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temporal graphs

A temporal graph G = (V ,E , π) is a finite simple graph together
with an ordering π : E → {1, 2, . . . , |E |} of the edges.

The edges have time stamps.

Edge e precedes edge f if π(e) < π(f ).

Temporal graphs model time-dependent propagation processes
such as infection processes.

An infection spreads along monotone increasing paths.



random simple temporal graphs

Today G ∼ G(n, p) is an Erdős–Rényi random graph.

Such a random graph may be generated by assigning i.i.d. random
labels to each edge of the complete graph Kn.

The label of edge {i , j} is an exponential random variable Wi ,j .

An edge is kept if and only if Wi ,j ≤ − log(1− p) (so that
P{Wi ,j ≤ τ} = p).

Denote the random temporal graph by G (W ).



connectivity

This model was formally introduced by Casteigts, Raskin, Renken,
and Zamaraev (2022) and Becker, Casteigts, Crescenzi, Kodric,
Renken, Raskin, and Zamaraev (2022).
They prove that, with high probability,

• a typical pair of vertices is connected by an increasing path if
p ≥ (1 + ε) log n/n and disconnected if
p ≤ (1− ε) log n/n.

• a typical vertex can reach all other vertices if
p ≥ (2 + ε) log n/n and cannot reach all of them if
p ≤ (2− ε) log n/n.

• any pair of vertices are connected if p ≥ (3 + ε) log n/n but
not all of them are connected if p ≤ (3− ε) log n/n.



longest and shortest monotone paths

Define `(i , j ) and L(i , j ) as the minimum and maximum length of
any increasing path from i to j .

We study

• L(1, 2) and `(1, 2); the lengths of the longest and shortest
increasing paths between two fixed vertices.

• maxj∈{2,...,n} L(1, j ) and maxj∈{2,...,n} `(1, j ); the maximum
length of the longest and shortest increasing paths starting at
a fixed vertex;

• maxi ,j∈[n] L(i , j ) and maxi ,j∈[n] `(i , j ); the maximal length of
the longest and shortest increasing paths.



longest monotone paths

Angel, Ferber, Sudakov, and Tassion (2020) showed that if
p = o(n) and, pn/ log n →∞ then, with high probability,

max
i ,j∈[n]

L(i , j ) ∼ enp .

This excludes the “interesting” regime p ∼ c log n/n.

In fact, when pn/ log n →∞,

L(1, 2) ∼ enp .



proof of L(1, 2) ∼ enp

Partition [0, p) as [0, 2 log n/n) ∪ [2 log n/n, p − 2 log n/n) ∪
[p − 2 log n/n, p) and let W1, W2, W3 be the collections of edge
weights falling in the corresponding intervals.

This decomposes G (W ) into the union of three graphs
G (W1),G (W2),G (W3).

The longest monotone path in G (W2) has length ∼ enp, say from
i∗ to j∗.

But in G (W1) there is a path from vertex 1 to i∗ and in G (W3)
there is a path from vertex j∗ to 2.



some key constants

For any c > 0, define

α(c) = inf{x > 0 : x log(x/ec) = 1}

and for c > 1,

β(c) = sup{x > 0 : x log(x/ec) = −1}

γ(c) = inf{x > 0 : x log(x/ec) = −1}



some key constants

The equation x log(x/ec) = −1 has at most two solutions for
c > 0, these are β(c) and γ(c).

When c = 1, there is only one solution and β(1) = γ(1) = 1.

For c < 1 there is no solution, for c > 1 there are two.

The equation x log(x/ec) = 1 has a unique solution for all c > 0.

Note that as c →∞, α(c)/c → e, β(c)/c → e, and
γ(c)/c → 0.

An example value is α(1) ≈ 3.5911.



longest monotone paths

Suppose p = c log n/n. With high probability,

• if c ∈ (0, 1), there is no increasing path between 1 and
2, and if c ≥ 1, L(1, 2) ∼ β(c) log n;

• for all c > 0, maxj∈{2,...,n} L(1, j ) ∼ ec log n;

• for all c > 0, maxi ,j∈[n] L(i , j ) ∼ α(c) log n .



shortest monotone paths

Let p = c log n/n. With high probability,

• for c > 1, `(1, 2) ∼ γ(c) log n;

• for c > 2, maxi∈[n] `(1, i ) ∼ γ(c − 1) log n;

• for c > 3, maxi ,j∈[n] `(i , j ) ∼ γ(c − 2) log n .



upper bounds: first moment considerations

Let Xk be the number of increasing paths of length k . Then
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Similarly, for the number Yk of increasing paths of length k
starting at vertex 1 and for the number Zk of increasing paths of
length k vertex 1 to vertex 2,
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The upper bounds follow simply from these identities.

We prove the lower bounds of the three statements by three
different techniques.



a related model: fitst-passage percolation

Equip the complete graph Kn with inependent exponential weights
on every edge.

The weight of a path is the sum of the weights on the edges of the
path.

Janson (1999) noted that the length of the minimum weight path
between two typical vertices is ∼ log n and the maximum length of
any shortest path starting from vertex 1 is ∼ e log n.

Addario-Berry, Broutin, and Lugosi (2010) prove that the
maximum length of all minimum weight paths is ∼ α(1) log n
where α(1) ≈ 3.5911. This corresponds to the maximum height
of n independent urrt’s.

Observe that the shortest-path tree rooted at any vertex is a
uniform random recursive tree.



proof of maxj L(1, j) ≥ ec(1− o(1)) log n

Since the bound is linear in c , it suffices to prove the lower bound
for c ≤ 1. Otherwise we may decompose the graph into dce
disjoint layers and concatenate the paths.

When c ≤ 1, one can show that the graph contains a uniform
random recursive tree of size nc(1−o(1)), rooted at vertex 1 such
that all paths of the tree starting at vertex 1 are monotone.

The construction of the tree is similar to the shortest-path tree.
We need to discard a small number of vertices in order to keep
monotonicity.

Since the height of the urrt is ∼ e log nc(1−o(1)), we have a
monotone path of desired length.

This also shows that at least nc(1−o(1)) vertices can be reached
from vertex 1.



proof of maxi ,j L(i , j) ≥ α(c)(1− o(1)) log n

Since the expected number of monotone paths of length
α(c)(1− o(1)) log n goes to infinity, it is natural to resort to the
second moment method.

However, the second moment is too large due to the many ways
paths can intersect.

We borrow ideas from Addario-Berry, Broutin, and Lugosi (2010)
and apply the second moment method to a restricted class of
paths.



proof of maxi ,j L(i , j) ≥ α(c)(1− o(1)) log n

For a path P of length k ∼ α(c) log n, the edge labels on it
increase significantly more slowly than on a typical path.

So if we enforce the property that all the vertices on P are typical,
so that the paths leaving them increase and decrease at the rate at
most 1/(en), then all the paths leaving P are shorter than the
corresponding segment of P.

This avoids undesired intersections and the second moment
method works.

One needs to show that restricting the collection of paths does not
significantly decrease their expected number.



building short and long monotone paths

Suppose c > 1. It still remains to show that

`(1, 2) ≤ (γ(c) + o(1)) log n

and
L(1, 2) ≥ (β(c)− o(1)) log n

Recall that γ(c) < β(c) are the two solutions of
x log(x/ec) = −1.
We prove that for any x ∈ (γ(c), β(c)), whp there exists an
increasing path between 1 and 2 containing ∼ x log n edges.

Note that γ(1) = β(1) = 1 so for c ≈ 1, all monotone paths
between 1 and 2 have about the same length log n.



building short and long monotone paths

It is convenient to work with uniform [0, 1] edge weights.

We look for increasing paths from vertex 1 such that labels
increase as they should to have length x log n.

Similarly, we look for decreasing paths from vertex 2

We conduct this search up to distance 1
2
x log n.

We show that the two sets of end points of the path must intersect,
because the sets at distance x

2
log n are of size at least n1/2.



building short and long monotone paths

We partition the interval [0, p/2] into r = (log n)/(2A) disjoint
intervals Ij of length cA/n where A is an appropriate constant.

We construct a supercritical branching process of monotone paths
starting at vertex 1. At each level j , only edges are chosen with
labels in the j -th interval.

The first interval is used to ensure that we have enough starting
points.

Each path has 1 + (r − 1)xA ≈ 1
2
x log n edges.



building short and long monotone paths

For a given vertex u, let Sj (u) be the set of vertices v such that
the graph G (Ij ) contains an increasing path of length xA from u
to v . Then

E|Sj (u)| ∼
(
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)(
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)xA

When x ∈ (γ(c), β(c)), this is greater than 1 for a well chosen A.

Possible collisions need to be taken care of.



the temporal diameter

The last argument is to show why

• for c > 2, maxi∈[n] `(1, i ) ∼ γ(c − 1) log n;

• for c > 3, maxi ,j∈[n] `(i , j ) ∼ γ(c − 2) log n .

For c > 2, if we partition (0, c log n/n) = I1 ∪ I2 with I2 of
length (1− ε) log n/n, then G (I2) has an isolated vertex and in
G (I1) shortest paths are of length at least γ(c − 1) log n.



temporal cliques
A set C of vertices is a temporal clique if for any i , j ∈ C , there is
a monotone path from i to j in G (W ).

What is the typical size ωn,p of the largest temporal clique?

As mentioned before Casteigts, Raskin, Renken, and Zamaraev
(2022) showed that

if p ≥ (3 + ε) log n/n, then ωn,p = n,

with high probability.

Becker, Casteigts, Crescenzi, Kodric, Renken, Raskin, and
Zamaraev (2023) prove that

if p ≤ (1− ε) log n/n, then ωn,p = o(n),

while

if p ≥ (1 + ε) log n/n, then ωn,p = n − o(n).



temporal cliques – subcritical case

When p = c log n/n for c < 1, we can say much more. The
largest clique is of constant(!) size. Whp,

ωn,p ≤
⌈

1

1− c
+ 1

⌉
(Atamanchuk, Devroye, Lugosi (2024)).

For c ≤ 1/2 the upper bound equals 3 which is best possible since
any triangle in G(n, p) is a temporal clique.

We conjecture that the bound is sharp for all c < 1.

The proof is based on estimates of (the moments of) the size of
temporal branching processes.



some further questions

• Length of longest path when p is constant?

• Size of largest temporal clique in the critical regime
p ∼ log n/n?

• Different random graph models.

• Models with recovery, reinfection.

• Super spreader events.

• Statistical questions.


