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Primary interests in spatio-temporal modelling

In recent years there has been a tremendous growth in the statistical
models and techniques to analyze spatio-temporal data.

Nowadays, there are many monographs, review articles and papers
dealing with very specific cases of interest;

1 Often, the primary interests in analyzing space-time data are to
smooth and predict in time (and/or in space) one (or more)
variable(s) of interest observed over a certain spatial domain;

2 In many important areas also descriptive analyses to detect
meaningful patterns are of interest.
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Notation

1 Let Y (s; t) be a spatio-temporal process of interest, where s ∈ D,
with D some spatial domain in ℜd (usually d = 2) and
t ∈ {1, 2, . . .} a discrete set of times;

2 For any given time t = t0, we assume that Y (·; t0) is a
ny -dimensional (stationary) spatial stochastic process.

3 If available, we denote the nx -dimensional vector X (·; t) as a
predictor of Y (·; t)

X (s; t) and Y (s; t) are called coupled variables

Measurement dimensions ny and nx may change with time.

Our proposal: a state-space model for coupled variables.
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Why use coupled variables?
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Figure: Left. Lombardy monitoring network (Italy): the sites for PM10 are
represented by circles (◦) while those for NOx are represented by crosses (×).
Right. An example of hourly Ozone - O3 - (continuous line) and air
temperature (dashed lines) time series observed at Plateros station (Mexico
City).
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The Spatio-temporal Model for Coupled Variables

Consider two spatio-temporal processes X (s; t) and Y (s; t).

It is explicitly assumed that X can be used as a predictor of Y .

The model is specified hierarchically:

1 Measurements [Y,X] are described through latent factors [f, g].

2 [f, g] describe the dependence in time and between coupled variables
through hyperparameters

3 Hyperparameters specify the spatial dependence

L. Ippoliti*, P. Valentini*, D. Gamerman† Space-Time Modelling of Coupled Spatio-Temporal Environmental Variables



Specifying the Measurement Equation

Consider the measurement equation for the variable of interest Y (t),

y(t) = Hyg(t) + uy(t)

For any site s, the mean level of the space-time Gaussian process is
E [Y (s, t)] =

∑m

i=1 hyi (s)gi (t)

hyi (s), i = 1, . . . ,m, - spatial patterns to be specified.

uy (t) is a zero mean Gaussian process

Same holds for X with (Hy , g, uy ,m) replaced by (Hx , f, ux , r).

Main point: dimension reduction for Y and X (m ≪ ny and r ≪ nx).
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Modelling the Latent Variables

The model for the temporal dynamic of the latent variables is

g(t) =

p
∑

i=1

Big(t − i) +

q
∑

j=0

Cj f(t − j) + ξ(t)

f(t) =

s
∑

k=1

Rk f(t − k) + η(t)

The VAR(s) and VARX (p, q) structures directly allow for a state-space
representation of the full model.

State-space models provide a powerful tool for handling inference and
prediction problems.
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Complete model specification

The following dynamic (or state-space) model is thus specified

g(t) =

p
∑

i=1

Big(t − i) +

q
∑

j=0

Cj f(t − j) + ξ(t) (1)

f(t) =

s
∑

k=1

Rk f(t − k) + η(t) (2)

x(t) = mx(t) +Hx f(t) + ux(t) (3)

y(t) = my (t) +Hyg(t) + uy (t) (4)

Specification is completed with priors for hyperparameter (Θ,Hy ,Hx).

The model can be written in state-space form

z(t) = Hα(t) + u(t)

α(t) = Φα(t − 1) + ζ(t)

z(t) = (y(t), x(t)), α(t) = (d(t), ..., d(t − p + 1)) and d(t) = (g(t), f(t)).
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Specifying the Spatial Patterns: Stochastic Specification

Spatial patterns aim at imposing similarity between nearby sites.

This can be achieved via stochastic or deterministic forms.

1. Stochastic Specification

j−th column of Hy is hyj =
(

hyj(s1), . . . , hyj (sny )
)′
, j = 1, . . . ,m

hyj ’s are conditionally independent Gaussian Random Fields (GRF)

hyj ∼ MVN
(

m
(hy )
j ,Σ

(hy )
j

)

m
(hy )
j is a ny−dimensional mean vector and

Σ
(hy )
j is a parameterized spatial covariance matrix.

Similar reasoning used for hxj ’s - columns of Hx .
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Specifying the Spatial Patterns: Stochastic Specification

1. Hy and Hx cannot be specified ahead of time and must be
considered as a parameter with prior distribution

hyj ∼ MVN
(

m
(hy )
j ,Σ

(hy )
j

)

2. Many specifications for the mean level m
(hy )
j can be entertained:

- constant mean level: m
(hy )
j = 1nyβ

(hy )
j

- regression model: m
(hy )
j = D(hy )β

(hy )
j , D(hy ) - design matrix

Specifications considered in our work are:
a) D(hy ) is the design matrix of a surface regression model (i.e. its entries
are expressed as function of site’s spatial coordinates );
b) D(hy ) = Hx , useful to link the spatial structures of Y and X .

L. Ippoliti*, P. Valentini*, D. Gamerman† Space-Time Modelling of Coupled Spatio-Temporal Environmental Variables



0

0.5

1

0

0.5

1
20

30

40

50

60

0

0.5

1

0

0.5

1
0

2

4

6

8

0

0.5

1

0

0.5

1
−40

−20

0

20

0

0.5

1

0

0.5

1
−5

0

5

0

0.5

1

0

0.5

1
−40

−20

0

20

40

0

0.5

1

0

0.5

1
0

5

10

Factor Loadings (H
y
)

Factor Loadings (H
x
)

L. Ippoliti*, P. Valentini*, D. Gamerman† Space-Time Modelling of Coupled Spatio-Temporal Environmental Variables



Specifying the Spatial Patterns: Deterministic Specification

By letting Σ
(hy )
j = 0, the spatial pattern hyj is defined through a

deterministic specification.

There are various choices for the space of drift functions and classical
examples include:

i. polynomials: these are simple functions and do not depend on the
choice of sites; however they have the disadvantage to be rather
wild in their oscillatory behaviour and grow rapidly as |s| → ∞.

ii. trigonometric functions: useful for data which are periodic in
space.

iii. principle splines: for principal kriging functions (Mardia et al.,
1998; Sahu and Mardia, 2005).
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Specifying the Spatial Patterns

iv. Empirical Orthogonal Functions: Wikle and Cressie(1999) model
the principal fields using EOF’s.

Assuming Y (t) is a Gaussian process with covariance function
Q(s, s′), then the principal fields represent a realization of the

eigenfunctions, wk(s), of the following homogeneous integral
equation

∫

D

Q(s, s′)wk(s)d(s) = λkwk(s) k ∈ N.

In this case, according to the probabilistic corollary of Mercer’s
theorem (Obled, Creutin; 1986), the measurment equations (3) and
(4) are obtained from the Karhunen-Loéve expansion (KLE).
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Prior Distribution for hyperparameters

For simplicity, conditionally conjugate prior distributions are used for all
parameters defining the dynamic factor model. To summarize:

1 Inverse Gamma are used for model variances (eg. the state and
measurement noise, partial sill etc);

2 The Normal distribution truncated to the interval [a,b] is used for
the autoregressive part of the state equation;

3 The Normal distribution is used for the mean vector of the spatial
patterns hyi (s), i = 1, . . . ,m;

4 For the range parameter we define: IG(2,b), where
b = d0/(−2ln(0.05)) and d0 max distance among the spatial sites;
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Posterior Inference

The joint posterior distribution is analytically intractable.
Exact posterior inference is performed by a customized MCMC algorithm.

Common factors are jointly sampled by forward filtering backward

sampling (FFBS) algorithm (Carter and Kohn, 1994, and Frühwirth-
Schnatter, 1994).

All other full conditional distributions are multivariate normal or inverse
gamma distributions → easy sampling
Exception: parameters characterizing the spatial correlations, sampled via
a Metropolis-Hastings step.

Missing data: are sampled at each MCMC iteration from their full
conditional distribution, obtained via the measurement equation.
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Spatial Interpolation: point estimation

The interpolation of the spatial patterns on a new site s0 is not a difficult
task and, in general, one could apply a relatively simple interpolation
scheme.
The specification of the measurement equation shows how to get the
point spatial prediction of Y at an unmonitored site s0

ŷ(s0, t) = ĥy (s0)
′ĝ(t)

=

m
∑

i=1

ĥyi (s0)ĝi(t) (5)

where ĥyi (s0) are the predicted spatial patterns at site s0.

The latent variables gi (t) can be estimated (and predicted in time)
within the Kalman filter (KF).
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Bayesian Spatial Interpolation of Y

yo - observed vector at locations {s1, . . . , sny },
yu - vector of measurements to be predicted at new locations
Su = {sny+1, . . . , sny+nu} ⊂ S .

Main task: obtain predictive distribution p(yu |yo)

Task is achieved by noticing that

p(yu |yo) =

∫

p(yu |Hu
y ,Θ)p(Hu

y ,Θ|yo)dHu
ydΘ

Two steps are required:
1) interpolation of loadings;
2) conditional prediction of measurements.
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Spatial Interpolation: computations

First step requires the posterior distribution of (Hu
y ,Θ)

p
(

Hu
y ,Θ|yo

)

=

∫

p
(

Hu
y |H

o
y ,Θ

)

p
(

Ho
y ,Θ|yo

)

dHo
y dΘ

where p
(

Hu
y |H

o
y ,Θ

)

=
∏m

j=1 p(h
u
yj |h

o
yj ,m

(hy )
j , τ2y,j , φy,j ).

Posterior calculations give p
(

Ho
y ,Θ|yo

)

and samples {(H
o(l)
y ,Θ(l))}.

Standard multivariate normal results give p(hu
yj |h

o
yj ,m

(hy )
j , τ2y,j , φy,j ) and

samples {H
u(l)
y } - Bayesian kriging

Second step uses the measurement distribution p(yu|Hy ,Θ) to give
samples {yu(l)}
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Bayesian Prediction of Y

Forecasts for future Y ’s obtained through the state space formulation.

z(T + k) - vector of measurements to be predicted k-steps ahead of time

Main task: obtain predictive distribution p (z(T + k)|Z)

Task is achieved by noticing that

p (z(T + k)|Z) =

∫

p (z(T + k)|α(T + k),H,Θ) p (α(T + k)|α(T ),H,Θ)

×p (α(T ),H,Θ|Z) dα(T + k) dα(T ) dH dΘ

(z(T + k)|α(T + k),H,Θ) ∼ N (Hα(T + k),Σu),

(α(T + k)|α(T ),H,Θ) ∼ N(µk ,Vk),

µk = Φkα(T ) and Vk =
∑k

j=1 Φ
j−1Ψ(Φj−1)′, for k > 0, with Φ0 = I.
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Bayesian Forecasts of Y

Assume
{

(H(1),Θ(1),α(T )(1)), . . . , (H(M),Θ(M),α(T )(M))
}

is a sample
from p (H,Θ,α(T )|Z)

Easy to draw α(T + k)(j) ∼ p
(

α(T + k)|α(T )(j),H(j),Θ(j)
)

,
j = 1, . . . ,M and

p̂ (z(T + k)|Z) = M−1
∑M

j=1 p
(

z(T + k)|α(T + k)(j),H(j),Θ(j)
)

is a Monte Carlo approximation to p (z(T + k)|Z) .

A sample
{

z(T + k)(1), . . . , z(T + k)(M)
}

from p (z(T + k)|Z)

obtained by sampling z(T + k)(j) ∼ p
(

z(T + k)|α(T + k)(j),H(j),Θ(j)
)

,
for j = 1, . . . ,M .
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Temporal forecasts: ”simple”

Thus, the fit of the variable of interest Y can be obtained as

ŷ(t) = Hy ĝ(t)

where

ĝ(t) = E [g(t)|·] =

p
∑

i=1

B̂ig(t − i) +

q
∑

j=0

Ĉj f(t − j)

When temporal predictions are required, then the transition equation of
the state-space specification provides the basis to predict future values of
g(t) - and f(t); thus, the temporal forecasts of Y can be obtained as

y(t|T ) = Hy ĝ(t|T ), (t > T )
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Unconditional Temporal forecasts

If the path of the exogenous variables X is unknown at t > T , then
forecast of the corresponding latent variable f(t) can be obtained through
its VAR(s) specification:

f(t) =

s
∑

k=1

Rk f(t − k) + η(t)

where s ≤ p and u(t) is white noise. In this case, the joint generation
process for g(t) and f(t) as

[

Im −C0

0 Ir

] [

g(t)
f(t)

]

=

[

B1 C1

0 R1

] [

g(t − 1)
f(t − 1)

]

+ · · ·

· · ·+

[

Bp Cp

0 Rp

] [

g(t − p)
f(t − p)

]

+

[

ξ(t)
η(t)

]

(6)

where it is assumed without loss of generality that p ≥ max(s, q), Ci = 0

for i > q and Rj = 0 for j > s.
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Conditional Temporal forecasts: point prediction

The forecaster may occasionally know the values of the exogenous
variable.

In this case, temporal forecasts of g(t) conditional on a specific ”future”
(with respect to Y) path of f(t) obtained as

f(t) = H†
xx(t), (t > T )

where H†
x is, for example, the generalized inverse of Hx .

NB: when nx > ny , it may be of interest to interpolate Y on the sites in

which X is available. In this case, we may set
[

D(hyo)′,D(hyu)′
]′
= Hx

and try to exploit the spatial structure of the predictor to obtain
conditional interpolations.
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Model Selection

Important issue: selection of m and r , the number of common factors,
and of the orders, p, q and s, of the autoregressive components.

Several Bayesian selection methods have been proposed

Here, we consider three simple approaches: AIC, BIC and PMCC (Laud
and Ibrahim, 1995; Gelfand and Ghosh, 1998; Sahu and Mardia, 2005a)

PMCC stands for minimization of the predictive model choice statistics

PMCC =
∑

{

(Y (s, t)− E [Y (s, t)rep])
2 + Var [Y (s, t)rep]

}

summation is taken over all the (ny × T - #missing ) observations

Y (s, t)rep is a replication of Y (s, t) under the model assumed.
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Real Data Examples

The first data set consists of daily mean concentrations of PM10 and
NOx variables observed in the Lombardy region (Italy).

The second data set represents hourly measurements of O3 and
temperature variables observed over Mexico City.

In these examples, the interest is in temporal and spatial predictions of
PM10 and O3 variables.

L. Ippoliti*, P. Valentini*, D. Gamerman† Space-Time Modelling of Coupled Spatio-Temporal Environmental Variables



Modelling PM10 and NOx in Lombardy Region

Space: 20 sites where both variables are jointly available
Time: daily data from January-October 2008.
Source: Environmental Agency (ARPA) of Lombardy Region.

Latitudes and longitudes expressed according to UTM coordinates,
measured in kilometres.
Data transformed to operate on a logarithmic scale.

Performance test: last week and the temporal series of two monitoring
sites (Arese and Meda) excluded from estimation
Two cases considered for interpolation and forecasting comparisons:

i) conditional predictions : the NOx variable is available;

ii) unconditional predictions: the NOx variable is not available.
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Modelling PM10 and NOx : exploratory analysis

Time series corresponding to the 18 sites are highly correlated.
Some features of the data suggest it will be difficult to predict all the
data satisfactorily.
Example: in summer, some close-by sites show small (∼ 0.2) correlations
(between the corresponding time series).

Spatial maps of X and Y ⇒ spatial mean can be a spatial quadratic
surface.

D(hx ) and D(hy ) are functions of the site coordinates and define a
six-parameter quadratic trend surface (Cressie, 1993).

However, for the Y variable, we also considered setting D(hy ) = Hx .
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Modelling PM10 and NOx : model comparison

Different values of p, q, s,m, r tested (1 ≤ p, q, s ≤ 2 and
1 ≤ m, r ≤ 12).

Competing models compared using PMCC, AIC and BIC.

PMCC criterion suggests: D(hy ) = Hx , m = 9, r = 8 and p = q = 1.
Thus latent factor f(t) follows a VAR(1) while g(t) follow a VARX(1, 1).

The residuals from the fit do not show any temporal correlation, also
confirmed by Ljung-Box statistic.

MCMC algorithm: 75, 000 iterations, posterior inference based on last
50, 000 draws at every 10th iteration.
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Modelling PM10 and NOx : benchmark comparison

Two simpler models:

M1: common observation variance for all the stations
(Σux = σ2

ux
I; Σuy = σ2

uy
I).

M2: constant mean for the Gaussian random field factor loadings

(m
(h·)
j = β

(h·)
j 1).

PMCC, AIC and BIC prefers our model:
Differences between our model and M1: AIC = 311.34 and BIC = 64.72
Differences between our model and M2: AIC = 779.21 and BIC = 32.11
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Modelling PM10 and NOx : factors

The MCMC estimates of the components gi(t), i = 1, . . . , 9, along with
their 95% credibility intervals are shown below.
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Modelling PM10 and NOx : factors and their loadings

First common factor g1(t) accounts for 38% of the variability.
It shows a non-stationary process; represents large-scale variability.

The remaining factors are zero mean temporally stationary processes of
more limited variation.
The third factor g3(t) accounts for 15% of the variability (2nd most
important component).

Common factors explain around 71% of the total variability.

Ranges for correlation functions:
1st factor for PM10 = 63 kilometers
Smaller for other factors of PM10

Vary from 31 kilometers to 58 kilometers for factors of NOx .
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Modelling PM10 and NOx : factor loadings

(a) (b)

Figure: Factor loadings interpolation: the contour values represent the range of
the posterior means for hy1 (a), hy2 (b). The size of each site is proportional to
the absolute value of the corresponding factor loading.
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Modelling PM10 and NOx : factor loadings

(a) (b)

Figure: Factor loadings interpolation: the contour values represent the range of
the posterior means for hy3 (c) and hy4 (d). The size of each site is
proportional to the absolute value of the corresponding factor loading.
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Modelling PM10 and NOx : factor loadings

The weights of the 1st factor loading are very similar to each other.
It represents the grand mean and accounts for the global time-trend
variability of all the series.

The loadings of the 2nd factor do not show any specific pattern.

The 3rd factor loading is a contrast between two groups (9 sites each):
one mainly located in the north-east.

The 4th factor loading shows higher values in the city of Milan and
represents a contrast between the group of 4 sites in the north-western
part, and the remaining 14 sites.
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Modelling PM10 and NOx : Unconditional Forecasts

Unconditional Forecasting results - NOx is not available at sites in Su -
are shown for six of the 18 observed series.
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Figure: Forecasts (continuous line) and true data (x) at six selected sites; the
95% credible interval limits are represented by dashed lines.
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Modelling PM10 and NOx : Conditional Forecasts

Conditional Forecasting results - NOx is available at sites in Su - are
shown for the same six series.
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Figure: Conditional forecasts (continuous line) and true data (x) at six selected
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Modelling PM10 and NOx : Unconditional Interpolations

Unconditional interpolation results - NOx is not available at sites in Su -
at Arese (top panel) and Meda (bottom panel).
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Figure: Unconditional interpolated values (continuous line) and true data (x).
The 95% credible interval limits are represented by dashed lines.
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Modelling PM10 and NOx : Conditional Interpolations

Conditional interpolation results - NOx is available at Arese (top panel)
and Meda (bottom panel).
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Figure: Conditional interpolated values (continuous line) and true data (x).
The 95% credible interval limits are represented by dashed lines.
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Modelling PM10 and NOx : Interpolation measures

summary

Interpolation RMSE MAE CP 95% interval AIW 95% int

Conditional 15.740 10.501 0.958 70.924
Unconditional 17.218 12.962 0.951 92.108

The summation is taken over all the (nu × T ) observations.

Coverage probabilities of the 95% intervals are close to the nominal rate
for the two cases.

Conditional interpolation: better results (smaller RMSE, MAE and AIW)
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Modelling Ozone Levels at Mexico City

Space: 22 sites for O3 and 16 sites for air temperature (14 joint sites).
Time: hourly data from 06 February 2009 2pm to 12 February 2009 5pm.
Source: Huerta et al. (2004)

O3 data transformed to operate on a square root scale.

The monitoring sites are scattered irregularly in Mexico City and the
network is named Red Automatica de Monitoreo Ambiental (RAMA) de
la Ciudad de México.

Exploratory analysis of the cyclical behaviour: presence of a peak with
wavelengths of 24 h (daily cycle) and a peak with a wavelength of 12 h.
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Modelling Ozone Levels at Mexico City

Forecasting: the last 48 hours have been excluded from the estimation
procedure and used only for prediction purposes.

Interpolation: the time series of two monitoring sites for O3 have also
been excluded from the analysis.

We have ny = 20, nx = 16, T = 100; nu = 2, and a forecast period
T48 = {T + 1, . . . ,T + 48}.

Model specification: PMCC ⇒ m = 7 and r = 6.

1st two components for both variables represent the harmonic cycles with
a wavelength of 24 h and 12 h.
The remaining 4 components in f(t) follow a random walk.
The remaining 5 components in g(t) follow an ADL(1, 1).
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Modelling Ozone Levels at Mexico City

The posterior means of the effective ranges for the first two factor
loadings, hy1 and hy2, corresponding to the harmonic cycle of 24 h and
12 h, are 33.4 and 31.2 kilometers since the covariograms decay to 0.05
for φ̂y1 = 11.15 and φ̂y2 = 10.42, respectively.

Similar findings have also been found for the temperature; in fact the
estimated factor loadings corresponding to the two cycles show that the
spatial correlations at 30 kilometers vary from 0.06 (for the harmonic
cycle of 12 h) to 0.07 (for the harmonic cycle of 24 h).
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Modelling O3 at Mexico City: Interpolation measures

summary

Interpolation RMSE MAE CP 95% interval AIW 95% interval

Conditional 10.191 6.872 0.952 27.172
Unconditional 12.016 8.542 0.946 36.722

The summation is taken over all the (nu × T ) observations.

Coverage probabilities of the 95% intervals are close to the nominal rate
for the two cases.

Conditional interpolation: better results (smaller RMSE, MAE and AIW)
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Modelling O3 at Mexico City: Conditional Forecasts

Conditional Forecasting results - Temperature is available at sites in Su -
are shown for a selection of the three best (top row) and worst (bottom
row) forecasts.
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Modelling O3 at Mexico City: Conditional Interpolations

Conditional interpolation results - Temperature is available at Tláhuac
(TAH) (top panel) and Santa Úrsula (SUR) (bottom panel).
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Figure: Conditional interpolated values (continuous line) and true data (x).
The 95% credible interval limits are represented by dashed lines.
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Modelling O3 at Mexico City: Interpolation on a (40× 30)

grid

Reference period: February 7th 2009, from 11 a.m. to 6 p.m.
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Discussion and ... further work

1 we have presented a flexible Bayesian spatio-temporal model which
is useful when coupled variables are available;

2 the state-space model formulation allows for temporal, spatial and
spatio-temporal predictions;

3 it provides for a wealth of explanation through factors, their
loadings, their evolutions, etc;

4 the model is particularly useful when the predictor variable is
”richer” (both in space and in time) than the response;

5 reversible jump MCMC can be used for estimating the number of
factor loadings

6 model extensions: 1) multivariate case, 2) exponential family.
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Thank you!

dani@im.ufrj.br

dme.ufrj.br/dani

L. Ippoliti*, P. Valentini*, D. Gamerman† Space-Time Modelling of Coupled Spatio-Temporal Environmental Variables


