Chapter 7.
Further topics in MCMC
·
Example 7.1 (pages
245-6) – Figure 7.1 (page 247) – Table 7.2 (page 246) - Comparing several methods to compute
the normalizing constant f(y)
f0 – normal approximation
f1 – proposal is the prior
f4 – proposal is the posterior
f5 –
f6 – generalized harmonic mean
f7 – annealed importance sampling
f8 – optimal bridge sampling
f9 – path sampling
f11 – candidate's estimator from Metropolis output
· Example 7.3 (pages 251-2) – Figure 7.2 (page 252) - Random walk Metropolis-Hastings algorithm
Data presented by Ratkowski (1983) on the temporal evolution of the dry weight of onion bulbs.
Gelfand, Dey and Chang (1992) considered 2 possible non-linear models in the form
yt ~ N(f(θ,t),σ2)
where
Molde 1 - Logistic model : f(θ,t) = θ1/(1+θ2θ3t)
Model 2 - Gompertz model : f(θ,t) = θ1 + exp(θ2θ3t)
with θ2 > 0 and 0 < θ3 < 1 and ψ1 = θ 1, ψ2 = log(θ2) and ψ3 = log(θ3/(1-θ3)).
Non-informative prior: p(ψ,σ2) = 1/σ2.
Data on the temporal evolution of the dry weight of onion bulbs:
y = (16.08,33.83,65.80,97.20,191.55,326.20,386.87,520.53,590.03,651.92,724.93,699.56,689.96,637.56,717.41)
· Example 7.5 (pages
254-5) – Figure 7.3 (page 256)
- Table 7.6 (page 255) - Computing
AICs, BICs, pseudoBFs, DGs and DICs
Comparing gamma,lognormal,weibull models.
Data on 100 cycles-to-failure times for samples of yarn airplanes. For each individual airplane, it has been suggested that an
exponential model fits the data well (Quesenberry and Kent, 1982 and Leonard and Hsu, 1999) .
· Example 7.10 (pages 274-5) – Figure 7.5 (page 275) - Delayed rejection Metropolis and Random walk Metropolis algorithms to sample from
π(θ) = 0.9fN(θ;0,1) + 0.1fN(θ;10,1)
· Example 7.11 (pages 277) – Figure 7.6 (page 278) - Multiple try Metropolis and Random walk Metropolis algorithms to sample from
π(β) ∝ (∑[yi-β1-β1e-β2xi]2)-2 fN(β1;20,202) fN(β2;0,1.52)
for β=(β1,β2) in [-20,50]x[-2,6] , x = (1,2,3,4,5,7) and y = (8.3,10.3,19,16,15.6,19.8).
This example is related to Example 3.7 (pages 102-3).
·
Example 7.12 (pages
280) – Figure 7.7 (page 281)
- Simulated annealing to find the mode of
π(β) ∝ ∏ exp{(β1 +β2xi)yi}∏ {1+exp(β1 +β2xi)}-ni
· Example 7.15 (pages 284) – Figure 7.8 (page 285) - Slice sampling to sample from
π(θ) ∝
(2+θ)14(1-θ)3θ5
for θ in [0,1].