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Introduction

▶ In financial and actuarial risk management, modelling
dependency within a random vector X is crucial

▶ A standard approach is the use of a copula model

▶ Drawback: Most parametric copulas are not suitable for high
dimensional applications

▶ Generic statistics of interest, for X ∼ C (F (1), . . . ,F (d))

E (g(X )) and E (g(X ) | X ∈ A) .

▶ If {X ∈ A} is a rare event (e.g. tail event), i.i.d. MC
sampling is inefficient

▶ MCMC sampling may be helpful.



Examples

▶ Tail dependence: (McNeil, Frey, Embrechts, (’05))

λu
i ,I := lim

α→1−
P
[
X (i) > VaRα

(
X (i)

)
| ∀j ∈ I,X (j) > VaRα

(
X (j)

)]
▶ Semi-correlation (Ang and Chen (’02), Gabbi (’05)):

ρ+i ,j = Cor
(
X (i),X (j) | X (i) > 0,X (j) > 0

)
,

ρ−i ,j = Cor
(
X (i),X (j) | X (i) < 0,X (j) < 0

)
▶ k-expected shortfall (Oh and Patton (’17)):

(k − ES)(i) = E

X (i)
∣∣∣
 d∑

j=1

1{X (j)≥C}

 > k





Factor copulas

▶ Oh and Patton (’17): use as copula C the copula of an
auxiliary vector Y = Φ(Z), with Φ : RD → Rd

▶ Z := (M(1), . . . ,M(J), ϵ(1), . . . , ϵ(d)) with D = J + d
▶ M = (M(1), . . . ,M(J)) (factors)
▶ ϵ = (ϵ(1), . . . , ϵ(d)) (idiosyncratic errors)
▶ (M(1), . . . ,M(J), ϵ(1), . . . , ϵ(d)) indep. and (ϵ(i))di=1 i.i.d.

▶ Example (linear factor copula):
▶ Y(i) =M+ ϵ(i)

▶ M∼ skew t(ν, λ)

▶ ϵ(i)
iid∼ t(ν)

other examples

▶ Notation:
▶ Y ∼ C (G (1), . . . ,G (d))
▶ X ∼ C (F (1), . . . ,F (d))



Factor copulas

The problem:

▶ X = (X1 . . . ,Xk) ∼ C (F (1), . . . ,F (d))

▶ E (g(X ) | X ∈ A) ≈ 1
n

∑n
k=1 g(Xk)

▶ Convergence rate?



Factor copulas

Example: (Oh and Patton (’17))
▶ Model for the losses of the stocks in the S&P 100:

▶ Y(i) = βS(i)M(0) + γS(i)M(S(i)) + ϵ(i)

▶ M(0) ∼ skew t(ν, λ),

▶ M(S) iid∼ t(ν), S = 1, . . . , J − 1, withM(S) ⊥⊥M(0),

▶ ϵ(i)
iid∼ t(ν), i = 1, . . . , d , ϵ(i) ⊥⊥M(j)

▶ Compute the (k − ES)(i):

E

(
X (i)

∣∣∣∣∣X (1) > 1%, . . . ,X (d) > 1%

)

▶ No parameter estimation! See Oh and Patton (’17) for SSM.



How to sample X ?
Algorithm 1: Usual sampling of X through sampling of Z

1 Sample Z = (M, ϵ)
2 Compute Y = Φ(Z)
3 Get U = (U(1), . . . ,U(d)) = (G (1)(Y(1)), . . . ,G (d)(Y(d)))

4 Set X (i) = (F (i))−1(U(i))

Z =

Z(1)

...

Z(D)

 Φ→ Y =

Y(1) = Φ(1)(Z)
...

Y (d) = Φ(d)(Z)

 → U =


U(1) = G (1)

(
Y(1)

)
...

U(d) := G (d)
(
Y(d)

)
 →

→


X (1) =

(
F (1)

)−1 (
U(1)

)
...

X (d) =
(
F (d)

)−1 (
U(d)

)
 = X

▶ Infeasible if G (i) is not known!



A feasible algorithm to compute E (g(X ))

Algorithm 2: Sampling of X through approximate sampling
of Z and approximation of G (i)

Input: (F (i))−1 the quantile function of X (i), Z0 ∈ RD

Output: Xk =
(
X (1)
k , . . . ,X (d)

k

)
for 1 ≤ k ≤ n.

for k ← 1 to n do
1 Sample Zk from P(Zk−1, ·).
2 Compute Yk = Φ(Zk).

3 Approximate and mollify G (i) by

G̃
(i)
k (y) := 1

2
√
k
+
(
1− 1√

k

)(
1
k

∑k
ℓ=1 1Y(i)

ℓ ≤y

)
.

4 Set V
(i)
k := G̃

(i)
k (Y(i)

k ) and Vk := (V
(i)
k )di=1.

5 Set X (i)
k :=

(
F (i)

)−1
(
V

(i)
k

)
and Xk := (X (i)

k )di=1.

▶ We also define W
(i)
k := G (i)

(
Y(i)
k

)
and Wk =

(
W

(i)
k

)d
i=1

.



Assumptions I

1. The marginal c.d.f. G (i) of Y(i) is continuous.
▶ This ensures that U(i) is uniformly distributed for all 1 ≤ i ≤ d .

2. The transition kernel P defines a geometrically ergodic
Markov Chain (Zk : k ≥ 0) with Lyapunov function L
▶ This allows us to use geometric convergence theorems.

3. There exists qmax ∈ [−1, 0) s.t. ∀q > qmax, the map(
G (i) ◦ Φ(i)

)q
+
(
1− G (i) ◦ Φ(i)

)q
is bounded in L-norm

▶ Heuristic: qmax closer to −1 is equivalent to V
(i)
k having more

negative moments.

4. The function φ := g ◦
(
(F (1))−1, . . . , (F (i))−1, . . . , (F (d))−1

)
is continuous
▶ φ(U) = g(X ).
▶ To focus on the tails.



Assumptions II

5. There exists a slowly varying function ℓ : (0, 1]→ (0,∞) at
0, and a parameter 0 ≤ α < −qmax s.t.

|φ(u)− φ(v)| ≤
d∑

i=1

ℓ(ui ∧ vi )|ui − vi |
(ui ∧ vi )α+1

+
d∑

i=1

ℓ(1− ui ∨ vi )|ui − vi |
(1− ui ∨ vi )α+1

,

|φ(u)| ≤
d∑

i=1

ℓ(ui )

uαi
+

d∑
i=1

ℓ(1− ui )

(1− ui )α
.

▶ Heuristics: the bigger the α, the heavier the tails of X (i)’s

Remark: The independent sampler (sampling i.i.d. Z) satisfies all
the relevant assumptions above



Main results I

Theorem (Uniform convergence of the c.d.f. of Y in Lp-norm)

For any p ≥ 1, n ≥ 1 and i ∈ {1, . . . , d}, we have∣∣∣∣∣supy∈R
|G̃ (i)

n (y)− G (i)(y)|

∣∣∣∣∣
p

≤ Cp n
− p

2(p+1) ,

for some finite constant Cp.



Main results I

Theorem (Strong approximation)

For all ι > 0 and any p ∈ [1, −qmax

α ), there exists a constant
Cι,p > 0 such that, for any n ≥ 1,

|φ(Vn)− φ(Wn)|p = (E (|φ(Vn)− φ(Wn)|p))
1
p

≤ Cp,ιn
− 1

2p
+ α

2|qmax|
+ι
.

Corollary (Weak convergence)

For all ι > 0, there exists a constant Cι > 0 such that, for any
n ≥ 1,

|E (g(Xn))− E (g(X ))| = |E (φ(Vn))− E (φ(U))|

≤ Cιn
− 1

2
+ α

2|qmax|
+ι
.



Main results II

Corollary (Convergence of Monte Carlo averages)

For all ι > 0 and for any p ≥ 1 satisfying p ∨ 2 < |qmax|
α , there

exists a positive constant Cp,ι such that for any n ≥ 1,∣∣∣∣∣1n
n∑

k=1

g(Xk)− E (g(X ))

∣∣∣∣∣
p

=

∣∣∣∣∣1n
n∑

k=1

φ(Vk)− E (φ(U))

∣∣∣∣∣
p

≤ Cp,ιn
− 1

2p
+ α

2|qmax|
+ι
.



Conditional expectations

▶ We now want to approximate a conditional expectation of
the form E (g(X ) | A) , where the event A takes the form

A := {Y ∈ AY} = {Z ∈ AZ}

▶ AY and AZ are known sets (recall that X ,Y,Z are related to
each other via the relation X (i) = (F (i))−1(G (i)(Yi )) and
Y = Φ(Z)).

▶ Whenever a conditional distribution of X is targeted, one
needs the unconditional marginal c.d.f.’s of Y to obtain a
X -sample.

▶ The Bayes formula yields

G (i)(yi ) = P
[
Y(i) ≤ yi

]
= P

[
Y(i) ≤ yi | A

]
P [A] + P

[
Y(i) ≤ yi | Ac

]
P [Ac ]



Algorithm 3: sampling of X | A via sampling of Z | Z ∈ AZ

and Z | Z ∈ (AZ)c

Input: (F (i))−1 the quantile of X (i), Z0,A ∈ AZ , Z0,Ac ∈ (AZ)c

Output: Xk =
(
X (1)

k , . . . ,X (d)
k

)
for 1 ≤ k ≤ n.

for k ← 1 to n do
1 Sample Zk,A from P(Zk−1,A, ·) and accept if in AZ .
2 Compute Yk,A = Φ(Zk,A).

3 Sample Zk,Ac from P(Zk−1,Ac , ·) and accept if in (AZ)c .
4 Compute Yk,Ac = Φ(Zk,Ac ).

5 Approximate and mollify G (i) by

G̃
(i)
k (y) :=

1

2
√
k
+

(
1− 1√

k

)((
1

k

k∑
ℓ=1

1Y(i)
ℓ,A≤y

)
P [A] +(

1

k

k∑
ℓ=1

1Y(i)
ℓ,Ac

≤y

)
P [Ac ]

)
.

6 Set V
(i)
k := G̃

(i)
k (Y(i)

k,A) and Vk := (V
(i)
k )di=1.

7 Set X (i)
k :=

(
F (i)
)−1

(
V

(i)
k

)
and Xk := (X (i)

k )di=1.



Example: The statistic
k-Expected Shortfall

▶ X (i) denote the losses of the i-th stock

▶ We model the assets in the S&P 100 index (d = 90)

▶ Our interest is to compute the k-ES

(k − ES)(i) = E

(
X (i)

∣∣∣∣∣X (1) > 1%, . . . ,X (d) > 1%

)
.

▶ We estimate P [A] ≈ 1.42× 10−4 using a crude MC
procedure for Y, with sample size 106



Example: The model
Linear Factor Copula

▶ X (i) ∼ tνi (mi , si ), (marginal stock loss)

▶ Y(i) = βS(i)M(0) + γS(i)M(S(i)) + ϵ(i) with

S(i) ∈ {1, . . . , 7} (industry group)

M(0) ∼ skew t(ν, λ) (market-wide factor)

M(S) iid∼ t(ν), (sector specific factor)

ϵ(i)
iid∼ t(ν), (idiosyncratic noise)

andM(0),M(S), ϵ(i) are independent.

▶ d = 90, J = 7 + 1 and D = 98

▶ Parameters estimated via SMM in Oh and Patton (’17)



Example: The sampler I

▶ We sample Z = (Z(1), . . . ,Z(D)) using a Markov Chain whose
stationary distribution πAZ (z)dz is Gaussian restricted to AZ

πAZ (z) :=
1AZ (z)π(z)∫
AZ π(t)dt

, with π(z) :=
e−

|z|2
2

(2π)D/2
.

▶ We use the preconditioned Crank-Nicolson sampler

P(z , dz ′) := p(z , z ′)1AZ (z ′)dz ′ +

(∫
(AZ)c

p(z , t)dt

)
δz(dz

′),

where, for z , z ′ ∈ RD × RD ,

p(z , z ′) := (2π(1− κ2))−
D
2 e

− |z′−κz|2

2(1−κ2) .



Example: The sampler II

▶ Moreover,

M(0) := G−1
ν,λ ◦ FN (Z(1))

M(i) := G−1
ν ◦ FN (Z(i+1)), for i = 1, . . . , J − 1

ϵ(i) := G−1
ν ◦ FN (Z(i+J)), for i = 1, . . . , d

▶ Also, Y = Φ(Z) =
(
Φ(i)(Z)

)d
i=1

with, for 1 ≤ i ≤ d ,

Φ(i) : RD → R,

z 7→ βS(i)G
−1
ν,λ ◦ FN (z(1)) + γS(i)G

−1
ν ◦ FN (z(S(i)+1))

+ G−1
ν ◦ FN (z(i+J)) .



Example: Results
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Figure: Black, red and blue: different marginals. Solid colors: average
across M chains. Light colors: individual chains.



Final remarks

▶ We studied the theoretical and numerical properties of a
transform MCMC scheme

▶ This scheme is developed to efficiently compute expectations,
conditional to rare events, in which the unconditional
distribution is given by an factor copula

▶ Under mild and natural hypotheses, we are able to derive the
convergence rates for our proposed estimators

▶ We also revisit the computation of a challenging statistic
originated in the financial risk management literature.
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Copulas

Definition (Copula)

A d-dimensional copula is a distribution function on [0, 1]d with
uniform marginal distributions.

Theorem (Sklar’s)

Let FX be a joint distribution with marginals FX (1) , . . . ,FX (d) .
Then there exists a copula C : [0, 1]d → [0, 1] such that

FX (x) = C
(
FX (1)(x (1)), . . . ,FX (d)(x (d))

)
(1)

If the marginals are continuous then C is unique, given by

C (u(1), . . . , u(d)) = FX (F
−1
X (1)(u

(1)), . . . ,F−1
X (d)(u

(d)))

back



Factor copula representation

Reminder:
Y = Φ(Z)
Z = (M(1), . . . ,M(J), ϵ(1), . . . , ϵ(d))

Copula Φ(i)(M, ϵ) FM Fϵ
Normal M+ ϵ(i) N (0, σ2

M) N (0, σ2
ϵ )

Student’s t M1/2ϵ(i) InvGa(ν/2, ν/2) N (0, σ2
ϵ )

Skew t λM+M1/2ϵ(i) InvGa(ν/2, ν/2) N (0, σ2
ϵ )

Clayton (1 + ϵ(i)/M)−α Γ(α, 1) Exp(1)

Gumbel −(logM/ϵ(i))α Stable(1/α, 1, 1, 0) Exp(1)

Table: Special cases of known copulas as one factor copulas (adapted
from Oh and Patton (’17)).

back


