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What is control?

Dynamical system ẋ = f (x):object of study in mathematics
Vector field on RHS is “God-given”
Mathematician’s job is to describe evolution of state x :
equilibria, limit cycles, etc.
Control theory studies ẋ = f (x , u) where u is a control input
Control engineer’s job is to choose control input u so that
evolution described by RHS vector field behaves in
prespecified fashion.
For example, can u be chosen so that all trajectories go to (a
globally stable) equilibrium, or limit cycle?
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Dynamical system ẋ = f (x):object of study in mathematics
Vector field on RHS is “God-given”
Mathematician’s job is to describe evolution of state x :
equilibria, limit cycles, etc.
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Linear control: discrete-time case

Dynamical system x(k + 1) = Ax(k) + Bu(k), x ∈ Rn, u ∈
Rm,A ∈ Rn×n,B ∈ Rn×m: most well-understood case,
complete theory.
In this case, without control (u(k) = 0, ∀k), origin is stable if
spectral radius ρ(A) < 1.
What if spectral radius ρ(A) > 1?
Assume that state x(k) is measured and available to engineer.
Key idea of full state feedback: choose u(k) = Fx(k)
Dynamical system under feedback becomes
x(k + 1) = (A + BF )x(k)
New question: given A,B, can F be chosen such that
ρ(A + BF ) < 1?
Yes! Under simple algebraic condition (unstable “modes” are
“controllable”).
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What is optimal control?

Dynamical system ẋ = f (x , u): continuous-time case.
Suppose that there is some mission objective: e.g., landing a
spacecraft on the moon.
Also suppose that there are physical constraints: energy
(=fuel) has weight, thus limited
New problem: design control u such that trajectory x fulfills
mission & does not violate constraints.
In most cases, we wish to do this optimally.
Given an objective function (performance index, cost)
J(x , u) =

∫ T
0 (x(t)T Qx(t) + u(t)T Ru(t))dt (for example)

Can u(t) be chosen such that cost J(x , u) is minimized?
Yes! Complete theory: Bolza, Bliss, Pontryagin, Bellman.

5 / 45



What is optimal control?
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Dynamical system ẋ = f (x , u): continuous-time case.
Suppose that there is some mission objective: e.g., landing a
spacecraft on the moon.
Also suppose that there are physical constraints: energy
(=fuel) has weight, thus limited
New problem: design control u such that trajectory x fulfills
mission & does not violate constraints.
In most cases, we wish to do this optimally.
Given an objective function (performance index, cost)
J(x , u) =

∫ T
0 (x(t)T Qx(t) + u(t)T Ru(t))dt (for example)

Can u(t) be chosen such that cost J(x , u) is minimized?
Yes! Complete theory: Bolza, Bliss, Pontryagin, Bellman.

5 / 45



What is optimal control?
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Optimal control: mathematical formulation

Given a dynamical system ẋ = f (x , u)
and a cost function J(x , u)
minimize J(x , u), by choice of u(t), t ∈ [0,T ], subject to the
dynamics ẋ = f (x , u)
Control u is a function; trajectory x must satisfy an ODE with
RHS dependent on the choice u.
This is a difficult problem of variational calculus.
Even when there are no additional constraints on the state x
and the control u!
Without additional constraints: complete theory in LQ case
(linear system, quadratic cost)
LQ case: optimal control is found in feedback form (solving
Riccati equation or by dynamic programming).
Kalman, Bellman: early 1960s.
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and a cost function J(x , u)
minimize J(x , u), by choice of u(t), t ∈ [0,T ], subject to the
dynamics ẋ = f (x , u)
Control u is a function; trajectory x must satisfy an ODE with
RHS dependent on the choice u.
This is a difficult problem of variational calculus.
Even when there are no additional constraints on the state x
and the control u!
Without additional constraints: complete theory in LQ case
(linear system, quadratic cost)
LQ case: optimal control is found in feedback form (solving
Riccati equation or by dynamic programming).
Kalman, Bellman: early 1960s.

6 / 45



Optimal control: mathematical formulation

Given a dynamical system ẋ = f (x , u)
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Optimal control: discrete-time case

Given a dynamical system
x(k + 1) = f (x(k), u(k)), k = 1, 2, . . . ,K
and a cost function J(x(k), u(k))
minimize J(x(k), u(k)), by choice of u(k), k ∈ [1,K ], subject
to the dynamics x(k + 1) = f (x(k), u(k))
Control u is a function; trajectory x must satisfy a recurrence
relation dependent on the choice u.
The recurrence relations
x(k + 1) = f (x(k), u(k)), k = 1, 2, . . . ,K can be regarded
as K equality constraints
We can now reinterpret the optimal control problem as an
optimization problem.
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Optimal control as mathematical optimization

minimize J(x(k), u(k)), by choice of
u(k), k ∈ [1,K ], x(k), k ∈ [1,K + 1]
subject to the K equality constraints
x(k + 1) = f (x(k), u(k)), k = 1, 2, . . . ,K
This is a standard nonlinear programming problem, convex if
J is convex and f is affine
Easy to solve if convex, even if J is nonlinear
Convex constraints on x and u can be added without
increasing the difficulty of solution!
Price to be paid: 2K + 1 decision variables.
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Optimal control as mathematical optimization (history)
Krasovskii (1957): Impulse response → linear program
formulation (not explicitly identified as such).
Zadeh (1962): made Krasovskii’s contribution explicit as
linear program.
Cannon, Cullum and Polak (1970): Far-reaching
theoretical extensions of Krasovskii/Zadeh ideas.
Boyd, Barratt (1991): Linear Controller Design: Limits of
Performance (convex formulations).
Boyd et al. LMIs in System & Control (1994) (convex
optimization).
Mayne, Rawlings et al. (2000) Constrained model predictive
control: Stability and optimality.
Goodwin et al. (2005): Constrained Control and Estimation -
An Optimisation Approach.
Borrelli, Bemporad, Morari (2017): Predictive control for
Linear and Hybrid Systems.
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This talk

Optimization-based one step ahead optimal approach,
discrete-time, implementable in real time.
Not (necessarily) linear quadratic (LQ).
Examples from Business Dynamics: index which takes both
the management and financial aspects into account.
Examples from numerical algorithm design, opinion dynamics
& dynamic games.
Contributions: No prediction required, close to optimal, effect
of delays, Julia+JuMP open source code.
Drawback: Approach is deterministic, although some
statistical simulation is done
Challenge (to this audience): Redo using
probabilistic/stochastic approaches!
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Omniscient optimal control

Dynamical system:
x(k + 1) = F (x(k), u(k), e(k), k), k = 1, . . . ,Kf

x(k): state variable.
u(k): control input chosen by the decision maker, usually
subject to some constraints.
e(k): exogenous input known at time k, but not known
for future times, and not under the control of the
decision maker.
Omniscient optimal control problem: Given the exogenous
input sequence {e(k)}Kf

k=1and initial state x(1)�
�

�
�

maximize Jom(Kf + 1)
subject to x(k + 1) = F (x(k), u(k), e(k), k)

by choice of u(k), k = 1, . . . ,Kf
11 / 45



Omniscient optimal control

Dynamical system:
x(k + 1) = F (x(k), u(k), e(k), k), k = 1, . . . ,Kf

x(k): state variable.
u(k): control input chosen by the decision maker, usually
subject to some constraints.
e(k): exogenous input known at time k, but not known
for future times, and not under the control of the
decision maker.
Omniscient optimal control problem: Given the exogenous
input sequence {e(k)}Kf

k=1and initial state x(1)�
�

�
�

maximize Jom(Kf + 1)
subject to x(k + 1) = F (x(k), u(k), e(k), k)

by choice of u(k), k = 1, . . . ,Kf
11 / 45



Omniscient optimal control

Dynamical system:
x(k + 1) = F (x(k), u(k), e(k), k), k = 1, . . . ,Kf

x(k): state variable.
u(k): control input chosen by the decision maker, usually
subject to some constraints.
e(k): exogenous input known at time k, but not known
for future times, and not under the control of the
decision maker.
Omniscient optimal control problem: Given the exogenous
input sequence {e(k)}Kf

k=1and initial state x(1)�
�

�
�

maximize Jom(Kf + 1)
subject to x(k + 1) = F (x(k), u(k), e(k), k)

by choice of u(k), k = 1, . . . ,Kf
11 / 45



Omniscient optimal control

Dynamical system:
x(k + 1) = F (x(k), u(k), e(k), k), k = 1, . . . ,Kf

x(k): state variable.
u(k): control input chosen by the decision maker, usually
subject to some constraints.
e(k): exogenous input known at time k, but not known
for future times, and not under the control of the
decision maker.
Omniscient optimal control problem: Given the exogenous
input sequence {e(k)}Kf

k=1and initial state x(1)�
�

�
�

maximize Jom(Kf + 1)
subject to x(k + 1) = F (x(k), u(k), e(k), k)

by choice of u(k), k = 1, . . . ,Kf
11 / 45



Omniscient optimal control

Dynamical system:
x(k + 1) = F (x(k), u(k), e(k), k), k = 1, . . . ,Kf

x(k): state variable.
u(k): control input chosen by the decision maker, usually
subject to some constraints.
e(k): exogenous input known at time k, but not known
for future times, and not under the control of the
decision maker.
Omniscient optimal control problem: Given the exogenous
input sequence {e(k)}Kf

k=1and initial state x(1)�
�

�
�

maximize Jom(Kf + 1)
subject to x(k + 1) = F (x(k), u(k), e(k), k)

by choice of u(k), k = 1, . . . ,Kf
11 / 45



Omniscient optimal control

Dynamical system:
x(k + 1) = F (x(k), u(k), e(k), k), k = 1, . . . ,Kf

x(k): state variable.
u(k): control input chosen by the decision maker, usually
subject to some constraints.
e(k): exogenous input known at time k, but not known
for future times, and not under the control of the
decision maker.
Omniscient optimal control problem: Given the exogenous
input sequence {e(k)}Kf

k=1and initial state x(1)�
�

�
�

maximize Jom(Kf + 1)
subject to x(k + 1) = F (x(k), u(k), e(k), k)

by choice of u(k), k = 1, . . . ,Kf
11 / 45



One step ahead optimal control

One step ahead optimal control problem: Given the
current exogenous input e(k)and the current state x(k)�
�

�
�

maximize Jos(x(k + 1), u, e(k))
subject to x(k + 1) = F (x(k), u, e(k), k)

by choice of u

Also called greedy control (Lavretsky 2000), one step
lookahead control (Bertsekas 2005),
In economics: one period control or myopic control (Mossin,
1968)
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Types of performance index/objective function &
constraints

Linear: linear combination of (nonnegative) states and
controls.
Piecewise linear: weighted combination of one- or
infinity-norms of states and controls
Quadratic: sum of quadratic forms in “errors” and controls
Linear/nonlinear, equality/inequality involving states and
controls.
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Debt amortization: problem statement

Amortizing given initial debts with target date (planning
horizon) to pay off.
Upper bounds on withdrawals from investment accounts to
make amortization payments.
Additional debts incurred during planning horizon.
Deposits and dividends in the investment accounts during
planning horizon.
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Debt amortization: mathematical model

xi (k + 1) = (1 + αi )x i (k)−
n

∑
j=1

uij(k) + ci (k), ∀i

y j(k + 1) = (1 + βj)y j(k)−
m

∑
i=1

uij(k)− γj
m

∑
i=1

uij(k) + dj(k), ∀j

xi :ith debt, y j :j th investment account balance.
αi , βj : ith debt and j th investment account interest rates,
respectively.
γj :transaction cost per unit of cash transferred from
investment account.
Box constraints on xi ,y j , upper bounds on
ui (k) := ∑n

j=1 uij(k) for each i .
15 / 45
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Debt amortization: Performance indices

Weighted debt amortization with wealth maximization
Jos(k + 1) = ∑n

j=1 κjyj(k + 1)− ∑m
i=1 µixi (k + 1)

Jom = ∑n
j=1 κjyj(Kf + 1)− ∑m

i=1 µixi (Kf + 1)

16 / 45



Debt amortization: Performance indices

Weighted debt amortization with wealth maximization
Jos(k + 1) = ∑n

j=1 κjyj(k + 1)− ∑m
i=1 µixi (k + 1)

Jom = ∑n
j=1 κjyj(Kf + 1)− ∑m

i=1 µixi (Kf + 1)

16 / 45



Debt amortization: Performance indices

Weighted debt amortization with wealth maximization
Jos(k + 1) = ∑n

j=1 κjyj(k + 1)− ∑m
i=1 µixi (k + 1)

Jom = ∑n
j=1 κjyj(Kf + 1)− ∑m

i=1 µixi (Kf + 1)

16 / 45



Debt amortization+wealth maximization: LP formulation

maximize Jom(resp.Jos) [linear objective function]
subj. to dynamics for all k(resp. at k) [linear equality
constraints]
and subj. to box and upper bound constraints for all k (resp.
at k) [linear inequality constraints].
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Debt amortization+wealth maximization: example
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Example: evolution of debt sequences

Debt sequences 1 and 2 for OSA and omniscient optimal controls
are similar, but not identical.
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Example: amortization payments

Total amortization payment u1 = u11 + u12 tracks expenditure c1,
after initial period at u1,max .
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Example: investment account balances

OSA: Investment account 1 →minimum. Omniscient: Investment
account 2 →minimum.
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Debt amortization: choice of weights

Similar outcomes: Row 2 OS (implementable)/Row 7 Omni
(unimplementable) = 67%.
Overall conclusion: choice of weights κi = 0, µj = 1, ∀i , j
(debt amortization) is good candidate for real time debt
management.
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Cash balance problem: description

Every firm/financial institution has cash current account to
meet daily transaction requirements.
Cash balance: large enough for requirements, not much larger.
Extra cash earns larger returns in an investment account.
Cash flows, both deposits and withdrawals, into current
accounts with low interest rates.
Transfers from investment accounts to make negative
current account balances positive.
Transfer excess balance in current accounts to investment
accounts (better returns).
All transfers are subject to transaction costs, always deducted
from current accounts.
Determining the best way to make these transfers, with
cash flow sequences unknown, is the cash balance problem.
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Cash balance: notation
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Cash balance dynamics

x+
i =(1 + αi )xi +

M

∑
j=1

uij −
M

∑
j=1

γi |uij | − di + ∑
m ̸=i

cim, ∀i ,

y+
j =(1 + βj)yj −

N

∑
i=1

uij , ∀j ,

0 =cim(k) + cmi (k), ∀i , ∀m,

0 <xi ,min ≤ xi (k) ≤ xi ,max, ∀i ,
0 <yj,min ≤ yj(k), ∀j .

Total wealth: w(k) = ∑N
i=1 xi (k) + ∑M

j=1 yj(k)
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Cash balance problem: performance indices

Jos(k + 1) = ∑j κjyj(k + 1)− ∑i µixi (k + 1).
Jom = ∑j κjyj(Kf + 1)− ∑i µixi (Kf + 1).
κj = 1, ∀j , µi = −1, ∀i ⇒maximization of total wealth.
κj = 1, ∀j , µi = 1, ∀i ⇒maximizing investment account
balance, while minimizing current account balances.
κj = 0, ∀j , µi = −1, ∀i ⇒minimizing sum of current account
balances.
Wealth gain =w(Kf )−w(1)

w(1) , where w(k) = ∑i xi (k) + ∑j yj(k),
for a single demand.
Performance metric := Average wealth gain over a set of
demands.
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Cash balance: OSAOC block diagram

In practice, demand estimates d̂i (k) = di (k − 1) work well.
If transfers are end-of-the-day operations, d̂i (k) = di (k).
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Cash balance: classical Miller-Orr scheme (1966)

Feedback control with dead zone, no explicit use of demand.

ui (k) =


z i − xi (k) if xi (k) ≥ z iH ,

0 if ziL ≤ xi (k) ≤ z iH ,

z i − xi (k) if xi (k) ≤ z iL.

Miller & Orr derived optimal thresholds for Bernoulli
(equiprobable ±1) demands.
Most real demands are not Bernoulli.
Thresholds need to be tuned: optimal control problem? ML
approach!
OSA version would imply time-varying thresholds. Not
practical!
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Cash balance: average performance of OSAOC

Comparison of average and relative wealth gain (AWG,RWG).
Current demand is assumed unknown: OSAOC uses
d̂i (k) = di (k − 1)
Four methods OS_NI/WI, OM_NI/WI compared.
Experiment design: 25 pairs NCA,NIA ∈ {2, 4, 6, 8, 10}.
20 normally distributed 30 day cash demands, zero mean, unit
std. dev. for each pair.
Transfers between all pairs of CA, IA allowed, intra-account
only for CA.
OSA current account balance → min, Omni final wealth
→ max

Mean and std. dev. of AWG & RWG
(=AWG_OS/AWG_OM)
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Cash balance: average performance of OSAOC
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Cash balance scalability: OSA vs. Omni

Hierarchy OSA_NI ≤OSA_WI ≤OM_NI ≤OM_WI
Variance of AWG decreases as NCA,NIA ↑ in both cases
(current demand known/unknown).
AWG ≈ 40%, RWG ≈ 70% (normal demand), AWG ≈ 30%,
RWG ≈ 60% (uniform,Bernoulli)
Compute time, memory requirements: scale linearly
(OSAOC), scale exponentially (Omni)
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Inventory control and management
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Inventory control and management

33 / 45



Inventory control: robustness to demand uncertainty
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Inventory control: robustness to lead time uncertainty
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OSAO inventory control: summary

Novel scheme: no prediction, robust to demand, delay
uncertainties.
Uses Economic Value Added as objective function.
Efficient, attaining 80% of (unattainable) omniscient global
optimum.
Computationally efficient: LP in small number of decision
variables
Candidate for cheap and universal inventory control scheme.
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Opinion dynamics

Morris deGroot, Reaching a Consensus, JASA, March 1974,
vol 69, no 345, pp.118-121 (4366 citations as of today!)
Key ideas: vector x(k) ∈ Rn of n individual agent opinions;
Network or Graph: nodes = agents, edges = connect agents
Update at time k: each agent updates its opinion by taking
weighted average of connected neighbors’ opinions.
de Groot used a row stochastic matrix (one-step transition
probabilities of a Markov chain) & limit theorems.
Huge boom in this area in the last decade due to interest in
social networks.
Many alternative models (sociologists, physicists, control
theorists,...): Friedkin-Johnson, Hegselmann-Krause, Galam,
Altafini
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Opinion dynamics with control

Recent interest: adding control to an opinion dynamics model.
Additive (affine) control term affects opinions after averaging
process (Veetaseveera 2021, Mazalov 2023)
Additive (affine) control term affects opinions before
averaging process (Barabanov 2010, Bullo 2023)
Agent opinion is affected by an entity called player.
Players wish to drive agent opinions to target values
Targets could be the same (cooperative players) or different
(competitive players)
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Opinion dynamics games with OSAO control

Ingredients of OD games with control
OD model on graph for agents.
Each player acts on a set of agent nodes and has a cost
function (involving target and control).
Game playing procedure: sequential ([randomized]
Gauss-Seidel), parallel (Jacobi) or simultaneous.
Players are assumed to be rational, i.e., optimize cost one step
ahead (in each round of play).
Questions: Targets attained? Nash equilibrium? Effect of
game-playing procedure?
Results: Published on TechArXiv (IEEE), currently under
review.
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ODG+OSAOC: main results

Closed-form expression for OSAOC.
OSAOC results in computable Nash equilibria under J, GS and
RGS game-playing procedures.
For each player, OSAOC control = approximate projection of
“residual error” onto “control direction”.
Randomized Gauss-Seidel leads to (small) oscillations around
target opinions.
OSAOC approach works equally well for linear and nonlinear
opinion dynamics models
OSAOC approach can be reformulated to find best agents to
influence (= “controls”).
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ODG under OSAOC: flipping polarization
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Concluding remarks

One step ahead optimal control is simple and useful!
Descriptive name (OSAOC) avoids terms like “greedy”,
“myopic”, “simple MPC”.
Discrete-time setting allows immediate use of powerful
optimization tools, enabling real time control.
Suboptimal, but often not too far from omniscient optimal, as
seen in many applications.
Many models are piecewise linear, indices are often linear or
quadratic: OSAOC should work!
Applications in pipeline: biological pest control, ant colony
migration, debt stabilization game ...
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