1 - INFERÊNCIA NA NORMAL mu0=0 v0=sqrt(2) n=5 sigma=sqrt(10) xbarra=10 mu=seq(-10,20,.1) # cálculo da verossimilhança "padronizada" vero=1/( sqrt( 2*pi*(sigma^2)/n ) * exp(n*((mu-xbarra)^2)/(2*(sigma^2))) ) plot(mu,vero,type="l",ylim=c(0,0.5)) a) ANÁLISE CONJUGADA (PRIORI NORMAL) priori=1/(sqrt(2*pi*(v0^2))*exp(((mu-mu0)^2)/(2*(v0^2)))) lines(mu,priori) v2=1/( ( 1/(v0^2) ) + ( n/ ( sigma^2 ) ) ) mu1= v2* ( ( mu0/(v0^2) ) + ( n * xbarra / ( sigma^2 ) ) ) post=1/(sqrt(2*pi*(v2))*exp(((mu-mu1)^2)/(2*(v2)))) lines(mu,post,col=3) b) ANÁLISE NÃO-CONJUGADA (PRIORI CAUCHY) prioriC= 1/( pi * .8 * v0 * ( 1 + ( ( (mu-mu0)^2 )/(.64*(v0^2)) ) ) ) lines(mu,prioriC,col=6) postC=260*prioriC*vero lines(mu,postC,col=6) 2 - INFERÊNCIA NA BINOMIAL a=2 b=8 n=10 x=8 p=seq(0,1,0.01) # cálculo da verossimilhança "padronizada" vero=( p^x ) * ( ( 1-p )^( n-x ) )*gamma(n+2)/( gamma(x+1) * gamma(1+n-x) ) plot(p,vero,type="l",ylim=c(0,5)) ANÁLISE CONJUGADA (PRIORI BETA) priori=( p^(a-1) ) * ( ( 1-p )^( b-1 ) ) *gamma(a+b) /( gamma(a) * gamma(b) ) lines(p,priori,col=3) post=( p^(a+x-1) ) * ( ( 1-p )^( b+n-(x+1) ) )*gamma(a+b+n)/( gamma(a+x) * gamma(b+n-x) ) lines(p,post,col=3)