Chapter 7.  Further topics in MCMC

 

·  Example 7.1 (pages 245-6) – Figure 7.1 (page 247) – Table 7.2 (page 246)  - Comparing several methods to compute the normalizing constant f(y)

 

f0   – normal approximation

f1   – proposal is the prior

f4   – proposal is the posterior

f5   Newton and Raftery’s

f6   – generalized harmonic mean

f7   – annealed importance sampling

f8   – optimal bridge sampling

f9   – path sampling

f11 – candidate's estimator from Metropolis output

 

·  Example 7.3 (pages 251-2) – Figure 7.2 (page 252)  - Random walk Metropolis-Hastings algorithm

 

Data presented by Ratkowski (1983) on the temporal evolution of the dry weight of onion bulbs. 

Gelfand, Dey and Chang (1992) considered 2 possible non-linear models in the form

 

yt ~ N(f(θ,t),σ2)

 

where

Molde 1 - Logistic model        :     f(θ,t) = θ1/(1+θ2θ3t)

Model 2 - Gompertz model     :     f(θ,t) = θ1 + exp(θ2θ3t)

 

with θ2 > 0 and 0 < θ3 < 1 and ψ1 = θ 1, ψ2 = log(θ2) and ψ3 = log(θ3/(1-θ3)).

 

Non-informative prior: p(ψ2) = 1/σ2.

           

            Data  on the temporal evolution of the dry weight of onion bulbs:

 

y = (16.08,33.83,65.80,97.20,191.55,326.20,386.87,520.53,590.03,651.92,724.93,699.56,689.96,637.56,717.41)

 

·  Example 7.5 (pages 254-5) – Figure 7.3 (page 256)  - Table 7.6 (page 255)  -  Computing AICs, BICs, pseudoBFs, DGs and DICs

 

Comparing gamma,lognormal,weibull models.

 

Data on 100 cycles-to-failure times for samples of yarn airplanes.  For each individual airplane, it has been suggested that an

exponential model fits the data well (Quesenberry and Kent, 1982 and Leonard and Hsu, 1999) .

 

 

·  Example 7.10 (pages 274-5) – Figure 7.5 (page 275)  -  Delayed rejection Metropolis and Random walk Metropolis algorithms to sample from

 

π(θ)  =  0.9fN(θ;0,1)  +  0.1fN(θ;10,1)

 

·  Example 7.11 (pages 277) – Figure 7.6 (page 278)  -  Multiple try Metropolis and Random walk Metropolis algorithms to sample from

 

π(β) (∑[yi11e2xi]2)-2  fN1;20,202) fN2;0,1.52)

 

for β=(β12)  in [-20,50]x[-2,6] , x = (1,2,3,4,5,7) and y = (8.3,10.3,19,16,15.6,19.8).

 

This example is related to Example 3.7 (pages 102-3).

 

 

·  Example 7.12 (pages 280) – Figure 7.7 (page 281)  -  Simulated annealing to find the mode of

 

π(β)  ∏ exp{(β12xi)yi}∏ {1+exp(β12xi)}-ni

 

·  Example 7.15 (pages 284) – Figure 7.8 (page 285)  -  Slice sampling to sample from

 

π(θ)    (2+θ)14(1-θ)3θ5

 

for θ in [0,1].