WinBUGS: Nonlinear regression model
Revisiting Example
7.3 (pages 251-2) on non-linear regression models
Data presented by Ratkowski (1983) on the temporal evolution of the dry weight of onion bulbs.
One of the nonlinear models considered by Gelfand, Dey and Chang (1992) is
y ~ N(a-bgx, t -2)
with p(a,b,g,t2) = p(a) p(b) p(g) p(t2) and
a ~
N(0.0,1000000)
b ~
N(0.0,1000000)
g ~ U(0,1)
t2 ~ G(0.01,0.01)
WINBUGS CODE FOR THE NONLINEAR MODEL
# NONLINEAR
MODEL
model{
for( i in 1 : N ) {
y[i] ~ dnorm(mu[i], tau2)
mu[i] <- alpha - beta *
pow(gamma,x[i])
}
alpha ~ dnorm(0.0, 1.0E-6)
beta ~ dnorm(0.0,
1.0E-6)
gamma ~ dunif(0.0, 1.0)
tau2 ~ dgamma(0.01, 0.01)
}
# DATA
list(x=c(1.0,1.5,1.5,1.5,2.5,4.0,5.0,5.0,7.0,8.0,8.5,9.0,9.5,
9.5,10.0,12.0,12.0,13.0,13.0,14.5,15.5,15.5,16.5,17.0,22.5,
29.0,31.5),y=c(1.80,1.85,1.87,1.77,2.02,2.27,2.15,2.26,2.47,
2.19,2.26,2.40,2.39,2.41,2.50,2.32,2.32,2.43,2.47,2.56,2.65,
2.47,2.64,2.56,2.70,2.72,2.57),N=27)
# INITIAL VALUES
list(alpha=1,beta=1,tau2=1,gamma=0.9)