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Introduction

» In financial and actuarial risk management, modelling
dependency within a random vector X is crucial

» A standard approach is the use of a

» Drawback: Most parametric copulas are not suitable for high
dimensional applications

> Generic statistics of interest, for X ~ C(F(1), ... F(d)
E(g(X)) and E(g(X)| X €A).

> If {X¥ € A} is a rare event (e.g. tail event), i.i.d. MC
sampling is inefficient
» MCMC sampling may be helpful.



Examples

» Tail dependence: (McNeil, Frey, Embrechts, ('05))
Mzi= lim P [x(") > VaR, (X<")> 1Vj e Z,x9 > VaR, (XU)H
» Semi-correlation (Ang and Chen ('02), Gabbi ('05)):
pt; = Cor (X(’), x0) | x® > 0, x0) > o) :
pry = Cor (X0, 20 | 2 < 0, x0) < 0)

» k-expected shortfall (Oh and Patton ('17)):

d
(k—ES)) =E (X(i) ) (Z 1{XU)>C}) = k)
=1



Factor copulas

» Oh and Patton ('17): use as copula C the copula of an
auxiliary vector Y = ®(Z), with ¢ : RP — R
> Z:= (MO MDDy with D= J +d
> M= (MO . M) (factors)
> = (M), ..., el (idiosyncratic errors)
> (MO M) eld)) indep. and (D)4 iid.

» Example (linear factor copula):
b Y0 = M )
> M ~ skew t(v, A)

> K ()

» Notation:

> YV~ C(GW,... G
> X~ C(FW,. . F@)



Factor copulas

The problem:

> X:(Xl,Xk)NC(F(l)aaF(d))

> E(g(X) | X € A)~ 1 Y0 g(X)
» Convergence rate?



Factor copulas

Example: (Oh and Patton ('17))
» Model for the losses of the stocks in the S&P 100:
> V0 = By MO 4 45y MED) 1 )
> MO ~ skew t(v, ),
> MO E ), S=1,...,J—1, with M) 1L MO,
> DB t), i=1,....d, ) 1L MU
» Compute the (k — ES)():

E (X(’)

» No parameter estimation! See Oh and Patton ('17) for SSM.

X0 > 1%, .. x@ S 1%)



How to sample X'?

Algorithm 1: Usual sampling of X through sampling of Z

1 Sample Z = (M, ¢)

2 Compute Y = 9(2)

3 Get U= (UW,... UD)=(cOQM) .. @)
a4 Set X0 = (FIH~=1(y()

(o) (Fw-))‘1 (U(d))

» Infeasible if G() is not known!



A feasible algorithm to compute E (g(&X))

Algorithm 2: Sampling of X’ through approximate sampling
of Z and approximation of G()

Input: (F(D)~1 the quantile function of X(), Z5 € RP
Output: X, = (X,El), ... ,X,Ed)> forl < k<n.
for k < 1to ndo
1 Sample Z; from P(Z_1,-).
2 Compute Yk = ®(Zk).
3 Approximate and mollify G by
GO0 =5+ (1- %) (l Sl )-
a SetV() =GVt )and Vie i= (V)d,

s | Set )= (FO) " (v )anka (X(’));le.

> We also define W, = G0 (1) and W = (W,f"));.



Assumptions |

1. The marginal c.d.f. G of Y() is continuous.
» This ensures that U is uniformly distributed for all 1 </ < d.

2. The transition kernel P defines a geometrically ergodic
Markov Chain (Zj : kK > 0) with Lyapunov function £

» This allows us to use geometric convergence theorems.

3. There exists gmax € [—1,0) s.t. Vg > gmax, the map
(G(i) o CD("))q + (1 - GWo d)(i))q is bounded in £-norm
» Heuristic: gmax closer to —1 is equivalent to V,fi) having more
negative moments.
4. The function ¢ := g o (FM)=L ... (FO)=1 .. (F@)~1)
is continuous

> (V) = g(X).
» To focus on the tails.



Assumptions ||

5. There exists a slowly varying function ¢ : (0,1] — (0,00) at
0, and a parameter 0 < @ < —@max S.t.

d

i vi)lui — Vi d — uj vi)luj — Vi
() — p(v)| < 3 A Avidles —vi] |~ ML= iV vi)lus —vi]

P (u,- N V,')CH'1 — (1 —ui Vv V,')O‘""1

d

o)l < 3+ 3

! i=1

» Heuristics: the bigger the a, the heavier the tails of X()'s

Remark: The independent sampler (sampling i.i.d. Z) satisfies all
the relevant assumptions above



Main results |

Theorem (Uniform convergence of the c.d.f. of Y in L,-norm)

Foranyp>1,n>1andic€{l,...,d}, we have

P

sup| G (y) = GO(y)l| < G n o,

€R
Y P

for some finite constant Cp.



Main results |

Theorem (Strong approximation)

For all . > 0 and any p € [1, =3m=), there exists a constant
C..p > 0 such that, for any n > 1,

(Vi) = $(Wa)l, = (E(Ip(Va) = p(Wa)IP)?

1, o
< Can 2P+2‘Qmax‘+L.
- )

Corollary (Weak convergence)

For all © > 0, there exists a constant C, > 0 such that, for any
n>1,

|E (g(¥n)) — E(g(X))] = [E(p(Va)) — E(p(V))|

1 [
S CLn_§+2|qmax‘+L_



Main results Il

Corollary (Convergence of Monte Carlo averages)

H H |qma><‘
For all « > 0 and for any p > 1 satisfying p\V 2 < =%

exists a positive constant C,, such that for any n > 1,

, there

" gl ~ E(g(1))
k=1

LS e(Vi) ~ E(p(V)
p k=1 P

1 «
< Cp Ln72+2\qmax\+tl‘



Conditional expectations

> We now want to approximate a conditional expectation of
the form E (g(&X') | A), where the event A takes the form

A={Yec A} ={Z2c A%}

» AY and AZ are known sets (recall that X',)), Z are related to
each other via the relation X() = (F(1)=1(G()()})) and
Y =9o(2)).

» Whenever a conditional distribution of X is targeted, one
needs the unconditional marginal c.d.f.'s of ) to obtain a
X-sample.

» The Bayes formula yields

¢O(y) =P [ym < y,} =P [y(") <yl A] PA] + P [y(” <yl AC] P [A]



A W N =

Algorithm 3: sampling of X' | A via samplingof Z | Z € A®
and Z | Z € (AZ)°

Input: (F(D)~! the quantile of X, Z5 4 € A%, 2 ac € (AZ)C
Output: X = (X,El),...,é\,’,fd)) for1 < k <n.

for k< 1to ndo

Sample Zy a4 from P(Zk_1,4,) and accept if in A~.
Compute ykvq = d)(Zk,A)-

Sample Zx ac from P(Zx_1.4c,) and accept if in (AZ)°.
Compute Vi ac = P(Z ac).

Approximate and mollify G() by

ai 1 1 1
Gé)(y);_mjt(l—ﬂ) ((k;1>h V) [A] +
k
( Z].y() <y>P[AC]>

Set V G (y;E' ) and Vj = (V(i)),d 1
Set X,E) (F@)~ ( i) and X = (X)L,




Example: The statistic
k-Expected Shortfall

» x() denote the losses of the i-th stock
» We model the assets in the S&P 100 index (d = 90)
» Our interest is to compute the k-ES

(k—ES)) =E (X(i)

x> 1%, .. x@ s 1%) .

> We estimate P [A] ~ 1.42 x 10~* using a crude MC
procedure for ), with sample size 100



Example: The model

Linear Factor Copula

> X ~ t,(mj,s;), (marginal stock loss)
> Y = /BS(i)M(O) + ’YS(i)M(S(i)) + () with

S(i) e {1,...,7} (industry group)
MO < skew t(r, A) (market-wide factor)
MO E (), (

N (), (

sector specific factor)

, (idiosyncratic noise)

and M@ M) () are independent.
» d=90, J=7+1and D =98
» Parameters estimated via SMM in Oh and Patton ('17)



Example: The sampler |

» We sample Z = (Z(l)7 e Z(D)) using a Markov Chain whose
stationary distribution 7 4z(z)dz is Gaussian restricted to A%

1 (2)n(2) | e
maz(2) = m, with m(z) = (@n)pr’

» We use the preconditioned Crank-Nicolson sampler

P(z,dZ") = p(z,2')1 4z(2')dZ + (/(AZ)C p(z, t)dt> 5.(d2),

where, for z,z/ € RP x RP,

|Z/—nz|2

p(Z,Z’) = (2n(1 — /4;2))7% e 20-r2)




Example: The sampler Il

» Moreover,
MO = G4 o Fpr(2W)

MDD = Gl o Fp(20Y), fori=1,...,0—1
) = Glo FN(Z(H'J)), fori=1,...,d

> Also, ¥ = &(2) = (¢()(2))?_, with, for 1 <i < d,

o) . RP R,
z = Bs(i) Gyx 0 Fn(2W) + 75y Gt o Fa(2504Y)
+ G o (209



Example: Results
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Figure: Black, red and blue: different marginals. Solid colors: average
across M chains. Light colors: individual chains.



Final remarks

» We studied the theoretical and numerical properties of a
transform MCMC scheme

» This scheme is developed to efficiently compute expectations,
conditional to rare events, in which the unconditional
distribution is given by an factor copula

» Under mild and natural hypotheses, we are able to derive the
convergence rates for our proposed estimators

> We also revisit the computation of a challenging statistic
originated in the financial risk management literature.
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Copulas

Definition (Copula)

A d-dimensional copula is a distribution function on [0, 1]¢ with
uniform marginal distributions.

Theorem (Sklar’s)

Let Fx be a joint distribution with marginals F vy, ..., Fy@).
Then there exists a copula C : [0,1]9 — [0, 1] such that

Fr(x) = C(Fam(xV),... Fxw (x\) (1)
If the marginals are continuous then C is unique, given by

C(u, .., ul ) = Fr(Fh (u®), .., Fty (u))



Factor copula representation

Reminder:
Y =9(2)
Z=WMO MU D))

Copula d (M, €) Fu F.
Normal M+ €0 N(0,03)) N(0,02)
Student’s t M1/l InvGa(v/2,v/?2) N(0,02)
Skew t M + M2l InvGa(v/2,v/2) N(0,02)
Clayton 1+ D/M)y= T(a,1) Exp(1)
Gumbel —(log M /el))>  Stable(1/c,1,1,0) Exp(1)

Table: Special cases of known copulas as one factor copulas (adapted
from Oh and Patton ('17)).



