Dm}m satisfies

(i) For k = 1, . . . , ℓ the relative sizes fk = fk(m) satisfy

fk(m) → fk(∞) ∈ (0, 1], as m → ∞.

(ii) For k = 1, . . . , ℓ the rate of growth of the mean and variance of Nk and
covariance between Nk−1 and Nk satisfy

pk(m) → pk(∞) ∈ (0, 1],

σk(m) → σk(∞) ∈ (0,∞) ,

γk(m) → γk(∞) ∈ [−1, 1] ,

as m → ∞.
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Theorem
Under Assumptions, we have

(Ñ1, Ñ2, . . . , Ñℓ)
d−→

n→∞
N (0,Σ),

where

Σ =



1 γ2(∞) 0 · · · 0 γ1(∞)
γ2(∞) 1 γ3(∞) · · · 0 0

0 γ3(∞) 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 γℓ(∞)

γ1(∞) 0 0 · · · γℓ(∞) 1


.
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No-tie dice: P(D(1) ▷ . . . ▷ D(ℓ) ▷ D(1)) → P(N (0,Σ) ∈ (0,∞)ℓ).

Theorem (Connecting CLT with intransitivity, ties allowed)

Fix ℓ ≥ 3 and assume {Dm}m satisfy the Assumptions. Suppose that there exists
δ > 0 and a function r(m) with limm→∞ r(m) = +∞, for which

1

2
− pk −

1

2
P(D(k)

1 = D
(k+1)
1 ) ≥ − δ

m1/2r(m)
, k = 1, . . . , ℓ,

for every m sufficiently large, and in addition

lim
m→∞

P
(
D

(k)
1 (m) = D

(k+1)
1 (m)

)
= 0 for k = 1, . . . , ℓ.

Then
lim sup
m→∞

P
(
D(1) ▷ · · · ▷ D(ℓ) ▷ D(1)

)
≤ P

(
N (0,Σ) ∈ [0,∞)ℓ

)
.
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for every m sufficiently large, and in addition

lim
m→∞

P
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D
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1 (m) = D

(k+1)
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Important case: all laws are the same

▶ 1
2 − pk − 1

2P(D
(k)
1 = D

(k+1)
1 ) = 0 always holds.

▶ We have that asymptotically, when probability of ties go to zero:

pk → 1

2
, qk → 1

3
, rk → 1

3
, sk → 1

6

▶ Consequently:

σk(∞) =

√
fkfk+1(fk + fk+1)

6

γk(∞) = − fk−1fkfk+1√
fk−1fk(fk−1 + fk)

√
fkfk+1(fk + fk+1)



IID case with ties going to zero 43

▶ Covariance matrix Σ has a very interesting structure!

Lemma
In iid. case with probability of ties going to zero, we have that detΣ = 0 and the
eigenspace of 0 has dimension 1 and is generated by a vector x ∈ (0,∞)ℓ.

Corollary

In iid. case with probability of ties going to zero:

P
(
D(1) ▷ · · · ▷ D(ℓ) ▷ D(1)

)
→ P

(
N (0,Σ) ∈ [0,∞)ℓ

)
= 0.
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Example: intransitive cycles with high probability 44

Theorem
Let A(k) = (a

(k)
1 , . . . , a

(k)
m ) for k ∈ [ℓ] be a set of ℓ deterministic honest dice with m

faces that is known to be intransitive: A(k) ▷ A(k+1) for every k. Consider random
dice (B(k) : k ∈ [ℓ]), each with n faces, where the faces of die B(k) are
independently chosen with law

B
(k)
j ∼ Unif{a(k)i : i ∈ [m]} ,

that is, uniformly over the faces of die A(k). Then, there is a constant c > 0,
depending only on the set of dice A(k), such that

P
(
B(1) ▷ B(2) ▷ · · · ▷ B(ℓ) ▷ B(1)

)
= 1 + o(e−cn) , as n → ∞. (1)



Exponential rate of growth of intransitive words 45

Theorem
Fix ℓ ≥ 3. It holds

log |D▷,ℓ(n)|
n → ℓ log ℓ.

▶ We saw
|D▷,ℓ(n)|
|Dℓ(n)| → 0.

▶ Let Qℓ(n) be a set of close to intransitive words:

Qℓ(n) :=
{
W ∈ Wℓ(n); 2Ni,i+1 > n2 − n3/2

(
1 +

1

2n

)1/2}
= {(Ñ1, . . . , Ñℓ) ∈ (−

√
6

2
,∞)}.

Then, the CLT implies |Qℓ(n)|
|Dℓ(n)| → c > 0.

Hence, |Qℓ(n)| has exponential growth of order ℓ log ℓ.

▶ Build intransitive words by concatenating to W ∈ Qℓ(n) a highly intransitive
word.
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