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INTRODUCTION

Our focus is time series modeling.

Our aim is to operate with models that are not limited by
restrictive hypotheses such as stationary.

Another relevant point: modeling the data in their natural scale,
without the need for transformations, for example, for induction
of normality.

We adopt the class of Dynamic Bayesian Models
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INTRODUCTION

By relaxing certain restrictive assumptions, there is no analytical
solution for the cycle of updates required for Bayesian Inference
in this class.
We will work with our own proposal for updating information in
this context.Essential aspects in our proposal:

Preservation of the sequential aspect of the analysis;
Computational efficiency.

⇒ An R package was developed based on a novel methodology for
Bayesian updating in dynamic generalyzed models: kDGLM
(https://github.com/silvaneojunior/kDGLM).
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A TYPICAL NON-STATIONARY TIME SERIES

FIGURE: Weekly initial claims for unemployment in the US.
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BAYESIAN DYNAMIC MODELS

Dynamic models are built based on structural components with
clear interpretation, in order to describe:

temporal trends;
seasonal patterns;
regressor effects.

Each structural component can be assigned temporal dynamics

The Bayesian inferential approach allows for naturally
accommodating external information to the observed data.
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DYNAMIC LINEAR MODELS

Denote all the information available to the analyst at time t by Dt .
The general form of a dynamic linear model is:

Obs. eq. : yt = F′
tθt + νt νt ∼ N[0,Vt ]

Evol. eq: θt = Gtθt−1 + ωt ωt ∼ N[0,Wt ]

Initial information : (θ0 | D0) ∼ N[m0,C0] (1)

yt response vector (r × 1);

θt latent states vector (n × 1);

Ft known design matrix (n × r );

Gt known evolution matrix (n × n);

Vt observational covafriance matrix (r × r );

Wt matriz de covariâncias conhecida (n × n);

The model is defined by {F,G,V,W}t .
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EX: LINEAR TREND + REGRESSION DYNAMIC MODEL

EQ. OBS. : yt =
(

1 0 Xt
) µt

βt
γt

+ vt , vt ∼ N(0,Vt)

EQ. SIST. :

 µt
βt
γt

 =

 1 1 0
0 1 0
0 0 1

 µt−1
βt−1
γt−1

+ ωt

INFO. INICIAL :

 µ0
β0
γ0

 ∼ N

 m0
b0
g0

 ,C0


ONDE

ωt ∼ N

 0
0
0

 ,

 W1,t + W2,t W2,t 0
W2,t W2,t 0

0 0 W3,t


.
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BAYESIAN UPDATING

θt−1 | Dt−1
evolution→ θt | Dt−1

updating→ θt | Dt
posterior prior posterior

↓ ↓
Yt | Dt−1 Yt+h | Dt
prediction prediction

For uni-variate and multivariate DLMs, the updating cycle has
analytical solution (see West & Harrison, chaps 4, 16).

Unknown components in Ft , Gt or non-Gaussian responses make it
unfeasible to obtain an analytical solution for the update process.
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BAYESIAN UPDATING

(A) Prior distribution at time t :

p(θt |Dt−1) =

∫
p(θt ,θt−1|Dt−1)dθt−1

=

∫
p(θt |θt−1,Dt−1)p(θt−1|Dt−1)dθt−1

(B) One-step-ahead prediction for Yt :

p(Yt |Dt−1) =

∫
p(Yt ,θt |Dt−1)dθt

=

∫
p(Yt |θt ,Dt−1)p(θt |Dt−1)dθt

DME-MAIO-2024



INTRODUCTION DYNAMIC GENERALIZED LINEAR MODEL OUR PROPOSAL: SEQUENTIAL LEARNING ON k -DGLMS APPLICATIONS REFERENCES

BAYESIAN UPDATING

(C) Posterior distribution at time t :

p(θt |Dt) ∝ p(Yt |θt ,Dt−1)p(θt |Dt−1)

Once the posterior distribution for the states is available at time t ,
there may be interest in the predictive distribution h steps ahead:

p(Yt+h|Dt) ∝ p(Yt+h|θt+h,Dt)p(θt+h|Dt), h = 1,2, . . . .

The estimates of latent states can be revised in light of all available
information through smoothed distributions:

p(θT−h|DT ) h = 1,2, . . . .
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beginframeDynamic Generalized Models

In practical applications, violation of the Gaussian assumption
for the response are frequent.

We focus on the class of Dynamic Generalized Linear Models
(DGLM), defined by West et al(1985), assuming responses
distributed in the uni-parametric exponential family

Bayesian inference must be approximated.
DME-MAIO-2024
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DYNAMIC GENERALIZED MODELS

In this work, we consider DGLMs for k -parametric exponential
families and assume that k dynamic predictors may be specified;
for instance:

1 different predictor structures for the mean and precision on a
normal dynamic model;

2 k predictors for d = k + 1 categorical counts of a multinomial
response.

We propose an inferential approach for k -parametric uni or
multivariate DGLMs based on information geometry, focusing
on sequential Bayesian learning and real-time inference
(naturally dealing with monitoring, intervention and discounting
strategies)
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SEQUENTIAL ANALYSIS: INTERVENTION

D0: Prior information; Dt = {D0, y1, . . . , yt} (if the learning
system is closed to external information)
Intervention effects: It = {ht ,Ht} or ξt ∼ N[ht ,Ht ], where ht
and Ht are subjectively evaluated
⇒ Available informationl:{Dt , It}.
Instantaneous effects: It = {yt is missing} ≃ {V−1

t → 0}
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DGLM - DEFINITION

A Dynamic Generalized Linear Model (DGLM) is defined, for each time t ,
by three equations:

p(yt |ψt) = c(yt)exp {H′ψt − b(ψt)} Obs. Eq.
g(ηt) = F ′

t θt = λt Predictor
θt = G′

tθt−1 + ωt , ωt ∼ N(0,Wt). Evol. Eq.

H′(yt) = (h1(yt), . . . ,hk (yt)) is a vector of sufficient statistics for ηt ;

ψ′
t = (ψ1t , . . . , ψkt), ψit = ciϕi(ηt), i = 1, . . . , k . ψt is the natural or

canonical parameter .

Ft is a known (p × k ) dynamic regression matrix;

Gt is a (p × p) state evolution matrix;

Wt is a (p × p) evolution covariance matrix.

g is an invertible link function. If gi(ηt) = ciϕi(ηt) = ψit ,
i = 1, . . . , k , g is the canonical link.
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The conjugate prior for ψt is given by:

p(ψt |τ ) = [K (τ0, τ )]
−1 exp

{
τ ′ψt − τ0b(ψt)

}
,

τ ′ = (τ1, . . . , τk ).

Once the conjugate prior for ψt is adopted, posterior and
predictive distributions are analytically available.

In a DGLM, interest lies not only on ψt , but also on the states θt ,
for which no conjugate form is available.
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DGLM - APPROACHES FOR APPROXIMATING THE

POSTERIOR

MCMC: high computational cost, sequential aspect of the
analysis is lost.
(e.g. Frühwirth-Schnatter, 1994; Carter and Kohn, 1994;
Gamerman, 1998, 1997; Shephard and Pitt, 1997; Durbin and
Koopman, 2002);

Conjugate Updating : computational efficiency, but restricted to
one-parametric exponential families.
(West et al, 1985)

Bi-parametric exponential family, GMM
(Souza et al, 2016)

Formulations based on local level models: lack flexibility for the
predictor structure.
(e.g. Gamerman et al, 2013)
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OUR PROPOSAL: SEQUENTIAL LEARNING ON k -DGLMS

Remember that
g(ηt) = F ′

t θt = λt .

1 At time t=1, assume a p-dimensional Normal prior for the states θt ,
inducing a k -variate normal prior for the vector of linear predictors λt ;

2 obtain the conjugate prior for g(ηt) that is the best approximation for
the normal prior of λt ;

3 Update ψt = g(ηt) through conjugacy properties, obtaining its
posterior distribution;

4 obtain the Normal posterior for λt that is the best approximation for
the posterior of g(ηt);

5 apply normal theory properties to obtain the updated distribution of θt ,
given λt ;

6 repeat steps 1 to 5 for t = 2, . . . ,T .
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OUR PROPOSAL: SEQUENTIAL LEARNING ON k -DGLMS

Let Dt denote the set of available information at time t .

DME-MAIO-2024



INTRODUCTION DYNAMIC GENERALIZED LINEAR MODEL OUR PROPOSAL: SEQUENTIAL LEARNING ON k -DGLMS APPLICATIONS REFERENCES

RECONCILING PRIOR SPECIFICATIONS: PROJECTION

THEOREM

Kullback-Leibler (KL) divergence between distributions p and q:

DKL [p : q] = KL[p(η|τ ′);q(η|τ )] =
∫

p(η|τ ′) log(
p(η|τ ′)

q(η|τ )
)dη.

THEOREM (PROJECTION THEOREM - V. AMARI, 2016))

Let p(η) be a probability distribution on a set F . Let S be an
exponential family over F . The distribution q(η) that minimizes the
divergence DKL [p : q] ,q(η) ∈ S is such that

Eq(Hq) = Ep(Hq),

where Hq is the vector of sufficient statistics under distribution q.
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RECONCILING PRIOR SPECIFICATIONS: PROJECTION

THEOREM

DKL [p : q] ̸= DKL [q : p], so the minimization of the KL
divergence must be reevaluated for posterior distributions.

Although we operate on the minimization of the divergence
between two prior/posterior densities, the method resumes to an
optimization problem on the parametric space.

Specifically, we search for the parameters τt of the conjugate
prior/posterior that minimize the KL divergence between the
conjugate specification and the one induced by the normal
assumption for the states and perform the reciprocal operation
for the posterior updating of the linear predictors.
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FILTERING ALGORITHM

arXiv: Alves, Migon, Marotta, Santos Jr (2023). k-parametric
Dynamic Generalized Linear Models: a sequential approach via
Information Geometry
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SMOOTHING AND PREDICTION ALGORITHM

Once the j-steps ahead prior distribution for the linear predictor is
obtained → obtain the best conjugate approximation for the canonical
parameters → p(yt+j |Dt) is obtained directly by conjugacy properties.
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PARTICULAR CASES

We present the detailed computations involved in the particular cases:

Bernoulli (k = 1);

Poisson (k = 1);

Normal with dynamic predictive structure both for the mean and
precision (k = 2);

Gamma (k = 2)

Multinomial on d = k + 1 categories

Bivariate normal (k = 5)
Work in progress:

Generalization to m-variate normal, m > 2
Dirichlet for d = k + 1 categories
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R PACKAGE: KDGLM

The R package kDGLM, enables sequential analysis with: sequential

filtering;

smoothing;

h-steps-ahead predictions;

intervention;

automated monitoring.

The package also enables to fit:

autoregressive and transfer function models;

multivariate models though latent common factors;
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POISSON DGLM FOR QUARTERLY SALES

We fit the following model through our proposal and the Conjugate
Updating by West et al (1985):

yt |ηt ∼ Poisson(ηt)

log(ηt) = F ′
t θt

θt = Gtθt−1 + ωt , ωt ∼ N(0,Wt),

with F ′
t = [1,0,1,0,1,0] ; Gt = diag [G0,G1,G2] and

G0 =

[
1 1
0 1

]
,Gk =

[
cos(kw) sen(kw)

−sen(kw) cos(kw)

]
,w = 2π/4 and k = 1,2.
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POISSON DGLM FOR QUARTERLY SALES

The same data were fit adopting the proposal by Gamerman et
al(2013), which accommodates a single dynamic component (local
level model):

yt |ηt ∼ Poisson(ηt)

ηt = αt exp(β1x1t + β2x2t + β3x3t),

ω
αt

αt−1
| αt−1,Dt−1, φ ∼ Beta[ωat−1, (1 − ω)at−1]

⇒ αt , | Dt−1, φ ∼ Gamma(at |t−1,bt |t−1)

x1t = t , x2t = cos(wt), x3t = sin(wt) where t=1, . . . ,35 and w =
2π/4
R Package: NGSSEML (Santos et al., 2021)
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POISSON DGLM FOR QUARTERLY SALES

FIGURE: One step ahead prediction.
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POISSON DGLM FOR QUARTERLY SALES

Metric Local level Conj. Upd. Our prop.

MAE 82.808 33.263 33.496
RAE 0.267 0.122 0.121
MSE 10,569.117 1,581.828 1,594.727
LPL -214.006 - -190.600
Comp. time∗ 818.803s 0.024s 0.024s

TABLE: Model comparison based on the smoothed mean response function
and several metrics. *Time measured using R 4.2.0 running under Windows 10
x64 (build 19044) in an Intel(R) Core(TM) i7-8700K CPU @ 3.70GHz with 16 GB
RAM @ 2400 MHz.

Note that West et al (1985) are not able to deal with k -parametric
exponential families, for k > 1.
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STOCHASTIC VOLATILITY MODELS

GAMMA FORMULATION

A traditional model for the returns is:

yt = eht/2ϵt , ϵt ∼ N(0,1)

⇒ ln(y2
t ) = ht + at ,

where at follows a log-χ2 distribution.

⇐⇒ y2
t |ht = eht ϵ2t ∼ Gamma(1/2,1/2e−ht ).
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GAMMA AND NORMAL FORMULATIONS

We propose two approaches:

modelling the returns at their original scale, using a normal
model with dynamic predictors for the mean and precision;

a dynamic gamma model for the square of the returns, with
shape parameter ϕ = 1/2.
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GAMMA DYNAMIC MODEL FOR THE SQUARED RETURNS

y2
t |ht = eht ϵ2t ∼ Gamma(1/2,1/2e−ht ).

ln(µt) = λt = ht

ht = h + st

st = γst−1 + ωt

γ an autoregressive parameter estimated following the ideas in West
Harrison (1997, Chap.13,pp. 492-97).
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NORMAL DYNAMIC MODEL FOR THE RETURNS AT THEIR

ORIGINAL SCALE

yt ∼ N(µt , ϕ
−1
t )

ln(ϕt) = −ht

ht = h + st

and predictive structure

λt =

[
λ1t
λ2t

]
=

[
µt
−ht

]
,

and evolution equations[
µt
st

]
=

[
µt−1
γst−1

]
+

[
ω1t
ω2t

]
(ω1t = 0 w.p. 1)
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AN UNIVARIATE ANALYSIS, BASED ON ARTIFICIAL DATA

GAMMA X NORMAL FORMULATIONS

FIGURE: Gamma and Normal formulations: AR coefficient and Smoothed
volatility
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AN UNIVARIATE ANALYSIS, BASED ON ARTIFICIAL DATA

GAMMA X NORMAL FORMULATIONS

FIGURE: Smoothed volatility via Normal formulation: our proposal and
STAN
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A BIVARIATE DYNAMIC NORMAL MODEL FOR THE JOINT

RETURNS OF WHEAT AND CORN
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A BIVARIATE DYNAMIC NORMAL MODEL FOR THE JOINT

RETURNS OF WHEAT AND CORN
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A BIVARIATE NORMAL MODEL FOR THE RETURNS OF

CORN AND WHEAT

Suppose that we have a sequence of pairs of random variables y1t ,y2t
so that:

y1t , y2t ∼ N (µ1t , µ2t , σ
2
2t , σ

2
2t , ρt),

µ1t
µ2t

ln(σ2
2t)

ln(σ2
2t)

logit( (ρt+1)
2 )

 = λt = F ′
t θt
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A BIVARIATE NORMAL MODEL FOR THE RETURNS OF

CORN AND WHEAT

Notice that the proposed approach can only fit univariate Normal
models. Let’s say that we have observed all data until time t , and that
π(θt |Dt−1) is known. It follows that:

π(θt |Dt) = π(θt |Dt−1, y1t , y2t)

∝ f (y1t , y2t |θt)× π(θt |Dt−1)

= f (y2t |y1t , θt)× f (y1t |θt)× π(θt |Dt−1)
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A BIVARIATE NORMAL MODEL FOR THE RETURNS OF

CORN AND WHEAT

Notice that f (y1t |θt)×π(θt |Dt−1) can be obtained using our approach
and, since f (y1t |θt)× π(θt |Dt−1) ∝ π(θt |Dt−1, y1t), we can write:

π(θt |Dt) = f (y2t |y1t , θt)× f (y1t |θt)× π(θt |Dt−1)

∝ f (y2t |y1t , θt)× π(θt |Dt−1, y1t),
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A BIVARIATE NORMAL MODEL FOR THE RETURNS OF

CORN AND WHEAT

Then, treating π(θt |Dt−1, y1t) as a prior for θt (in the sense that it is
the knowledge we have of θ prior to observing y2t ), we can use our
approach to obtain f (y2t |y1t , θt)× π(θt |Dt−1, y1t), since:

y2t |y1t ∼ N (µ̄t , σ̄
2
t ),

where:

µ̄t = µ2t + ρt
σ2t

σ1t
(y1t − µ1t),

σ̄2
t = (1 − ρ2

t )σ
2
2t ,
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A BIVARIATE NORMAL MODEL FOR THE RETURNS OF

CORN AND WHEAT

Notice that µ1t , µ2t , σ2
1t ,σ

2
2t and ρt are functions of θt , so we can also

write µ̄t and σ̄2
t as functions of θt .

But then we find one difficulty: to use the proposed approach to
obtain f (y2t |y1t , θt)× π(θt |Dt−1, y1t), we would need to write µ̄t and
ln(σ̄2

t ) as linear functions of θt .

To solve this problem, we apply a linearization to µ̄t and ln(σ̄2
t )
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A BIVARIATE DYNAMIC NORMAL MODEL FOR THE JOINT

RETURNS OF WHEAT AND CORN

Corn Volatility Wheat Volatility Correlation
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FIGURE: Estimation for the volatility for Corn and Wheat (left and center)
and the correlation between the series (right).
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A BIVARIATE NORMAL MODEL FOR THE RETURNS OF

CORN AND WHEAT

COMPUTATIONAL TIMES

Fitting the last 5 years of returns: (1,204 observations):
STAN: 1414.46 secs (23.57 mins)
Our proposal: 2.52 secs

Fitting the last 30 years of returns (7,252 observations):
Our proposal: 16.64 secs
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MULTINOMIAL DGLM FOR VARICELLA HOSPITAL

ADMISSIONS IN BRAZIL

Yt |η1t , . . . , ηkt ∼ Multinomial(η1t , η2t , . . . , ηdt) where
ηdt = (1 − η1t − . . .− ηkt), d = k + 1. λ1t

...
λkt

 =


log

(
η1t
ηd,t

)
log

(
ηkt
ηd,t

)
 = F ′

t θt .

Consider the same structure for each category:

Fjt = = [1,0,1,0,1,1] , j = 1, . . . , k
Gjt = blockdiag

[
Gtrend ,Gseasonality ,1,1

]
Gtrend =

[
1 1
0 1

]
,Gseasonality =

[
cos(ω) sin(ω)
−sin(ω) cos(ω)

]
, ω =

2π
12
.

Ft = blockdiag [F1t , . . . ,Fkt ] , Gt = blockdiag [G1t , . . . ,Gkt ].
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FIGURE: Observed values (solid circles) compared with one-step-ahead
prediction.
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MULTIVARIATE POISSON DGLM FOR GASTROENTERITIS

HOSPITAL ADMISSIONS IN BRAZIL

−4 −3.5 −3 −2.5
log10(admissions/population)

FIGURE: The log10 rate of hospital admission on Brazil by state, from 2010
to 2022.
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MULTIVARIATE POISSON DGLM FOR GASTROENTERITIS

HOSPITAL ADMISSIONS IN BRAZIL

Yit |ηit ∼ Poisson(ηit)

ln{ηit} = λit = θ1,t + ui,t + Si,t + ϵi,t ,

θ1,t = θ1,t−1 + θ2,t−1 + ω1,t ,

θ2,t = θ2,t−1 + ω2,t ,[
ui,t
vi,t

]
= R

[
ui,t−1
vi,t−1

]
+

[
ωu

i,t
ωu

i,t

]
,

ϵt ∼ N (0, σ2
t ),

S1,1, ...,Sr ,1 ∼ CAR(τ),

where r = 27 is the number of areas within our dataset.
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MULTIVARIATE POISSON DGLM FOR GASTROENTERITIS

HOSPITAL ADMISSIONS IN BRAZIL

Currently, the kDGLM package does not offer support for
sequential estimation of τ , the parameter associated with the
CAR prior.

A study is being developed to address this limitation.

For now, we conducted a sensitivity analysis to determine an
optimal value for τ . The optimal value was τ = 0.005.
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MULTIVARIATE POISSON DGLM FOR GASTROENTERITIS

HOSPITAL ADMISSIONS IN BRAZIL
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FIGURE: The time series of hospital admissions by gastroenteritis of some
Brazilian states and smoothed means, from 2010 to 2022.
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MULTIVARIATE POISSON DGLM FOR GASTROENTERITIS

HOSPITAL ADMISSIONS IN BRAZIL

(c) April, 2020 (d) December, 2022

(a) January, 2010 (b) March, 2020
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FIGURE: The smoothed estimation for the log10 hospital admissions rate by
gastroenteritis in Brazilian states at 4 key moments
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MULTIVARIATE POISSON DGLM FOR GASTROENTERITIS

HOSPITAL ADMISSIONS IN BRAZIL
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FIGURE: The upper row displays the log10 predictions for the hospital
admissions rate due to gastroenteritis in Brazilian states for January 2015
and December 2019, based on information available up to 3 months prior.
The lower row shows the observed log10 rate of hospital admissions.
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Link for the package (soon it will be available on CRAN-R):

https://github.com/silvaneojunior/kDGLM

Thank you!
mariane@im.ufrj.br
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