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1. Introduction

main types of spatial(-temporal) data:

e Geostatistics or continuous data
e areal data

e point pattern

This talk is concentrated on the latter



1.1. Models for spatial point patterns

The most usual model is the Poisson process
Governed by the intensity function A(s), for s € S
[Typically, S ¢ R9]

Notation: Y ~ PP(]\)

Also, Y can be identified with its observed locations {s;}%

Problems:

e object of interest (IF \) is infinite-dimensional

o likelihood I(\: ) = T\, A(s: ) exp{— [¢ A(s)ds}

depends on the entire |[F and is unavailable analytically



Spatio-temporal Poisson processes

Assume discrete time over T = {t1,to,...} = {1,2,...}

[Continuous time is basically an added dimension over S]
Thus, Y = (Y1, Ys,...) with Y; ~ PP(\,), fort € T

Likelihood:

1;[Z 1)\,5 Sit) exp{ Z/S)\t( )ds}



Cox processes (Cox, 1955):
e space only: X is random
e space-time: {)\;, t € T} is random
Important special case: log Gaussian Cox process (LGCP)

log A ~ GP (Moller et al, 1998)

Observation: Gaussian processes (GP)
n~ GP over § <

Vr,V{s1,...,s,} C S, (n(s1),..n(s;)) ~ MN



1.2. Regression for point patterns

Standard approach for spatial models:
separate predictor into space(-time) component + regressor effect
PP: \(s) = g[ Bos(s) + W3 ]

[ LGCP: g = exponential |
Some applications show heterogeneity: separation is not reasonable
— space/space-time varying regression coefficients

continuous data: Gelfand, Banerjee and Gamerman (2005)

areal data: Gamerman, Moreira and Rue (2003)



Extension for point patterns

Regression coefficents vary over space-time: § — [(s)
Extra complexity is only computational but....

much smaller than introduced by co dimensionality of IF
From now on, (5 incorporated into 5 (and Linto W) — A\(s) = g| W'B(s) |
More details about regressors in IV
e may vary over space/time (Benes et al, 2005) — easy
[although it may bring in identifiability issues]

e may vary over configurations v (Liang et al, 2008; Diggle et al, 2010)

W — W, and A\i(s) = Aru(S)



1.3. Dynamic Gaussian processes

Typically S;(s) vary smoothly over space-time
Smoothness over space provided by GP

Smoothness over time is also needed

One possible solution: DGP (Gamerman, 2010)

By = Gy By +w, where wy ~ GP

with 61 ~ GP

Notation: S ~ DGP



Accomodates stochastic SV trend, seasonality, ...

Markov — Sparcity — computations can be improved

Continuous-time version in Brix and Diggle (2001)
More convolved forms in Wikle and Cressie (1999).
Both require approximations to work

We would like solutions to be as exact as possible



2. Model and inference problem

2.1. Model
Likelihood: Y = (Y7, Y5, ...) with Y; ~ PP(\;), fort € T

Link function: \(s) = g[ W/B,(s) |

[If data varies over individual configurations v —
5/25 :{Y;S,U} with 5/25,/0 ~ PP<)\7§,0> and At,/u(8> - g[WZ) Bt(s)}a for v € V]

Prior: 6 ~ DGP
Hyperprior: 6 ~ p(0)

¢ - all other unknowns (DGP hyperparameters)



This model includes many other models previously considered

Special cases:
o \(s) = g[ Bo(s) + W'A ] (Benes et al., 2005)

o \(s) = g[ Bo(s) + W' 3] (Liang et al, 2008 Diggle et al, 2010)
o \i(s) = g[ Bos(s) ] (Reis et al., 2013)



2.2. Inference (problem)

Prior density does not exist due to oo dimension of (3
NB: finite dimension version do exist

Likelihood cannot be computed — Posterior cannot be computed!

Some solutions involve:
e parametric forms for the IF and/or

e approximation of the integral in the likelihood

Solutions should be as exact as possible and:

e be model-based

e retain the IF as is, without any representation



3. Discretization

(Pinto Jr et al, 2015)

Some situations require regional rather than point-wise approach
In these cases, little is lost by assuming piece-wise constancy
Ai(s) =Ny, forse R, C S

{R;} form a partition of S, with a; = vol(R;)

card({R;}) depends on the analyst

Most common link: exponential



Discretized model

Likelihood — I(A;y) = [T, T Aret exp{— 32, 3, aihis}
[Basically equivalent to INV;; ~ Poisson(a;\;;), V(i,1)]
Link function — \;; = exp{W’3;+}

(LN y) =11, LA y) and N ¢y = exp{ W) ;s }, with individual covariates]

Set-up — finite-dimensional
with parameters 3 = (1, B2, ...) where 8, = {5, Vi}
Prior — By = Gy By + wy, where w; ~ M N

MN specification derived from GP, based on centroids of {R;}



Comments:

e Similar to dynamic areal data (Vivar and Ferreira, 2009)

e MCMC for non-Gaussian TS data may be used (Gamerman, 1998;
Fruhwirth-Schnatter and Wagner, 2006)

e Standard software (Bugs, Jags, etc) ok if 7" is not large

e Computational cost depend on card({R;})



INlustration (Pinto Jr et al, 2015)

Cardiovascular disease deaths in Rio de Janeiro, 2002-2007

Municipal health policy is organized by AR’s or boroughs
No reason to consider within-region variation — discretization

Time span too small to capture temporal changes — purely spatial analysis



Models used

IF is function of explanatory variables:

e individual: age, gender, education and marital status

e spatial: socio-economic level (HDI) of the region

spatial effects were fixed, individual effects were SV

HDI were to handle effect of socio-economic level

— no residual effect of geography over intercept [

Offsets used to standardize over demography



Age effect: posterior median and 95% CI of coefficient
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e space varying effects (SVE) over AR's and fixed effects (FE)

e largest coefficients: wealthier regions (4, 5, 6 and 24)

e smallest coefficients: Complexo do Alem3o, a slum-town (region 29)



Relative risk of + 10 years: median and IC 95%
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e variation of RR’s: ~ 50% (Alem3o) to ~ 270% (wealthier AR)

e FE model : ~ 240%



Other results

Effects of individual covariates: smaller spatial variation
Some significant regional effects but not all

More evidence about relevance of SVE model
HDI coefficient highly relevant, as expected
SVE model: —10 and CI(95%)= [—10.2, —9.7]
There is still significant spatial variation of 3

SVE model: better fit (DIC) than FE

SVE over AR's: much better fit than SVE over boroughs



Relative risk: protective configuration

(young female, living with someone and with education)
e comparisons against region 6, wealthiest

e slum-towns stand out: largest RR’s (~ 14) but wider C.I.




4. Augmentation (Gongalves and Gamerman, 2018)

Situation seems unsolvable directly
Solution: Poisson thinning (Lewis and Shedler, 1979)
Algorithm to simulate from Y | A ~ PP()) - space only
0) set A* = sup, A(s)
1) sample X ~ PP()\") < augmented data
[sample K ~ Poisson(\*vol(S)) and
distribute K points {s;}& | uniformly over S']
2) retain each point s; with probability A(sy)/\*, Vk

3) {s;}, retained points are a sample from Y

Obs: X \ Y =Y ~ PP(A\*—)), Y independent of Y and § = {s,} X\,



Graphical version of the algorithm

start: |F over the real line
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Graphical version of the algorithm

step O: setting upper limit \*
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Graphical version of the algorithm

step la: drawing K, the number of locations
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Graphical version of the algorithm

step 1b: distributing the locations {s;}

2.5 3.0
| |

2.0
I

IF
10 15

0.5
I

8— B XX X XXX XX XX XX X X X X XX X XX X X X X
0 2 4 6 8 10



Graphical version of the algorithm
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step 2: evaluating thinning probabilities
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Graphical version of the algorithm
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step 3: drawing the thinned locations {s;}
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Analytic version of the algorithm

T(K,z,y | A) = 7(K | X)) x7w(x| K)x7(y|z,\)

K-N

A S;
< II5 ]

1=1 7=1

-

Notation: x and y are the observed values of X and Y



Extension to general space-time case

Algorithm to simulate from Y | A ~ PP())

Recall that Y | A ~ PP(\) < Y; | Ay ~ PP(\;),Vt
Simply repeat algorithm for space only, V¢
{{si4} 2, Vt} retained points are a sample from Y

{{su}fitNtH,Vt} discarded points are sample from Y’

Y = (1,Y5,...) where X; \ Y; =Y, ~ PP(\f — \,), Vit



Analytic version of the algorithm: general case

T({ Kt z,y | A) = H{W(Kt | A X (e | Ky) x m(ye | 2, M)}

— H —/\fz()] UOZ(S))\:]KIL " 1 Ky
K vol(S)

Crucial point: integral disappeared and likelihood depends

on a finite subset of )\



4.1. Model redefined - space only

Redefinition needed due to presence of upper bound \* on IF
Likelihood: Y ~ PP(\)

Link function: A(s) = \* g[W'S5(s)]

Prior for 8: B ~ GP

Prior for A*: \* ~ 7,

Hyperprior: 6 ~ m(6)

6 - all other unknowns (GP hyperparameters)



Comments:

e link g must be bounded to [0, 1] — any d.f works

— common choice: logistic (or sigmoidal)
— we chose probit: g = @, the d.f. of N(0,1)

— indistinguishable but much better computationally
e obvious option for 7y: G(ay, b)) - conjugate

Notation: Sy - latent GP 5 at N locations of Y

Similar notation for Wy, Bk, Wk, Brx-~n, Wk_n, ...



Inference
Unknown quantities: Y (and K), \*, 3,0
(augmented) likelihood: [ (K, g, 8, \";y) = (K, z,y | A", B)

*| K
L(K,g,B,\y) = e Mol [A*]

K
x H@[Wgﬁ(s@)] H O[-W;B(s;)]

NB: likelihood depends on 8 = (B, 5 ) only through S !!!
— Z(Kag767)\*7y) - Z(K7g75K7>\*7y)

Set-up — finite-dimensional (as with discretization)



Inference (cont.)

(joint) prior: 7 (B, \*,0) = map (B | 0) my (A*) w(0)

where B | 6 ~ M N, with moments given by GP

(joint) posterior: 7 (K, 1y, Br, A", 0 | y)

™ (K., B, A", 0 | y) < LK, 9, Br, A5 y) X 7 (B, A™, 0)



Computation
Unknown quantities: Y, B, \*, 6 (and 3_x)
Performed via block MCMC: samples from full conditional

oY

Y, Y independent — [Y |- ]=[Y | X\, 8] = PP( X*®[-W (s)'B(s)] )

sample y obtained by thinning from X ~ PP(\*) but requires 5_x
o Ok [Full conditional is multivariate skew normal — Gibbs step|

(B | ) ocﬂcbw’ ch —W!B(s;)] (B | 0)

o\ [Gamma prior — conditional conjugacy|

o0 [Metropolis-Hastings steps]



Inference for [_j

Required for inference about IF and other functionals

Example: A(C') = /C)\(s)ds

{51,...,8¢} C S - new set of locations

Denote ¢ = (8(s1), ..., B(5¢))
Extended set of unknowns: K.Y, B, B¢, \*, 0

Full conditional for B¢ is w(8¢ | Brk, 0)
Can be trivially added as an extra step to MCMC

Just like your standard kriging in (Bayesian) Geostatistics



Comments

e other MCMC blocking schemes are possible

Example: (K.Y, Bx_n), By, A* and 6

e estimation of IFs via augmentation was introduced by Adams et al (2009)
they did not consider time, covariates, ST variations, ...

they use Hamiltonian MC



Comments (cont.)

e G & G (2018): very good mixing despite Gibbs steps

ACF of -2 log posterior density
G & G (2018) Adams et al. (2009)
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Comments (cont.)

e any \' > \* is also valid but is less efficient

IF

extra care must be exercised when setting priors

e )\ with substantial variation in magnitude — K > N
only 20% of the drawn points above are "retained”

augmentation becomes computationally inefficient



Illustration

Oaks in Lansing Woods, USA (Baddeley et al, 2015)

Discretized IF - 1gcp (Taylor et al, 2013)
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Estimated IF - continuous estimation

IF seems smoother in continuous space

E[A([0,4]%) | y] = 126.5 (sepc = 47%), real N= 126



4.2. Model redefined - general space-time case

Redefinition needed due to presence of upper bounds {\f,Vt} on IF
Likelihood: Y; ~ PP()\;), fort € T

Link function: A\i(s) = \; ®[W'B;(s)]

Prior for {f;,Vt}: 5 ~ DGP

Prior for {7, Vt}: (A, A3, ...) ~ m)

Hyperprior: 6 ~ m(6)

Options for m):
e equal: \j = \*, V¢
e independent: [, m(A})

e beta evolution model (Gamerman et al, 2013)



Inference
Unknown quantities: {£;},Y", 3, {\f},0

(augmented) likelihood:
LEEKG 9, 84N y) = = T LK 9 Br, A y)

NB: likelihood depends on 5 = (Bx, 5-k) only through Sx = {fk,}!

(joint) prior: 7 (B, {\;},0)

T (B {Ai}, 0) = mpep (Bk | 0) mpem ({Af}) w(6)

(joint) posterior: ™ ({K:}, 9, B, {\;}, 6| y)
Other quantities of interest:
e inference for 5_ g

e prediction beyond observed times



Computation

Unknown quantities: ¢, B, {\; },0

Performed via MCMC: full conditionals basically as before

Only relevant differences are:

* Ok

As before (but sparcity may be used to improve computations)
o {\}

BEM prior — easy sampling from full conditional
non-Gaussian FFBS (Gamerman et al, 2013)

e 5_x and prediction for future times

both straightforward sampling from full conditional



Illustrations

1. New Brunswick fires (Baddeley et al, 2015)

Map of the study region Data aggregated over space

Year Number

of fires
1987 216
1989 120
1990 102
1991 211
1992 155
1993 123
1994 136
1995 169
1996 122
1997 94
1998 86
1999 224
2000 140
2001 194
2002 127
J4 2003 94

e ST variation of IF
e No covariates included



New Brunswick fires - estimated IF
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IMlustrations (cont.)
2. Simulated ST data with seasonality
Model: Ai(s) = A* ®[ Bo.(s) + Bils) cos(2mt/p + ¢) |

Data generation: 5y ~ DGP and deterministic (3

Estimation: Sy ~ DGP and 31 ~ GP



Estimation of (;

deterministic estimated




Estimated IF for ¢t =1,6,11, 16
true (top), estimated (bottom)




Predicted IF for t = 17,18, 19,20
true (top), predicted I'F (middle) and N([0,2]?) (bottom)

M




5. Final comments

e discretization is useful when regional effects are more meaningful than
point-wise

computational cost depends on number of regions

e augmentation also /eads to discretization
computational cost depends on number of locations

(augmented + real)

e computation speeded by approximating GP’s

Shirota & Banerjee (2018)



Final comments (cont.)

e augmentation can be more efficient by varying \*

/

IF
00 05 10 15 20 25 3.0
1 1 1 1 1 1 1

60% of the drawn points are "retained"” [instead of 20%)]




Final comments (cont.)

e GP is useful model for smooth IF

not useful for jumps, discontinuities, non-stationarity, ...

e Alternatives available from Geostatistics literature
partition into local GPs (Kim et al, 2005; Gramacy and Lee, 2007)

particularly attractive from computational perspective
e our approaches allows for partition of 3 (and \*, with augmentation)
e individual configurations v: \* — A*(v). Example: \*(v) = A§ g(v).

e presence-only data: active area of application of point process

a bit odd but common in Ecology; currently advising a Ph.D. project



Thank you!

dani@im.ufrj.br

www.statpop.com.br
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