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Intransitive Dice
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Intransitive Dice

—

Which die is better?




Intransitive Dice

—

Percentage of wins
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Comparison




Rock, paper, scissors?




Motivation

—

» It looks counter-intuitive

However, it is related to ‘real world problems’:

- Testing different drugs; - Comparing soccer teams;




Motivation

—

» Ludic aspect / popularization of math

- Numberphile (YouTube channel) - Quanta Magazine (2023)

The Most Powerful Dice - Numberphile 2 quanta;
605K views - 6years ag0

Mathematicians Roll Dice and Get Rock
Paper- Scissors

ecis setof ice... And s a powertul.

ransiive Cycle in Provabistic Compa

(Numberphile




Motivation

—

» Interesting math

- Polymath Project

THE PROBABILITY THAT A RANDOM TRIPLE OF DICE IS
D. H. 1. POLYMATH
ABSTRACT. AN n-sided die is an n-tuple of positive integers. We say that a die (@1.....a,) beats a

die (by......b,) if the number of pairs (i ) such that a; > b, is greater than the number of pairs
(i) such that @, < b;. We show that for a natural model of random -sided dice. if A, B and C

79

e o dic then o iyt A et C given o A ot 2nd B e C i
S Sppesimtly V2. T ther ot e fortion s A e et € s s
effect on the probability that A beats C. This proves a statement that was conjectured by Conrey.
g b, G, Lin snd Moo G il el
Z
Q
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Some questions

—

10

» Deterministic conditions for intransitivity?
» What is the probability that a random set of dice is intransitive?

» How many sets of dice with intransitive cycles are there?




Deterministic conditions
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Checking intransitivity — honest dice, no ties

—
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Checking intransitivity — honest dice, no ties
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Checking intransitivity — honest dice, no ties
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Checking intransitivity — honest dice, no ties
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Checking intransitivity — honest dice, no ties

—
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Checking intransitivity — honest dice, no ties

—
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Checking intransitivity — honest dice, no ties

—
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Checking intransitivity — honest dice, no ties

—
8 7 9
4 A 12 6 B 11 5 C 10
3 2 1
A || 12 8 41 3
B 11 716 2
C 10 | 9 5 1

A B C CA B B C A A B C
Without ties: intransitivity <= counting strings




Existence of intransitive dice 13
—
» Die with n faces: D = (D1,...,Dy);
» Collection of ¢ dice: D = (DM .. D(Z));
» When there are no ties: D@ has n; faces = total of ny + ...+ ny faces;
» Associated string: a permutation of nj + ... 4 ny letters (with repetitions).
> Dy(n) ={D = (DW,.... DO); DO e zr (DY}, = [tn]}.
> Doy(n)={D=(DW ... . DY) DV .  »DO DO}




Existence of intransitive dice

—

13

» Die with n faces: D = (D1,...,Dy);

» Collection of ¢ dice: D = (DM .. D(Z));

» When there are no ties: D@ has n; faces = total of ny + ...+ ny faces;
>

| 2

Associated string: a permutation of nj + ...+ ng letters (with repetitions).

Dy(n) = {D = (DW,..., D®); DO € z", {DY, ; = [¢n]}.
> Doy(n)={D=(DW ... . DY) DV .  »DO DO}
Theorem (Existence)

(i) For every £ > 3, we have Dy 4(2) = @.
(ii) For every £ >3 and n > 3, we have Dy ¢(n) # .




Existence of intransitive dice — proof of (i)

—
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We have n = 2. Whenever D) > D®) | the substring on DU) and D®) is
DO DGO pE pE o pl) pE pG) pk)
In any case, there is a DY) to the left of the two copies of D*).

DY  >DOs DM — a DW to the left of both D®) for k € [4],
= no DY to the left of both D(l),
— DU gpWm),




Existence of intransitive dice — proof of (ii)

—
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Lemma (More dice)
If Wy, o(n) is non-empty, then Wy ¢+1(n) is non-empty.

» From W € W, /(n) make W e W r11(n) by replacing every D by
DWW p+1)




Existence of intransitive dice — proof of (ii)

—
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Lemma (More faces)

If W, 4(n) is non-empty, then Wy ¢(n + 2) is non-empty.

>
>
>
>
>

For a word W, its dual word is W* obtained by reversing the order in W;
Number of wins of DU) over D) is N; ,(W);

Word W is neutral if Ny, ;(W) = N; (W) for every j, k.

If S = DM ... D® then the concatenation SS* € W;(2) is neutral.

Given any word W € Wy(n), the concatenation WSS* € Wy(n + 2) is neutral.




Existence of intransitive dice — proof of (ii)

—

Initial cases:

[$2

12

17

11

10




Counting intransitive sets
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On the number of intransitive words 19

—

Question: Can we estimate |Dy ¢(n)|?
» A simple combinatorial argument and Stirling’s approximation ensures

(n)! (12

~ nllogl
(nh)t  (2mn)(E=1)/2 '

D5 o(n)] < [De(n)] =

- €

» Does | D, ¢(n)| grow exponentially?

Theorem
For each € > 3, there exists a constant L(£) > 0 for which

Dy y(n)] = enEOFom) g 0.




On the number of intransitive words — proof of Theorem

—

Take W1 € W, ¢(n1) and Wa € W, ¢(n2). Then, W1 Wy € W, 4(n1 + ng).

Niit1(W1W3) = N; i1 (W1) +ning + N i1 1(Wa)

2 2

ny 2niny ny

= 2 + 2 2
_ (n1 + n2)2
— s

(W1, Wy) = W Wy is injection of W, ¢(n1) X Wy 4(n2) into W ¢(n1 + n2)
= [Dsp(n1 +n2)| = [Do e(n1)|[ Do e(n2)];

hence |D;, ¢(n)| is supermultiplicative! Use Fekete’s lemma.




On the number of intransitive words — value of L({)

—
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By the previous theorem, we have

log | D,
L(¢) = sup 7og| ()] < sup

n n n

log [De(n)| _ llog .
n

By computational methods we got:

» Exact computations:
2.445 < L(3) < 3log 3.

» Simulations for larger values of n:

_ log |Dy(n)|  log|D; e(n)]
n n

ALg(n) :

seems to go to zero.




On the number of intransitive words — value of L({)

—

100 f -Simulated Values
o) - Actual Values
ALs(n) + :"-\
0t
1072 & - 5
0 200 400 600 800 1,000
n

Figure: AL3(n) for various values of n. The blue data points are exact, and the red data
points were generated through a stochastic simulation. The vertical axis is represented in a
logarithmic scale




On the number of intransitive words — value of L({)

—
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On our arxiv version of the paper:
» Simulations lead to conjecture that L(3) = 3log3.
» Maybe the same would hold for ¢ > 4.




On the number of intransitive words — value of L({)

—

23

On our arxiv version of the paper:
» Simulations lead to conjecture that L(3) = 3log3.
» Maybe the same would hold for ¢ > 4.

Currently unpublished:

Theorem
For £ > 3 it holds that L(¢) = {log¥.

» Application of our CLT!




Random sets of dice
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IID Dice
—

A and B are n-faced IID dice:

By

25




IID Dice — no ties
—

Nasp + Npsa = n?

26




IID Dice — no ties
—

Nasp + Npsa = n?

n?
A>rB <— NA>B>?

26




IID Dice — no ties
—

Nasp + Npsa = n?

n?
ArB <= Np.p> >

Assuming (A;) and (B;) have a common distribution:

n

n
ENasp = > P(A; > B)) = o)

3,j=1

2

26




IID Dice — no ties
—

Nasp + Npsa = n?

A> B <~ NA>B > 7;2
Assuming (A;) and (B;) have a common distribution:
ENasp = > P(A; > B)) = o)

3,j=1

A> B < Nasp > ENgsp

26




ITD Dice — intransitive cycle

—

Hence:
ArB <= Nysp=

27

Na>p —ENasp

(Var NA>B)1/2

>0




ITD Dice — intransitive cycle

—
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Hence:
Na>p —ENasp

(Var NA>B)1/2

ArB <= Nysp= >0

If we have £ > 3 dice:

DU D@ DO DM
i

(N1, Na, ..., N;) € (0,00)"

Main question: As n — oo,




IID Dice — Central Limit Theorem
—

28

Theorem (Uniform case, ¢ = 3)

Suppose (A;), (Bi), (C;) are #id. with distribution Unif(0,1).

- - - d
(Nas>B,Np>c,Nesa) — N(0,%)

where




IID Dice — asymptotic transitivity

Planez +y+2=0

29

Matrix ¥ is singular:

1 1
(411
_1 1 -1
it

-3 —3 1

Corollary (Uniform case, ¢ = 3)

P(A>B>CA) 5 P(N(0,%) € (0,00)%) = 0.




Back to counting strings

—

30

D3(n) :  3n-letter strings, with n letters A, B and C.

Dy 3(n) : intransitive strings in D3(n).

D> 3(n))|

Corollary (Uniform case, { =3) = ——2 —=0.

D3 (n)]




Proof ideas — method of moments

—

31




Proof ideas — method of moments

—

Nisp -5 N(0,1)

)

E((Nasp)] = EIN(0,1)1] = {

0
(t—1)!

31

if ¢ is odd

. . bl
if t is even




Proof ideas — method of moments

IR

NA>B N N(0,1)
i}

E[(Nasp)f] — EN(0,1)1] = {0

(t—1)!

Var NA>B = 7’L30' + O(?’LQ)

31

if t is odd

. ,
if t is even




Proof ideas — method of moments

—

Nasp =

E((Nasp)] = EIN(0,1)1] = {

NA>B - IENA>B

NA>B i> N(O, 1)
0

0
(t— 1)

Var N s p = no + O(n?)

(Var Na~p)1/?

= E[(NA>B)t] =

31

if ¢ is odd

. . bl
if t is even

€44

E[(x Gner, 5) ]

n2(0 + o))




Proof ideas — using graphs

P

A B
e °
e °
e °
O] °
O] °

32

B[(ews) | =30 Y Blew.

.3 11,71 i¢,Jt

€1,1 €23 €21 ... eit,jt

. eitmjt}




Proof ideas — using graphs

—

A B
e——=O0
© )
© )
© )
© )

32

E[(Zew)] Z ZE%,]I - €iyji)

¥ 11,1 it,Jt

€1,1 €23 €21 ... € 4,




Proof ideas — using graphs

—

A B

—o
o

o

o °

o °

32

E[(Zew)] Z ZE%,]I - €iyji)

¥ 11,1 it,Jt

€1,1 €2,3 €2,1 ... € 4,




Proof ideas — using graphs

A B
E[(E ew) ] E E Elei, j, - - - €i,j.]
i,j .01 et
o R
€1,1 €23 €21 ... €5 j,
@
o o
o o




Proof ideas — using graphs

A B

(€]

o ---

32

B[(Cew)] =2 Tl

,J 11,71 it,Jt

€11 €23 €21 - €iyj,

: eit,jt}




Proof ideas — using graphs

A B

o

32

EKZ e”) ] Z ZE €ir i - - Cir,ji)

1, i1 G
€1,1 €23 €21 --- €4 7,

» Connected components <> independence

E[(eil,jl : eltl,ﬁl HE
G1




Proof ideas — using graphs

A B

o

32

EKZ ew) ] Z ZE €ir,jr - - - Ciyji)

2% 11,J1 it,Jt
61’1 62’3 62’1 Ce eit,jt
» Connected components <> independence
E[(eil,h : eltl,le HE

G1
» Isolated edges:

E[ei’j] = P(Al > Bj) — % =0.




Proof ideas — counting cherries

A B

o

33

Sufficient to count cherry graphs!




Proof ideas — counting cherries

A B

o

33

Sufficient to count cherry graphs!

» More than ¢/2 connected components:

At least one with one edge.




Proof ideas — counting cherries

A B

o

33

Sufficient to count cherry graphs!

» More than ¢/2 connected components:

At least one with one edge.

» Less than ¢/2 connected components:

#graphs = O(nStT_l) <n?.
Since |E[G]| is bounded, can be ignored.




Proof ideas — counting cherries

A B

o

33

Sufficient to count cherry graphs!

» More than ¢/2 connected components:

At least one with one edge.

» Less than ¢/2 connected components:

#graphs = O(nStT_l) <n?.

Since |E[G]| is bounded, can be ignored.

» Focus on

- Exactly t/2 components;
- At least 2 edges in each;




Proof ideas — counting cherries

A B

o

33

Sufficient to count cherry graphs!

» More than ¢/2 connected components:

At least one with one edge.

» Less than ¢/2 connected components:

#graphs = O(nStT_l) <n?.

Since |E[G]| is bounded, can be ignored.

» Focus on

- Exactly t/2 components;
- Exactly 2 edges in each;




Proof ideas — convergence of random vector 34

—

By the Cramér-Wold criteria:

- - - - - -4
(Na>B, Np>c, No>a) = (N1, N2, N3) — N(0,%)

)

For every a = (aq, ag, as):

3 3
3" ailN; 5 Y @i X, where X = (X1, X2, X3)T ~ N (0, ).
=1 =1 ﬁ

For every a = (o, ag, as):

3 3 —_—
EK;%NM *EK;O‘ZX")? - {(()aTEa)t/2(t— 1)l 1: : ijn’




CLT — General case
I

We allow quite general sequence of dice!

>
>
>
>
>

(>3 dice: D= (DY, DA
We look at the laws of sequence of dice {Dy, }m;
Different laws: ~ DU)(m) has iid faces with law E,(%);

Different dice are independent;

DY),

) )

Different number of faces: n;(m);
(for convenience, n; = f; - m, with f; <1.)

35




CLT — General case; important quantities

—
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Single edge:

E k+1

——=o0

pr = p(L®), L) = P(ng) > ngﬂ)) = E<]1D§k>>D§k+1>>

Cherry of type (k+1,3):

ar = q(ﬁ(k)’ﬁ(k;-&-l)) — IE”(D( ) S D(k+1) (k) S D(k+1))




CLT — General case; important quantities

—

Cherry of type (k,2):

k+1

~

re = r(£®,£00) = p(D{¥ > DIV, D > DY)

o

Cherry of type (k,1):

k-1 k k+1
o——o——o

sy = (LD, L0, £00) o p (D > DY > DY)




CLT — General case; important quantities

—
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From pg, qx, ri, Sg we have many important quantities. Let:

lof

Tk

Then, we have

[fkfk—i—l (fe(ak — PE) + ferr(re — PR))
1

= fe—1.Skfe+1(Sk — Pr—1Pk) -

Ok—10k

E(Ny) = fefrim’pr,
Var (N;,) = oim® +o(m?), and
Corr (Ng—1,Ng) = v +o(1).

}1/2




CLT — General case
P ——

39

Assumptions
Fix ¢ > 3. Assume the sequence {D,, },, satisfies
(i) For k =1,...,/ the relative sizes fr = fr(m) satisfy

fr(m) = fr(oo) € (0,1], as m — oo.

(ii) For k =1,...,¢ the rate of growth of the mean and variance of N} and
covariance between Ni_q and N satisfy

as m — o0.




CLT — General case
P ——

Theorem
Under Assumptions, we have

(N1, N, ..., Ny -5 N(0, %),

n—oo
where
1 Y2 (00) 0 0
~2(00) 1 ~3(00) 0
0 00 1 0
5 = wle) |
0 0 0 1
Y1(00) 0 0 Ye(c0)

40




Connecting CLT with intransitivity, ties allowed

—

41

No-tie dice: P(DW ... > DO DMWY 5 PN(0,8) € (0,00)").




Connecting CLT with intransitivity, ties allowed

—

41

No-tie dice: P(DW ... > DO DMWY 5 PN(0,8) € (0,00)").
Theorem (Connecting CLT with intransitivity, ties allowed)
Fiz ¢ > 3 and assume {Dy, }n, satisfy the Assumptions. Suppose that there exists
d >0 and a function r(m) with lim,, . (M) = +o00, for which
1 1 0

5 —pr— 5P(D{Y = DY) >

-, k=1,...,¢
2 2 —  ml/Zr(m)’ Y

for every m sufficiently large, and in addition

lim ]P(DY“)(m) =D§k+1)(m)) =0 fork=1,... 0

m—ro0

Then
lim sup P (D<1> e DO D(1)> <P (/\/(0, ) e [o, oo)f) .

m— 00




Connecting CLT with intransitivity
—

Important case:  all laws are the same
> % - Pk — %P(ng) = ngﬂ)) = 0 always holds.
» We have that asymptotically, when probability of ties go to zero:

1 1 1
ar —7 5, Tk — Sk — =

— a) P
Pr = 5 3 3 6

» Consequently:
o(00) = \/f’ffkﬂ(fg + fry1)
fkflfkfk+1

Vi (00) =

N VF=1Se(fe=1 + SV Frfrrr (fe + frr)




ITD case with ties going to zero

—
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» Covariance matrix Y has a very interesting structure!

Lemma
In iid. case with probability of ties going to zero, we have that det X = 0 and the
eigenspace of 0 has dimension 1 and is generated by a vector x € (0, 00)".




ITD case with ties going to zero 43

—

» Covariance matrix Y has a very interesting structure!

Lemma

In iid. case with probability of ties going to zero, we have that det X = 0 and the
eigenspace of 0 has dimension 1 and is generated by a vector x € (0, 00)".

Corollary

In did. case with probability of ties going to zero:

P (D<1) > DO D<1>) P (/\/(0, ) € [o, oo)€> ~0.




Example: intransitive cycles with high probability 44
—

Theorem

Let AK) = (agk), .. ,afﬁ)) for k € [{] be a set of ¢ deterministic honest dice with m
faces that is known to be intransitive: A®) > A&+ for every k. Consider random
dice (B® : k € [0]), each with n faces, where the faces of die B*) are
independently chosen with law

(k) cer o (R) L
B ~ Unif{a;”" :i € [m]},

that is, uniformly over the faces of die A%®¥). Then, there is a constant ¢ > 0,
depending only on the set of dice A®), such that

P(BY > B@b...6 BO s BWY = 140(e™™), asn— o (1)




Exponential rate of growth of intransitive words

Theorem
Fiz € > 3. It holds '81P2™l _ p1o6y

n

45




Exponential rate of growth of intransitive words 45

Theorem
Fiz € > 3. It holds '8Pet®l _ p1o0p.

n

Dy o (n)]
» We saw D] — 0.

» Let Q(n) be a set of close to intransitive words:

Q(n) = {W € Wy(n); 2N ip1 > n? — n3/2 (1 + %) 1/2}

= {(Ny,...,Ny) € (———, )}

Then, the CLT implies 125" — ¢ > 0.

Hence, |Qy(n)| has exponential growth of order ¢log ¢.

» Build intransitive words by concatenating to W € Qy(n) a highly intransitive
word.




Obrigado!
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