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Promotional slide; new book

Coin-Tuming, Random Walks

[:nm—Iummg. Random Walks
hllnmnuenenu: Markov Chains

This research monograph explores new frontiers in Markow chains.
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types of random walks (for example, “coin turning’ “conservative”
and “Rademacher” walk). Scaling limits, the breakdown of the
classical limit theorems as well as recurrence and transience are
investigated. The relationship with urn models s the subject of
two chapters, providing additional connections to other parts of
probabllity theory.
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where the method of electric networks is especially useful. This s
Illustrated by presenting random walks in random environments
and random labyrinths.
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The monograph puts emphasis on showing examples and open

Several figures llustrate the main Ideas, and a large number of
exercises challenge the interested reader.
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Coin tossing

Toss a fair coin n times.
Write +1 and —1 for Hand T, so Y =+£1forj=1,...,n.
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Coin tossing

Toss a fair coin n times.
Write +1 and —1 for Hand T, so Y =+£1forj=1,...,n.

Then S, ;= Y1+ Yo+ ... + Y, is the position of a random walker on Z.
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Coin tossing

Toss a fair coin n times.
Write +1 and —1 for Hand T, so Y =+£1forj=1,...,n.

Then S, ;= Y1+ Yo+ ... + Y, is the position of a random walker on Z.

Law of Large Numbers says that S,/n is ‘close’ to zero for large n.
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Coin tossing

Toss a fair coin n times.
Write +1 and —1 for Hand T, so Y =+£1forj=1,...,n.

Then S, ;= Y1+ Yo+ ... + Y, is the position of a random walker on Z.
Law of Large Numbers says that S,/n is ‘close’ to zero for large n.

If we write +1 and 0 for H and T (X, = 0, 1), then this translates into:
Relative frequency of heads is ‘close’ to 1/2. (Then Y, =2X, — 1 and
Tn:= X1+ X2+ ...+ X, = number of H's.)
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Coin tossing

Toss a fair coin n times.
Write +1 and —1 for Hand T, so Y =+£1forj=1,...,n.

Then S, ;= Y1+ Yo+ ... + Y, is the position of a random walker on Z.
Law of Large Numbers says that S,/n is ‘close’ to zero for large n.

If we write +1 and 0 for H and T (X, = 0, 1), then this translates into:
Relative frequency of heads is ‘close’ to 1/2. (Then Y, =2X, — 1 and
Tn:= X1+ X2+ ...+ X, = number of H's.)

Classical Central Limit Theorem says that the distribution of S,/+/n is
‘close’ to standard normal for large n; the fluctuations of S, around its
mean (= 0) are of order \/n.
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Coin tossing

Toss a fair coin n times.
Write +1 and —1 for Hand T, so Y =+£1forj=1,...,n.

Then S, ;= Y1+ Yo+ ... + Y, is the position of a random walker on Z.
Law of Large Numbers says that S,/n is ‘close’ to zero for large n.

If we write +1 and 0 for H and T (X, = 0, 1), then this translates into:
Relative frequency of heads is ‘close’ to 1/2. (Then Y, =2X, — 1 and
Tn:= X1+ X2+ ...+ X, = number of H's.)

Classical Central Limit Theorem says that the distribution of S,/+/n is
‘close’ to standard normal for large n; the fluctuations of S, around its
mean (= 0) are of order \/n.

(Goes back to Abraham de Moivre, 1738.)
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New experiment: we turn the coin

Given a sequence of numbers {p,} in [0, 1] we do the following.

@ We first toss a coin.
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New experiment: we turn the coin

Given a sequence of numbers {p,} in [0, 1] we do the following.
@ We first toss a coin.

@ At step n > 2, we turn it over to the other side (from H to T, and
from T to H) with probability pj.

(With probability 1 — p,,, nothing happens.)
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Given a sequence of numbers {p,} in [0, 1] we do the following.
@ We first toss a coin.

@ At step n > 2, we turn it over to the other side (from H to T, and
from T to H) with probability pj.

(With probability 1 — p,,, nothing happens.)

Or: start with fixed side, say H, and let p; := 1/2.
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New experiment: we turn the coin

Given a sequence of numbers {p,} in [0, 1] we do the following.
@ We first toss a coin.

@ At step n > 2, we turn it over to the other side (from H to T, and
from T to H) with probability pj.

(With probability 1 — p,,, nothing happens.)

Or: start with fixed side, say H, and let p; := 1/2.

When p, = 1/2 for all n, we get back the coin tossing model.
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New experiment: we turn the coin

Given a sequence of numbers {p,} in [0, 1] we do the following.
@ We first toss a coin.

@ At step n > 2, we turn it over to the other side (from H to T, and
from T to H) with probability pj.

(With probability 1 — p,,, nothing happens.)
Or: start with fixed side, say H, and let p; := 1/2.
When p, = 1/2 for all n, we get back the coin tossing model.

Useful representation: with the indicators of turns Wy ~ Ber(py), one
has .
Y= Yi(-1)22 W j> 1
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What if p, are ‘very small?’ E.g. assume that

ij<oc.
J

Then by the Borel-Cantelli Lemma,

P(Only finitely many turns) = 1,

SO

P(Limit of rel. frequencies=1) = P(Limit of rel. frequencies=0) = 1/2.
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Intuition

There must be two phase transitions, somewhere between the two
extremes above:
(a) One, where LLN breaks down.

(b) One where classical CLT (i.e. order y/n fluctuations for S,)
breaks down.
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Intuition; Markov chains

Q: What's the big deal:? It is a 2 state Markov chain!

Janos Englander University of Colorado Boulder

Coin turning and related walks



Part one: Turning instead of tossing
000008000000 000

Intuition; Markov chains

Q: What's the big deal:? It is a 2 state Markov chain!
2
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A: Yes, but a time-inhomogeneous one. (Except when p, = ¢ for
all n.)
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Intuition; Markov chains

Q: What's the big deal:? It is a 2 state Markov chain!
2

48 ‘@ @. I3

A: Yes, but a time-inhomogeneous one. (Except when p, = ¢ for
all n.)

They are not well studied, except Dobrushin’s research in the
1950s and some revival after 2000 (Dietz, Sethuraman, Varadhan,
Peligrad).

Janos Englander University of Colorado Bould

Coin turning and related walks



Part one: Turning instead of tossing
000000800000 000

Example: Markov chain CLT

(Ex0) Let p, = ¢, where 0 < ¢ < 1. When ¢ # 1/2, the outcomes are
not independent. Recall that S, := Y71 + Yo+ ... + Y,,. One has

Law(S,/+/n) = Normal (0, ! - C) .
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Example: Markov chain CLT

(Ex0) Let p, = ¢, where 0 < ¢ < 1. When ¢ # 1/2, the outcomes are
not independent. Recall that S, := Y71 + Yo+ ... + Y,,. One has

Law(S,/+/n) = Normal (0, ! - C) .

Or, in terms of the frequency of heads,

Law(VN (X, — 1/2)) = Normal (o, 14_CC> ,

where X, := 7X1+‘,'1'+X".
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Example: Markov chain CLT

(Ex0) Let p, = ¢, where 0 < ¢ < 1. When ¢ # 1/2, the outcomes are
not independent. Recall that S, := Y71 + Yo+ ... + Y,,. One has

Law(S,/+/n) = Normal (0, ! - C) .

Or, in terms of the frequency of heads,

Law(VN (X, — 1/2)) = Normal (o, 14_CC> ,

— Xit...+Xs

where X, : =

Only when ¢ = 1/2, will classical CLT hold for Y;. But it is still a CLT in
the sense that

Var(S,/v/A) = 2= + o(1).

C

Janos Englander University of Colorado Boulder

Coin turning and related walks



Part one: Turning instead of tossing
000000800000 000

Example: Markov chain CLT

(Ex0) Let p, = ¢, where 0 < ¢ < 1. When ¢ # 1/2, the outcomes are
not independent. Recall that S, := Y71 + Yo+ ... + Y,,. One has

Law(S,/+/n) = Normal (0, ! - C) .

Or, in terms of the frequency of heads,

Law(VN (X, — 1/2)) = Normal (o, 14_CC> ,

_ Xit... X,
= St

Only when ¢ = 1/2, will classical CLT hold for Y;. But it is still a CLT in
the sense that

where X, :

Var(S,/v/A) = 2= + o(1).

C

The term l;cc can be arbitrarily large (small) when c is sufficiently small
(close to 1) and thus turns occur very rarely (frequently).
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Example: CLT with non-standard fluctuation

(Ex1) (Classical CLT breaks down) Let p, := a/n” with
0<y< 1l
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Example: CLT with non-standard fluctuation

(Ex1) (Classical CLT breaks down) Let p, := a/n” with
0<y< 1l

Then one has

Sn 1
Law (W) = Normal <07 M) .
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Example: CLT with non-standard fluctuation

(Ex1) (Classical CLT breaks down) Let p, := a/n” with
0<y< 1l

Then one has

Sn 1
Law (W> = Normal <07 M) .

LLN is still in force, (proportion of H is still around 1/2), but the
fluctuations of S, are non-classical (larger than /n).
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Example: CLT with non-standard fluctuation

(Ex1) (Classical CLT breaks down) Let p, := a/n” with
0<y< 1l

Then one has

Sn 1
Law (W> = Normal <07 M) .

LLN is still in force, (proportion of H is still around 1/2), but the
fluctuations of S, are non-classical (larger than /n).

It can still be considered CLT because n(1+7)/2 is the order of the
standard deviation of S,,.
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Example: LLN breaks down

(Ex2) Let p, =1/n. Then Law of Large Numbers breaks down,
and the proportion is no longer concentrated around 1/2. In fact,
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Example: LLN breaks down

(Ex2) Let p, =1/n. Then Law of Large Numbers breaks down,
and the proportion is no longer concentrated around 1/2. In fact,

Law (X,) = Uniform([0, 1]).
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Example: LLN breaks down

(Ex2) Let p, =1/n. Then Law of Large Numbers breaks down,
and the proportion is no longer concentrated around 1/2. In fact,

Law (X,) = Uniform([0, 1]).

In terms of Yi,..., Y,: the correlation is as strong as in the case of
identical variables (Var(S,) is of order n?) and the fluctuations of
Sp are of order n, destroying the LLN.
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Example: Variation of the previous one

(Ex2b) Let p, = a/n with a > 0. Again, LLN breaks down, and
the proportion is no longer concentrated around 1/2, and in fact,

Law (X,) — Beta(a, a).
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Example: Variation of the previous one

(Ex2b) Let p, = a/n with a > 0. Again, LLN breaks down, and
the proportion is no longer concentrated around 1/2, and in fact,

Law (X,) — Beta(a, a).

In particular,
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Example: Variation of the previous one

(Ex2b) Let p, = a/n with a > 0. Again, LLN breaks down, and
the proportion is no longer concentrated around 1/2, and in fact,

Law (X,) — Beta(a, a).

In particular,

a = 1/2 gives the ArcSine Law (Name: F(x) = 2 arcsin(y/x).)

o
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Example: Variation of the previous one

(Ex2b) Let p, = a/n with a > 0. Again, LLN breaks down, and
the proportion is no longer concentrated around 1/2, and in fact,

Law (X,) — Beta(a, a).

In particular,

a = 1/2 gives the ArcSine Law (Name: F(x) = 2 arcsin(y/x).)

o

a = 1 gives the Uniform Law
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Example: Variation of the previous one

(Ex2b) Let p, = a/n with a > 0. Again, LLN breaks down, and
the proportion is no longer concentrated around 1/2, and in fact,

Law (X,) — Beta(a, a).

In particular,
a = 1/2 gives the ArcSine Law (Name: F(x) = 2 arcsin(y/x).)

a = 1 gives the Uniform Law

a = 3/2 gives Semicircle Law over the unit interval
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Example: Variation of the previous one

(Ex2b) Let p, = a/n with a > 0. Again, LLN breaks down, and
the proportion is no longer concentrated around 1/2, and in fact,

Law (X,) — Beta(a, a).

In particular,

a = 1/2 gives the ArcSine Law (Name: F(x) = 2 arcsin(y/x).)
a = 1 gives the Uniform Law

a = 3/2 gives Semicircle Law over the unit interval

(concave, flat,convex)
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Beta(1/2,1/2)=ArcSine distribution
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Old Example: Extreme limit

(Ex3) Assume ), pp < 0.
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Old Example: Extreme limit

(Ex3) Assume ), pp < 0.

The limiting frequency is ‘extreme’:
Beta(0,0) = 3(do + 61) = Bernoulli(1/2).
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Old Example: Extreme limit

(Ex3) Assume ), pp < 0.

The limiting frequency is ‘extreme’:
Beta(0,0) = 3(do + 61) = Bernoulli(1/2).

It is as far away from d;/, (LLN case) as possible!
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Correlation

One has

J
Cov(Y;, Yj) = Corr(Y;, ) = e := [ (1 — 2p).
i+1
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Correlation

One has
J
Cov(Y;, Yj) = Corr(Y;, ) = e := [ (1 — 2p).
i+1

Intuitively: small |e; j| needed to get close to classical limit
theorems.

Janos Englander University of Colorado Boulder

Coin turning and related walks



Part one: Turning instead of tossing
000000000000 e00

Correlation

One has
J
Cov(Y;, Yj) = Corr(Y;, ) = e := [ (1 — 2p).
i+1

Intuitively: small |e; j| needed to get close to classical limit
theorems.

If there is a single px = 1/2 with i +1 < k < j then Y; and Y are
uncorrelated. Why?
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Theorem: Strong Law of Large Numbers

Assume that [condition in terms of the e; ; above.]
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Theorem: Strong Law of Large Numbers

Assume that [condition in terms of the e; ; above.]
Then SLLN holds, that is P(3¥ — 0) = 1.
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Theorem: Strong Law of Large Numbers

Assume that [condition in terms of the e; ; above.]
Then SLLN holds, that is P(3¥ — 0) = 1.

Example: p, = a/n” with a>0and 0 <~ < 1.
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Theorem: Strong Law of Large Numbers

Assume that [condition in terms of the e; ; above.]
Then SLLN holds, that is P(3¥ — 0) = 1.

Example: p, = a/n” with a>0and 0 <~ < 1.

(We also have a condition in the converse direction, guaranteeing
the LLN breaks down.)

Janos Englander University of Colorado Boulder
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Theorem Weak Law of Large Numbers

Sn/N — 0 in probability, i.e. for any € > 0,
P(|Sn/N| > €) — 0.

that is, WLLN holds
IFF

[another condition in terms of e; j]
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Theorem Weak Law of Large Numbers

Sn/N — 0 in probability, i.e. for any € > 0,

P(|Sn/N| > €) — 0.
that is, WLLN holds
IFF

[another condition in terms of e; j]
This includes the case: p, < 1/2 with np, — occ.

Janos Englander University of Colorado Boulder
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Theorem Weak Law of Large Numbers

Sn/N — 0 in probability, i.e. for any € > 0,
P(|Sn/N| > €) — 0.

that is, WLLN holds

IFF

[another condition in terms of e; j]
This includes the case: p, < 1/2 with np, — occ.

It implies monotonicity for WLLN in terms of the sequence of the
pn's. (How about SLLN??)

Janos Englander University of Colorado Boulder
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@® Part two: the walk
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Random walks (drunkard’s walk)

Pélya, 1924.
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Random walks

Classically, steps are independent of the past and each direction
has equal probability.
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A different type of RW

Definition (Coin-turning walk)

CTW: S, := Y1+ ...+ Y, for n > 1; we can additionally define
So := 0, so the first step is to the right or to the left with equal
probabilities.
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Extend S to a continuous time process, by linear interpolation.

(Here d = 1, horizontal axis: time.)
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Cooling cases

Most interesting ("critical") case is when p, = a/n for n > ng
(a>0).

Theorem

Let S" be defined by S"(t) := Spe/n, t > 0.

(Tiny steps but a lot of them.)

In the critical case, limp_oo S is the zigzag process, where the
limit is meant in law.
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What is a Poisson Point Process?

Poisson Process, A=0.2

20 r—g—y - ‘
° . & c
N - )
15 o ° 0%
o] o
o d o
T . ° o §
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0 L 5 . P
0 5 10 15 20

® The number of points in two disjoint sets are independent random
variables:
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What is a Poisson Point Process?

Poisson Process, A=0.2

20— 5 T
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sl i B o |
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i & o
0 n = . £
4] 5 10 15 20
X

® The number of points in two disjoint sets are independent random
variables:

® in one given set their distribution is Poisson with parameter=
measure of the set (“intensity measure”).
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This measure can be given by a density function in R or in (0, c0)
or in R etc.

For example, on (0, c0), if the density is 1/x, then on the interval
(c,d) we'll have a Poisson number of points with parameter
fd 1 dx = logd — log c = log(d/c), when ¢ > 0.

c

However, on (0, d) the number of points will be infinite, with
probability one.
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Simulated pic of the Zigzag process

o
bS;
S
=

3000

2000
I

1000
I

0 2000 4000 6000 8000 10000
time
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‘Zigzag process’ description

Consider a Poisson point process (PPP) on (0, c0) with intensity
measure 2 dx: “scale-free PPP".

Once the realization is fixed, the value of the process at t > 0 is
obtained as follows.
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‘Zigzag process’ description

Consider a Poisson point process (PPP) on (0, c0) with intensity
measure 2 dx: “scale-free PPP".

Once the realization is fixed, the value of the process at t > 0 is
obtained as follows.

Starting with the segment containing t and going backwards
towards the origin, color the first, third, fifth, etc. segment blue
between points. The second, fourth, etc. will be colored red. Given
this Poissonian intensity, we'll have infinitely many segments
towards zero (and also towards infinity) a.s.

Let A\p(t) and A,(t) denote the Lebesgue measure of the union of
blue, resp. red segments between 0 and t. Then

Zigzag, := WI[Ap(t) — A ()],

where W is a random sign, that is W = —1 or W = 1 with equal
probabilities.
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A picture is worth a thousand words

How does one get the zigzag path from the realization of the PPP(c/x), assuming increase at t?

N

*
X
*
*®
b 3
*
\

Z{Szgi(t) = ]_Lk:»( 37 Leb ( \
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Localization and recurrence for the walk S

Definition (Range and effective range)

The range of the process S is
Ro:={x€Z: S, = x for some n}.
The effective range of the process S is
R :={x€Z: S, = x for infinitely many n} C Ro.

Note that either R = () or R is a connected set in Z.

Definition (Localization, recurrence)

The walk localizes or gets stuck if R is non-empty and finite
(= Ry is finite). We call S recurrent, if R = Z. (R = () means
Sp — 00.)
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Dichotomy

Theorem (Dichotomy under mixing)

The mixing condition implies that either

P(S is recurrent) =1 or PP(S gets stuck) = 1.

What is mixing??
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We now do not randomize the walk with taking Y7 to be
symmetric. Yet, it is still true for the indicators of turns W, that
Y = Yi(—1)Z W j > i, and that for eij = [Tieis1(1—2px) we
have (Y | ;) = Y, E(=1)X1 Wk = ¢V}, hence E(Y;Y)) = e; .
The sequence (Y},)n>1 satisfies the mixing condition if
lim e; =0,Vi e N. (1)
j—o0
Under mixing, one has that lim;,oc E(Yj | Yi) =0, so Y;
“becomes symmetrized" for i fixed and large j. Also,
limjoo E(Y; Y;) =0 and limj,o EY; = 0, hence, for fixed i > 2,

lim Cov(Y},Y;) =0, (2)

j—o0

in accordance with the usual notion of mixing.
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Criterion for mixing

Mixing has a simple characterization in terms of the sequence {p,}:

Lemma (Criterion for mixing)

Mixing holds if and only if

Zmin(pn,qn) = 0. (3)
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Condition for recurrence

We discuss just one representative theorem:

Definition (Spreading)

S has the spreading property if |S,| — 0o as n — oo in probability.

Theorem (Spreading and mixing is enough)

Assume spreading and also mixing. Then S is recurrent.
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Condition for recurrence

We discuss just one representative theorem:

Definition (Spreading)

S has the spreading property if |S,| — 0o as n — oo in probability.

Theorem (Spreading and mixing is enough)

Assume spreading and also mixing. Then S is recurrent.

This yields recurrence in a very broad range of models (sequences).
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Pélya urn

Another cool connection in the critical case is with Pélya urns.

Stage 0 /_&_&L‘

Stage 1 II 2 M
stage 2 @al lum) ladl

2 2 2
Observation leading to the connection: if the sequence is precisely
(pp=1/2),p2o=1/3,p3=1/4,ps =1/5, ... , then S—N’V has
precisely discrete uniform law for each N. (So no wonder the limit

is uniform on [0, 1].)
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Mimicking — if time permits

Let X = {Xi}i>1 be a sequence of integer-valued RVs under the
law P. Consider T defined by T, := > 7 X; n > 1 the
corresponding walk. Let X = {X;};Zl be another sequence of
integer-valued RVs under P and let T} := 7 X/ be the
corresponding walk.

Definition (Mimicking)

We say that X’ mimics X (and vice versa) if
(M1) P(Xi=u)=P(X; =u), i >1;

1
(M2) P(Tia=v | Ti=u)=P(Tj,=v|T =u),i>
1.
That is, X and X  have the same one dimensional marginals and

the two walks have the same one-step transition probabilities.

University of Colorado Boulder
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vs. Pélya

Steps Walk
Coin turning | Markovian, non-exchangeable | non-Markovian
Pélya urn non-Markovian, exchangeable Markovian

Table 1: Different properties.

The coin turning process X mimics the urn process X"™".
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limsup p,,

liminf p,,

w1

TIEATING
>an bayond mi

Brownian molion: g, — 0, and T — IT —
Gom > OB G141 OF Gomia > Crnax gz

NEITHER HEATING NOR COOLING

and

0 < liminf p, < limsup p, < 1, Brownian motion

COOLING

suberitical: np, 1 co, Brownian motion

eritical: np, > o

0, zigzag
strongly critical 0

b —+ 0, 3 —

, Ay

sl 33 pa < oo, bayond mixing
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