Transform MCMC schemes for sampling intractable factor copula models

Rodrigo Targino¹

School of Applied Mathematics (EMAp), Fundação Getulio Vargas (FGV)

April 21, 2023

¹Joint work with Cyril Bénézet and Emmanuel Gobet

Introduction

- In financial and actuarial risk management, modelling dependency within a random vector X is crucial
- A standard approach is the use of a <u>copula model</u>
- Drawback: Most parametric copulas are not suitable for high dimensional applications
- ▶ Generic statistics of interest, for X ~ C(F⁽¹⁾,...,F^(d))

$$\mathbb{E}\left(g(\mathcal{X})
ight) \quad ext{and} \quad \mathbb{E}\left(g(\mathcal{X}) \mid \mathcal{X} \in A
ight).$$

- If {X ∈ A} is a rare event (e.g. tail event), i.i.d. MC sampling is inefficient
- MCMC sampling may be helpful.

Examples

► Tail dependence: (McNeil, Frey, Embrechts, ('05))

$$\lambda_{i,\mathcal{I}}^{u} := \lim_{\alpha \to 1^{-}} \mathbb{P}\left[\mathcal{X}^{(i)} > \mathsf{VaR}_{\alpha}\left(\mathcal{X}^{(i)}\right) \mid \forall j \in \mathcal{I}, \mathcal{X}^{(j)} > \mathsf{VaR}_{\alpha}\left(\mathcal{X}^{(j)}\right)\right]$$

Semi-correlation (Ang and Chen ('02), Gabbi ('05)):

$$\begin{split} \rho_{i,j}^{+} &= \operatorname{Cor} \left(\mathcal{X}^{(i)}, \mathcal{X}^{(j)} \mid \mathcal{X}^{(i)} > 0, \mathcal{X}^{(j)} > 0 \right), \\ \rho_{i,j}^{-} &= \operatorname{Cor} \left(\mathcal{X}^{(i)}, \mathcal{X}^{(j)} \mid \mathcal{X}^{(i)} < 0, \mathcal{X}^{(j)} < 0 \right) \end{split}$$

k-expected shortfall (Oh and Patton ('17)):

$$(k - \mathsf{ES})^{(i)} = \mathbb{E}\left(\mathcal{X}^{(i)} \mid \left(\sum_{j=1}^{d} \mathbf{1}_{\{\mathcal{X}^{(j)} \geq C\}}\right) > k\right)$$

Factor copulas

Oh and Patton ('17): use as copula C the copula of an auxiliary vector Y = Φ(Z), with Φ : ℝ^D → ℝ^d
Z := (M⁽¹⁾,...,M^(J), ε⁽¹⁾,..., ε^(d)) with D = J + d
M = (M⁽¹⁾,...,M^(J)) (factors)
ε = (ε⁽¹⁾,...,ε^(d)) (idiosyncratic errors)
(M⁽¹⁾,...,M^(J), ε⁽¹⁾,...,ε^(d)) indep. and (ε⁽ⁱ⁾)^d_{i=1} i.i.d.

Example (linear factor copula):

$$\blacktriangleright \mathcal{Y}^{(i)} = \mathcal{M} + \epsilon^{(i)}$$

•
$$\mathcal{M} \sim \mathsf{skew} \ \mathsf{t}(\nu, \lambda)$$

$$\blacktriangleright \ \epsilon^{(i)} \stackrel{iid}{\sim} t(\nu)$$

other examples

Notation:

$$\mathcal{Y} \sim C(\mathbf{G}^{(1)}, \dots, \mathbf{G}^{(d)})$$
$$\mathcal{X} \sim C(F^{(1)}, \dots, F^{(d)})$$

Factor copulas

The problem:

$$\blacktriangleright \mathcal{X} = (\mathcal{X}_1 \dots, \mathcal{X}_k) \sim C(F^{(1)}, \dots, F^{(d)})$$

$$\blacktriangleright \mathbb{E}(g(\mathcal{X}) \mid \mathcal{X} \in A) \approx \frac{1}{n} \sum_{k=1}^{n} g(\mathcal{X}_k)$$

Convergence rate?

Factor copulas

Example: (Oh and Patton ('17))

Model for the losses of the stocks in the S&P 100:

$$\mathcal{Y}^{(i)} = \beta_{S(i)}\mathcal{M}^{(0)} + \gamma_{S(i)}\mathcal{M}^{(S(i))} + \epsilon^{(i)}$$

$$\mathcal{M}^{(0)} \sim \text{skew } t(\nu, \lambda),$$

$$\mathcal{M}^{(S)} \stackrel{iid}{\sim} t(\nu), \ S = 1, \dots, J - 1, \text{ with } \mathcal{M}^{(S)} \perp \mathcal{M}^{(0)},$$

$$\epsilon^{(i)} \stackrel{iid}{\sim} t(\nu), \ i = 1, \dots, d, \ \epsilon^{(i)} \perp \mathcal{M}^{(j)}$$

• Compute the $(k - ES)^{(i)}$:

$$\mathbb{E}\left(\left.\mathcal{X}^{(i)} \left| \left.\mathcal{X}^{(1)} > 1\%, \ldots, \mathcal{X}^{(d)} > 1\% \right.
ight)
ight.
ight)$$

▶ No parameter estimation! See Oh and Patton ('17) for SSM.

How to sample \mathcal{X} ?

Algorithm 1: Usual sampling of ${\mathcal X}$ through sampling of ${\mathcal Z}$

- 1 Sample $\mathcal{Z} = (\mathcal{M}, \epsilon)$
- 2 Compute $\mathcal{Y} = \Phi(\mathcal{Z})$
- **3** Get $U = (U^{(1)}, \dots, U^{(d)}) = (G^{(1)}(\mathcal{Y}^{(1)}), \dots, G^{(d)}(\mathcal{Y}^{(d)}))$
- 4 Set $\mathcal{X}^{(i)} = (F^{(i)})^{-1}(U^{(i)})$

$$\begin{aligned} \mathcal{Z} &= \begin{bmatrix} \mathcal{Z}^{(1)} \\ \vdots \\ \mathcal{Z}^{(D)} \end{bmatrix} \stackrel{\Phi}{\to} \mathcal{Y} = \begin{bmatrix} \mathcal{Y}^{(1)} = \Phi^{(1)}(\mathcal{Z}) \\ \vdots \\ \mathcal{Y}^{(d)} = \Phi^{(d)}(\mathcal{Z}) \end{bmatrix} \rightarrow U = \begin{bmatrix} U^{(1)} = G^{(1)}\left(\mathcal{Y}^{(1)}\right) \\ \vdots \\ U^{(d)} &:= G^{(d)}\left(\mathcal{Y}^{(d)}\right) \end{bmatrix} \rightarrow \\ &\rightarrow \begin{bmatrix} \mathcal{X}^{(1)} = \left(F^{(1)}\right)^{-1}\left(U^{(1)}\right) \\ \vdots \\ \mathcal{X}^{(d)} &= \left(F^{(d)}\right)^{-1}\left(U^{(d)}\right) \end{bmatrix} = \mathcal{X} \end{aligned}$$

Infeasible if G⁽ⁱ⁾ is not known!

A feasible algorithm to compute $\mathbb{E}(g(\mathcal{X}))$

Algorithm 2: Sampling of \mathcal{X} through approximate sampling of \mathcal{Z} and approximation of $G^{(i)}$ **Input:** $(F^{(i)})^{-1}$ the quantile function of $\mathcal{X}^{(i)}$, $\mathcal{Z}_0 \in \mathbb{R}^D$ **Output:** $\mathcal{X}_k = \left(\mathcal{X}_k^{(1)}, \ldots, \mathcal{X}_k^{(d)}\right)$ for $1 \le k \le n$. for $k \leftarrow 1$ to n do Sample \mathcal{Z}_k from $\mathcal{P}(\mathcal{Z}_{k-1}, \cdot)$. 1 2 Compute $\mathcal{Y}_k = \Phi(\mathcal{Z}_k)$. Approximate and mollify $G^{(i)}$ by 3 $ilde{G}_k^{(i)}(y) := rac{1}{2\sqrt{k}} + \left(1 - rac{1}{\sqrt{k}}\right) \left(rac{1}{k} \sum_{\ell=1}^k \mathbf{1}_{\mathcal{V}_k^{(i)} < y}\right).$ Set $V_k^{(i)} := \tilde{G}_k^{(i)}(\mathcal{Y}_k^{(i)})$ and $V_k := (V_k^{(i)})_{i=1}^d$. 4 Set $\mathcal{X}_{k}^{(i)} := (F^{(i)})^{-1} (V_{k}^{(i)})$ and $\mathcal{X}_{k} := (\mathcal{X}_{k}^{(i)})_{i=1}^{d}$.

• We also define
$$W_k^{(i)} := G^{(i)} \left(\mathcal{Y}_k^{(i)} \right)$$
 and $W_k = \left(W_k^{(i)} \right)_{i=1}^d$.

Assumptions I

1. The marginal c.d.f. $G^{(i)}$ of $\mathcal{Y}^{(i)}$ is continuous.

• This ensures that $U^{(i)}$ is uniformly distributed for all $1 \le i \le d$.

 The transition kernel *P* defines a geometrically ergodic Markov Chain (*Z_k* : *k* ≥ 0) with Lyapunov function *L*

This allows us to use geometric convergence theorems.

3. There exists $q_{\max} \in [-1, 0)$ s.t. $\forall q > q_{\max}$, the map $(G^{(i)} \circ \Phi^{(i)})^q + (1 - G^{(i)} \circ \Phi^{(i)})^q$ is bounded in \mathcal{L} -norm

Heuristic: q_{max} closer to -1 is equivalent to V⁽ⁱ⁾_k having more negative moments.

4. The function $\varphi := g \circ ((F^{(1)})^{-1}, \dots, (F^{(i)})^{-1}, \dots, (F^{(d)})^{-1})$ is continuous

$$\blacktriangleright \varphi(U) = g(\mathcal{X}).$$

To focus on the tails.

Assumptions II

5. There exists a slowly varying function $\ell : (0,1] \rightarrow (0,\infty)$ at 0, and a parameter $0 \le \alpha < -q_{\max}$ s.t.

$$|arphi(u)-arphi(v)|\leq \sum_{i=1}^drac{\ell(u_i\wedge v_i)|u_i-v_i|}{(u_i\wedge v_i)^{lpha+1}}+\sum_{i=1}^drac{\ell(1-u_i\vee v_i)|u_i-v_i|}{(1-u_i\vee v_i)^{lpha+1}},$$

$$|\varphi(u)| \leq \sum_{i=1}^{d} \frac{\ell(u_i)}{u_i^{lpha}} + \sum_{i=1}^{d} \frac{\ell(1-u_i)}{(1-u_i)^{lpha}}.$$

• Heuristics: the bigger the α , the heavier the tails of $\mathcal{X}^{(i)}$'s

Remark: The independent sampler (sampling i.i.d. \mathcal{Z}) satisfies all the relevant assumptions above

Main results I

Theorem (Uniform convergence of the c.d.f. of \mathcal{Y} in L_p -norm)

For any $p \ge 1$, $n \ge 1$ and $i \in \{1, \ldots, d\}$, we have

$$\left|\sup_{y\in\mathbb{R}} |\tilde{G}_n^{(i)}(y) - G^{(i)}(y)|\right|_p \le C_p \ n^{-\frac{p}{2(p+1)}}$$

for some finite constant C_p .

Main results I

Theorem (Strong approximation)

For all $\iota > 0$ and any $p \in [1, \frac{-q_{\max}}{\alpha})$, there exists a constant $C_{\iota,p} > 0$ such that, for any $n \ge 1$,

$$egin{aligned} ert arphi(V_n) - arphi(W_n) ert_p &= (\mathbb{E}\left(ert arphi(V_n) - arphi(W_n) ert^p
ight)^{rac{1}{p}} \ &\leq C_{p,\iota} n^{-rac{1}{2p} + rac{lpha}{2ert q_{ ext{max}ert}} + \iota}. \end{aligned}$$

Corollary (Weak convergence)

For all $\iota > 0$, there exists a constant $C_{\iota} > 0$ such that, for any $n \ge 1$,

$$egin{aligned} &|\mathbb{E}\left(g(\mathcal{X}_n)
ight) - \mathbb{E}\left(g(\mathcal{X})
ight)| = |\mathbb{E}\left(arphi(V_n)
ight) - \mathbb{E}\left(arphi(U)
ight)| \ &\leq C_\iota n^{-rac{1}{2} + rac{lpha}{2|q_{\mathsf{max}}|} + \iota}. \end{aligned}$$

Main results II

Corollary (Convergence of Monte Carlo averages)

For all $\iota > 0$ and for any $p \ge 1$ satisfying $p \lor 2 < \frac{|q_{max}|}{\alpha}$, there exists a positive constant $C_{p,\iota}$ such that for any $n \ge 1$,

$$\left|\frac{1}{n}\sum_{k=1}^{n}g(\mathcal{X}_{k})-\mathbb{E}\left(g(\mathcal{X})\right)\right|_{p}=\left|\frac{1}{n}\sum_{k=1}^{n}\varphi(V_{k})-\mathbb{E}\left(\varphi(U)\right)\right|_{p}$$
$$\leq C_{p,\iota}n^{-\frac{1}{2p}+\frac{\alpha}{2|q_{\max}|}+\iota}.$$

Conditional expectations

We now want to approximate a conditional expectation of the form E (g(X) | A), where the event A takes the form

$$A := \{\mathcal{Y} \in \mathcal{A}^{\mathcal{Y}}\} = \{\mathcal{Z} \in \mathcal{A}^{\mathcal{Z}}\}$$

- A^Y and A^Z are known sets (recall that X, Y, Z are related to each other via the relation X⁽ⁱ⁾ = (F⁽ⁱ⁾)⁻¹(G⁽ⁱ⁾(Y_i)) and Y = Φ(Z)).
- Whenever a conditional distribution of X is targeted, one needs the unconditional marginal c.d.f.'s of Y to obtain a X-sample.
- The Bayes formula yields

$$G^{(i)}(y_i) = \mathbb{P}\left[\mathcal{Y}^{(i)} \le y_i\right] = \mathbb{P}\left[\mathcal{Y}^{(i)} \le y_i \mid A\right] \mathbb{P}\left[A\right] + \mathbb{P}\left[\mathcal{Y}^{(i)} \le y_i \mid A^c\right] \mathbb{P}\left[A^c\right]$$

Algorithm 3: sampling of $\mathcal{X} \mid A$ via sampling of $\mathcal{Z} \mid \mathcal{Z} \in \mathcal{A}^{\mathcal{Z}}$ and $\mathcal{Z} \mid \mathcal{Z} \in (\mathcal{A}^{\mathcal{Z}})^{c}$ **Input:** $(F^{(i)})^{-1}$ the quantile of $\mathcal{X}^{(i)}$, $\mathcal{Z}_{0,A} \in \mathcal{A}^{\mathcal{Z}}$, $\mathcal{Z}_{0,A^c} \in (\mathcal{A}^{\mathcal{Z}})^c$ **Output:** $\mathcal{X}_k = \left(\mathcal{X}_k^{(1)}, \dots, \mathcal{X}_k^{(d)}\right)$ for $1 \le k \le n$. for $k \leftarrow 1$ to n do Sample $\mathcal{Z}_{k,A}$ from $\mathcal{P}(\mathcal{Z}_{k-1,A}, \cdot)$ and accept if in $\mathcal{A}^{\mathbb{Z}}$. Compute $\mathcal{Y}_{k,A} = \Phi(\mathcal{Z}_{k,A})$. Sample \mathcal{Z}_{k,A^c} from $\mathcal{P}(\mathcal{Z}_{k-1,A^c}, \cdot)$ and accept if in $(\mathcal{A}^{\mathbb{Z}})^c$. Compute $\mathcal{Y}_{k,A^c} = \Phi(\mathcal{Z}_{k,A^c}).$ Approximate and mollify $G^{(i)}$ by $ilde{G}_k^{(i)}(y) := rac{1}{2\sqrt{k}} + \left(1 - rac{1}{\sqrt{k}}\right) \left(\left(rac{1}{k} \sum_{k=1}^{\kappa} \mathbf{1}_{\mathcal{Y}_{\ell,A}^{(i)} \leq y}\right) \mathbb{P}\left[\mathcal{A}
ight] +$ $\left(\frac{1}{k}\sum_{\alpha=1}^{k}\mathbf{1}_{\mathcal{Y}_{\ell,A^{c}}^{(i)}\leq y}\right)\mathbb{P}\left[A^{c}\right]\right).$ 6 Set $V_k^{(i)} := \tilde{G}_k^{(i)}(\mathcal{Y}_{k,A}^{(i)})$ and $V_k := (V_k^{(i)})_{i=1}^d$. 7 Set $\mathcal{X}_k^{(i)} := (F^{(i)})^{-1} (V_k^{(i)})$ and $\mathcal{X}_k := (\mathcal{X}_k^{(i)})_{i=1}^d$.

1

2

3

4

5

Example: The statistic

k-Expected Shortfall

- $\mathcal{X}^{(i)}$ denote the losses of the *i*-th stock
- We model the assets in the S&P 100 index (d = 90)
- Our interest is to compute the k-ES

$$(k - \mathsf{ES})^{(i)} = \mathbb{E}\left(\mathcal{X}^{(i)} \middle| \mathcal{X}^{(1)} > 1\%, \ldots, \mathcal{X}^{(d)} > 1\%\right).$$

We estimate P[A] ≈ 1.42 × 10⁻⁴ using a crude MC procedure for Y, with sample size 10⁶

Example: The model

Linear Factor Copula

►
$$\mathcal{X}^{(i)} \sim t_{\nu_i}(m_i, s_i)$$
, (marginal stock loss)
► $\mathcal{Y}^{(i)} = \beta_{S(i)}\mathcal{M}^{(0)} + \gamma_{S(i)}\mathcal{M}^{(S(i))} + \epsilon^{(i)}$ with
 $S(i) \in \{1, ..., 7\}$ (industry group)
 $\mathcal{M}^{(0)} \sim \text{skew t}(\nu, \lambda)$ (market-wide factor)
 $\mathcal{M}^{(S)} \stackrel{iid}{\sim} t(\nu)$, (sector specific factor)
 $\epsilon^{(i)} \stackrel{iid}{\sim} t(\nu)$, (idiosyncratic noise)

and $\mathcal{M}^{(0)}, \mathcal{M}^{(S)}, \epsilon^{(i)}$ are independent.

•
$$d = 90$$
, $J = 7 + 1$ and $D = 98$

Parameters estimated via SMM in Oh and Patton ('17)

Example: The sampler I

We sample Z = (Z⁽¹⁾,...,Z^(D)) using a Markov Chain whose stationary distribution π_Az(z)dz is Gaussian restricted to A^Z

$$\pi_{\mathcal{A}^\mathcal{Z}}(z) := rac{\mathbf{1}_{\mathcal{A}^\mathcal{Z}}(z)\pi(z)}{\int_{\mathcal{A}^\mathcal{Z}}\pi(t)\mathrm{d} t}, \qquad ext{with} \qquad \pi(z) := rac{e^{-rac{|z|^2}{2}}}{(2\pi)^{D/2}}.$$

2

We use the preconditioned Crank-Nicolson sampler

$$\mathcal{P}(z, \mathrm{d} z') := p(z, z') \mathbf{1}_{\mathcal{A}^{\mathcal{Z}}}(z') \mathrm{d} z' + \left(\int_{(\mathcal{A}^{\mathcal{Z}})^c} p(z, t) \mathrm{d} t \right) \delta_z(\mathrm{d} z'),$$

where, for $z, z' \in \mathbb{R}^D \times \mathbb{R}^D$,

$$p(z,z') := (2\pi(1-\kappa^2))^{-\frac{D}{2}}e^{-\frac{|z'-\kappa z|^2}{2(1-\kappa^2)}}$$

Example: The sampler II

► Moreover,

$$egin{aligned} \mathcal{M}^{(0)} &:= \mathcal{G}_{
u,\lambda}^{-1} \circ \mathcal{F}_{\mathcal{N}}(\mathcal{Z}^{(1)}) \ \mathcal{M}^{(i)} &:= \mathcal{G}_{
u}^{-1} \circ \mathcal{F}_{\mathcal{N}}(\mathcal{Z}^{(i+1)}), & ext{for } i = 1, \dots, J-1 \ \epsilon^{(i)} &:= \mathcal{G}_{
u}^{-1} \circ \mathcal{F}_{\mathcal{N}}(\mathcal{Z}^{(i+J)}), & ext{for } i = 1, \dots, d \end{aligned}$$

• Also,
$$\mathcal{Y} = \Phi(\mathcal{Z}) = (\Phi^{(i)}(\mathcal{Z}))_{i=1}^d$$
 with, for $1 \le i \le d$,

$$\Phi^{(i)}: \mathbb{R}^{D} \to \mathbb{R},$$

$$z \mapsto \beta_{S(i)} G_{\nu,\lambda}^{-1} \circ F_{\mathcal{N}}(z^{(1)}) + \gamma_{S(i)} G_{\nu}^{-1} \circ F_{\mathcal{N}}(z^{(S(i)+1)})$$

$$+ G_{\nu}^{-1} \circ F_{\mathcal{N}}(z^{(i+J)}).$$

Example: Results

Figure: Black, red and blue: different marginals. Solid colors: average across M chains. Light colors: individual chains.

Final remarks

- We studied the theoretical and numerical properties of a transform MCMC scheme
- This scheme is developed to efficiently compute expectations, conditional to rare events, in which the unconditional distribution is given by an factor copula
- Under mild and natural hypotheses, we are able to derive the convergence rates for our proposed estimators
- We also revisit the computation of a challenging statistic originated in the financial risk management literature.

References

- Ang, A. and Chen, J. (2002). Asymmetric correlations of equity portfolios. Journal of financial Economics, 63(3):443–494.
- [2] Gabbi, G. (2005). Semi-correlations as a tool for geographical and sector asset allocation. <u>European Journal of Finance</u>, 11(3):271–281.
- [3] McNeil, A. J., Frey, R., and Embrechts, P. (2010).
 <u>Quantitative Risk Management: Concepts, Techniques, and</u> <u>Tools</u>. Princeton University Press.
- [4] Oh, D. and Patton, A. (2017). Modeling dependence in high dimensions with factor copulas. <u>Journal of Business & Economic</u> Statistics, 35(1):139–154.

Copulas

Definition (Copula)

A d-dimensional copula is a distribution function on $[0, 1]^d$ with uniform marginal distributions.

Theorem (Sklar's)

Let $F_{\mathcal{X}}$ be a joint distribution with marginals $F_{\mathcal{X}^{(1)}}, \ldots, F_{\mathcal{X}^{(d)}}$. Then there exists a copula $C : [0,1]^d \to [0,1]$ such that

$$F_{\mathcal{X}}(x) = C(F_{\mathcal{X}^{(1)}}(x^{(1)}), \dots, F_{\mathcal{X}^{(d)}}(x^{(d)}))$$
(1)

If the marginals are continuous then C is unique, given by

$$C(u^{(1)},\ldots,u^{(d)})=F_{\mathcal{X}}(F_{\mathcal{X}^{(1)}}^{-1}(u^{(1)}),\ldots,F_{\mathcal{X}^{(d)}}^{-1}(u^{(d)}))$$

Factor copula representation

Reminder: $\mathcal{Y} = \Phi(\mathcal{Z})$

$$\mathcal{Z} = (\mathcal{M}^{(1)}, \dots, \mathcal{M}^{(J)}, \epsilon^{(1)}, \dots, \epsilon^{(d)})$$

Copula	$\Phi^{(i)}(\mathcal{M},\epsilon)$	$F_{\mathcal{M}}$	F_{ϵ}
Normal	$\mathcal{M} + \epsilon^{(i)}$	$\mathcal{N}(0,\sigma_{\mathcal{M}}^{2})$	$\mathcal{N}(0,\sigma_{\epsilon}^2)$
Student's <i>t</i>	$\mathcal{M}^{1/2}\epsilon^{(i)}$	InvGa $(u/2, u/2)$	$\mathcal{N}(0,\sigma_{\epsilon}^2)$
Skew t	$\lambda \mathcal{M} + \mathcal{M}^{1/2} \epsilon^{(i)}$	InvGa $(u/2, u/2)$	$\mathcal{N}(0,\sigma_{\epsilon}^2)$
Clayton	$(1+\epsilon^{(i)}/\mathcal{M})^{-lpha}$	$\Gamma(lpha,1)$	Exp(1)
Gumbel	$-(\log \mathcal{M}/\epsilon^{(i)})^lpha$	$\mathit{Stable}(1/lpha,1,1,0)$	Exp(1)

Table: Special cases of known copulas as one factor copulas (adapted from Oh and Patton ('17)).

