
Al buio non si trova:
Principled phylodynamics for pandemic preparation

Luiz Max Carvalho



Acknowledgments

Andrew Rambaut
UoE

Rodrigo B. Alves
FGV EMAp

Guy Baele
KU Leuven

Remco Bouckaert
Auckland

Marc Suchard
UCLA

Cristiana Couto
ICMC USP

1 / 25



Motivation
Phylodynamics of fast-evolving viruses
Inferring spatial and temporal dynamics from genomic data:

Phylogenies∗!
∗ plus complicated models
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Plan for today

Statistical Problem(s)
Central object, inference, algorithms

Principled priors
Being Bayesian is great, but it ain’t free

MCMC in tree space
A journey through a strange land

How to tell if phylogenetic MCMC
A) Is correct;
B) Works better than the state-of-the-art.
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Central object: time-calibrated trees

Figure: Figure 4 from Volz et al.
(2013).

Let 𝑇𝑛 denote the time for 𝑛 lineages to coalesce, i.e.,
merge into one ancestral lineage, in a population of
size 𝑁𝑒 . Then:

Pr(𝑇𝑛 = 𝑡) = 𝜆𝑛 𝑒
−𝜆𝑛 𝑡

𝜆𝑛 =

(
𝑛

2

)
1
𝑁𝑒

=

(
𝑛

2

)
1
𝜃𝜏

where 𝑁𝑒 is the effective population size and 𝜏 is
the generation time. Let 𝑇mrca denote the age of the
most recent common ancestor:

𝐸[𝑇mrca] = 𝐸[𝑇𝑛 ] + 𝐸[𝑇𝑛−1] + . . . + 𝐸[𝑇2]
= 1/𝜆𝑛 + 1/𝜆𝑛−1 + . . . + 1/𝜆2

= 2𝑁𝑒

(
1 − 1

𝑛

)
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https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002947
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002947


“Just chuck any prior”

Consider:
𝑡𝑘 | 𝑁𝑒 ∼ Exponential

((
𝑛

2

)
1
𝑁𝑒

)
.

If you pick 𝜋𝑁 (𝑁𝑒) ∝ 1/𝑁𝑒 , i.e. the Jeffreys’s-type prior, you get
that the marginal prior for 𝑡𝑘 is 𝜋𝑇(𝑡𝑘) ∝ 1/𝑡𝑘 .

𝑷(𝑡𝑘) = exp(𝑡𝑘𝑸) =
∑
𝑖=0

(𝑡𝑘𝑸)𝑖
𝑖! .

Lemma
If 𝑸 is diagonalisable, the posterior for 𝑡𝑘 is improper1 under a
Jeffreys’s prior for 𝑁𝑒 .

1A measure-theoretic proof of a very similar result is given in the
Appendix of Drummond et al. (2004).
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https://link.springer.com/chapter/10.1007/978-1-4471-0231-1_7


�Smooth operator �

Figure: HCV in Egypt 2.

2Minin et al. (2008). See also Karcher et al. (2020)
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https://doi.org/10.1371/journal.pcbi.1007774


Gaussian Markov random fields to the rescue

Denote the population sizes by 𝜽 = (𝜃2 , . . . , 𝜃𝑛), the likelihood
becomes

Pr(𝒔 |𝜽) =
𝑛∏

𝑘=2

𝑛𝑘0(𝑛𝑘0 − 1)
2𝜃𝑘

exp ©­«−
𝑗𝑘∑
𝑗=0

𝑛𝑘 𝑗(𝑛𝑘 𝑗 − 1)𝑠𝑘 𝑗
2𝜃𝑘

ª®¬ ,
Pr(𝜸 |𝜏) ∝ 𝜏(𝑛−2)/2 exp

(
−𝜏

2

𝑛−1∑
𝑘=2

(𝛾𝑘+1 − 𝛾𝑘)2
𝛿𝑘

)
,

where 𝛾𝑘 = log(𝜃𝑘), 𝑘 = 2, . . . , 𝑛, 𝛿𝑘 is the (1d) distance between
intervals and 𝜏 is the precision parameter associated with the
smoothing.
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Penalising complexity

Simpson et al. (2017) propose proper priors that penalise
deviations from a simple base model (“complexity”). For the
GMRF precision, this prior is a Gumbel type II family:

𝜋2(𝜏 | 𝑎, 𝑏) = 𝑎𝑏 · 𝜏−𝑎−1 exp (−𝑏𝜏−𝑎) , 𝜏 > 0. (1)

We set 𝑎 = 1/2 and 𝑏 such that Pr(1/
√
𝜏 > 𝑆) = 𝑝, where the

value 𝑆 and the probability 𝑝 are to be chosen on substantive
grounds – e.g. 𝑆 = 1 and 𝑝 = 0.1. We can then find
𝑏 = − ln(𝑝)/𝑆.
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https://doi.org/10.1214/16-STS576


Some reconstructions are sensitive to the prior

Figure: Regional Influenza
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The phylogenetic target

𝑝(𝑡 , 𝒃,𝝎 |𝐷) =
𝑓 (𝐷 |𝑡 , 𝒃,𝝎)𝜋(𝑡 , 𝒃,𝝎)∑

𝑡𝑖∈𝑻𝑛

∫
𝑩

∫
𝛀
𝑓 (𝐷 |𝑡𝑖 , 𝒃𝑖 ,𝝎)𝜋(𝑡𝑖 , 𝒃𝑖 ,𝝎)𝑑𝝎𝑑𝒃𝑖

. (2)

⊚ 𝐷: observed sequence (DNA) data;
⊚ 𝑻𝑛 : set of all binary ranked trees (𝔾(2𝑛−3)!!);
⊚ 𝒃𝑘 : set of branch lengths of 𝑡𝑘 ∈ 𝑻𝑛 (ℝ2𝑛−2

+ , kind of) ;
⊚ 𝝎: set of parameters of interest such as substitution model

parameters, migration rates, heritability coefficients, etc.
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Traversing treespace: SubTreeLeap (STL)

Pick a node Disconnect its parent Draw a new height from a
normal centred on old height
of parent. Also consider the
symmetrical height above or 
below the old height.

Pick uniformally from branches
subtending that height and the
symmetrical height above or 
below (in this case 5).

Attach parent to the chosen
location.

Hastings ratio: ratio of reverse probability 
(1 / number of reverse locations, i.e., 1/2) to 
forwards probability (i.e., 1/5).
Hastings ratio  = 5 / 2

1) 2) 3)

4) 5) 6)

There is always at least 1 target
location (above the root).

6)

In this case the HR would be 1/3

7)
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STL ergodicity

Carvalho (2019), Chapter 2.

Lemma
Assume strictly positive branch lengths. Then SubTreeLeap induces
an irreducible Markov chain on 𝔾.

Sketch: Starting at 𝑥 ∈ 𝔾, notice there exists 𝛿★𝑦 > 0 such that

𝑃
(
𝑥 → 𝑦 | 𝛿★𝑦

)
> 0 for any tree 𝑦 ∈ 𝔾 in the SPR

neighbourhood of 𝑥.

Theorem
Assume the target satisfies 𝑝(𝐴) > 0 for all 𝐴 ⊂ 𝚿. Then,
SubTreeLeap induces an ergodic Markov chain on 𝚿.

Sketch: Employ the remark to get to the case where
𝑑SPR(𝑥, 𝑦) = 0 and then establish Harris recurrence.
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https://era.ed.ac.uk/handle/1842/35510


A lower-dimensional projection

A clade is a partition of the set of leaves and two clades
𝐴 = 𝐴1 |𝐴2 and 𝐵 = 𝐵1 |𝐵2 are said to be compatible if at least
one of 𝐴𝑖 ∩ 𝐵 𝑗 , 𝑖 , 𝑗 = 1, 2 is empty. Here’s a picture3:

3Pictures taken from Wikipedia and from https:

//evolution.berkeley.edu/evolibrary/news/080301_elephantshrew
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https://evolution.berkeley.edu/evolibrary/news/080301_elephantshrew
https://evolution.berkeley.edu/evolibrary/news/080301_elephantshrew


Why clades?

⊚ Dimension! |𝕋𝑛 | = (2𝑛 − 3)!! vs |ℂ𝑛 | = 2𝑛−1 − 1
⊚ Interpretability;
⊚ Under simplifying assumptions, clades are independent

(Larget, 20134);
⊚ Clade distribution is known under popular prior

distributions.

4but see Whidden & Matsen, 2015 and Zang & Matsen, 2018.
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https://doi.org/10.1093/sysbio/syt014
https://arxiv.org/pdf/1405.2120.pdf
https://papers.nips.cc/paper/2018/hash/b137fdd1f79d56c7edf3365fea7520f2-Abstract.html


Clade indicators during MCMC

Let 𝑋(𝑖)
𝑗

∈ {0, 1} be the indicator of whether clade 𝑗 in the tree

sampled at the 𝑖-th iteration and 𝑝̂ 𝑗 = 𝑀−1 ∑𝑀
𝑖=1 𝑋

(𝑖)
𝑗

be a simple
MCMC estimator of its marginal success probability.
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Playing pretend

Pretend for a second
(
𝑋

(𝑖)
𝑗

)
𝑖≥0

is Markov on X= {0, 1} and
reparametrise the usual two-state model as

𝑷̃𝑥 :=

[
1 − 𝛼 𝛼

𝛼
1−𝑝
𝑝

𝑝−𝛼(1−𝑝)
𝑝

]
, (3)

where 𝑝 is the marginal success probability and a 𝛼 controls the
“flipping rate” of the chain. Then

ESS =
𝑀

1 + 2
∑∞

𝑡=1 𝜌𝑡

,

=
𝑀

1 + 2 𝑝−𝛼
𝛼

,

=
𝛼

2𝑝 − 𝛼
𝑀.
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Lumpability in clade space

{t1,t2} {t1,t2,t3}
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Doesn’t always work
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Measuring efficiency

Thus, we can employ the idea from Vats, Flegal & Jones (2019):
Magee et al, 2021 point out that trees are fundamentally
multivariate objects.

mESS = 𝑀

(
det(𝚲)
det(𝚺)

)1/𝑝
.

Figure: Eigenvalues can be numerically unstable.
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https://doi.org/10.1093/biomet/asz002
https://arxiv.org/abs/2109.07629


True mESS
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Simulation-based calibration
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SBC for trees

See Mendes et al. (2024) for more details.

0. Generate a reference tree from the prior 𝜏̄0 ∼ 𝜋𝑇(𝜏|𝜸);
for each iteration in 1:N, do:

1. Generate 𝜏̄ ∼ 𝜋𝑇(𝜏|𝜸);
2. Compute the distance 𝛿̄ = 𝑑𝜎(𝜏̄, 𝜏̄0) according to the metric

of choice;
3. Generate some (alignment) data 𝑦̃ ∼ 𝑝(𝑦 |𝜏̄, 𝜶);
4. Draw (approximately) 𝝉𝑠 = {𝜏(1)𝑠 , 𝜏(2)𝑠 , . . . , 𝜏(𝐿)𝑠 } from the

posterior 𝜋(𝜏| 𝑦̃);
5. Compute distances 𝜹𝑠 = {𝛿1 , 𝛿2 , . . . , 𝛿𝐿} with

𝛿𝑖 = 𝑑𝜎(𝜏(𝑖)𝑠 , 𝜏̄0);

6. Compute the rank 𝑟(𝜹𝑠 , 𝛿̄) =
𝐿∑
𝑖=1

𝕀(𝛿𝑖 < 𝛿̄).
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https://doi.org/10.1101/2024.02.11.579856


Simulation-based calibration: results
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Take home

Principled priors
Prior calibration, proper priors for generative modelling.

Principled simulation methods
Ascertaining correctness and efficiency

Major methodological challenges (as I see them)
A) Thinking carefully about priors, especially as regularisers;
B) Efficient (preferrably on-line) methods for phylogeny

reconstruction;
C) Incorporate mathematical models to link to other data

(model-driven data integration).
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