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Metastability: very frequent phenomenon for thermodynamic systems close to a first
order phase transition.
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Common classical examples:

e supercooled liquids, supersaturated vapors;

e ferromagnets with magnetization opposed to the field
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e From the experimental point of view, X' shares properties very similar to those of
equilibrium state: “mestastable branch of isothermal curve”.

e A small external perturbation /spontaneous fluctuation allows the formation of a nucleus
of the new phase (“critical droplet”) starting an irreversible process towards state Y.

Metastability may be seen as

“The gentlest of non-equilibrium phenomena” (Gaveau, Schulman)

Natural questions:

e statics: “metastable branch” ?

e dynamics:  “lifetime” 7

+h”




Metastability can be observed in big variety of areas

physics
biology
science of materials

economy

studies of climate, etc...




A first description — van der Waals - Maxwell theory (~1870)

vapour-liquid transition
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A first description — van der Waals - Maxwell theory (/~1870)

vapour-liquid transition (semi-phenomelogical grounds)

Starting from the equation for “perfect gas” Pv = k'T
(v specific volume v = V//N, V volume, N number of molecules, k Boltzmann constant)
van der Waals passes to (P + %) (v — b) = kT, as eq. of state for a mole of a real gas

where a /v? has to do with inter-molecular attraction and b with the intrinsic volume

(V — bN available volume; a, b > 0)



van der Waals isotherms
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van der Waals isotherms

Problematic for T < T



van der Waals isotherms

equal areas Maxwell rule
Maxwell correction: partially justified by thermodynamics

Inhomogeneous system // phase coexistence (vapour/liquid)



van der Waals interpretation for “metastable branch”

what about the branches?

van der Waals-Maxwell theory: semi-phenomenological, mean field type analysis

The thermodynamical context gives a very partial justification.



Two problems:

(a) A more rigorous justification was needed.

(b) Treated it as a problem in equilibrium (which it is not!)



Two problems:

(a) A more rigorous justification was needed.

e Kac potentials. Lebowitz-Penrose limit (1966) put van der Waals-Maxwell into a
statistical mechanics context. (We don't discuss this today)

e Analytical continuation (branch) as peculiarity of mean field limit (Isakov (1987), Friedli,
Pfister (2004)). (We don't discuss this today)

(b) Treated it as a problem in equilibrium (which it is not).

e Maxwell already comments on the importance of nucleation and dynamical aspects
(Becker e Doring (1935)).



Dynamical early results:

e van't Hoff (1884) - Arrhenius (1889) chemical reaction rate theory

R = Aexp{—FE/kT} (Arrhenius law)

1/ R: average reaction time
E: energy
T: temperature



Dynamical early results:

e H. Eyring (1935) H. A. Kramers (1940) - First derivation of Arrhenius law:

A simple (mesoscopic) model for reaction-diffusion in a regime of large viscosity: d = 1,
dX(t) = —U'(X(t)) dt + edB(t),

with € a small positive parameter and U (-) a double-well potential (minima at a and b,
local maximum at ¢), B(-) a Brownian motion.



Simple Paradigma:

T. time needed to overcome the potential barrier. Kramers gives the prefactor K.

2(U(e) — U(a))

Et. ~ K exp( .

) Eyring-Kramers formula
€

(X (0) near a)

Important developments (d > 2, more general noises, SPDEs): Freidlin-Wentzell theory.
Faris, Jona Lasinio (1982)

Potential theoretical tools = good control of prefactors. Eckhoff (2000), Bovier, Eckhoff,
Gayrard, Klein (2001)



Evolution of “ensembles”. Lebowitz and Penrose (1970) - From micro to macro

Rigorous proposal to describe Metastability from a statistical mechanical point of view,
taking the dynamics into consideration.

Time evolution with an equilibrium measure @ (Gibbs measure) on some space X.

Describe metastable states through certain conditioned measures ur = p(-|R). Choice

for R C X driven by three characteristics:

(i) Only one thermodynamic phase is present.
(ii) The lifetime is large, i.e. it takes a long time to exit from R.

(iii) Once it escaped from R, the return time is much longer.

e L.-P. applied this to discuss vapour-liquid transition in the case of Kac potentials.
e Cappoccacia, Cassandro, Olivieri (1974) extended to the stochastic Ising model.

Basic message: Equilibrium measures restricted to certain “small” subsets of the phase
space; “restricted ensembles” (bottleneck effect).



General remarks about this type of approach:

e Condition (ii) (large lifetime) refers to average behavior;
average lifetime under the measure u.

Expressed through very small value of the escape rate A = %h:o, where p; is the
probability of having escaped from R by time t, if starting from ug.

e Time reversibility (usually) plays important role in the verification of (ii).
e Condition (iii) obtained through p(R) small.

e Other natural candidates: suitable quasi-stationary measures, conditional ergodicity...
[Miclo (2010), Bianchi, Gaudilliere (2016)]



Looking at metastability from a purely dynamical point of view.

It involves two different time scales:

e Thermalization. Time to reach the “metastable state”

e Lifetime of the “metastable state”. Convergence to equilibrium (or stable state)
Mathematical interest:

e Formulation of stochastic models,
e Description of the macroscopic behavior.

® [ime scales.



Pathwise approach.
Let (X, (t))i>0 be a family of Markov processes in some space X.
e Two distinct probability measures in X pmeta, Meq-

e Time scales 6,,, v, with 6,,/~, — 0 so that the empirical process

Mn(t) = o /t 0 Xy (5) S

verifies, as n — oo

P(nn(t) X meta forallt < 7, — Hn) — 1,
P(nn(t) R feq forall t > Tn) — 1,

P (7n/yn >t) — e forall t.

0,,: upper bound for the time needed to thermalize around the metastable state.

Cassandro, Galves, Olivieri, V. (1984)

® These or similar ideas have then been developed by several authors, in several directions.



Toy examples:

Easy to make some toy examples. They behave essentially as the one dimensional diffusion
driven by a double well potential under small noise.

e Birth and death chains
® The so-called Curie-Weiss stochastic chains.
Examples:

e A large class of finite and infinite dimensional diffusions with small noise. (Freidlin-
Wentzell regime)

e Supercritical contact process restricted to a finite subgraph (for a large class of graphs)

Interesting relation between cut-off (abrupt convergence to equilibrium) and metastable
behavior.

Let us focus on the Ising model =



Ising Model (Taking d = 2 since the beginning for simplicity)

Q={-1,+1}%, neQ ACZfinite Qn={-1,+1}"

For o € Q:

and the probability measure on {2,

e_BHAﬂ?ah(o-)

MA,n,h(U) — Zn .
7’,7’

where Z, ,, 1, is the normalizing constant (partition function).

1/ represents the temperature (8 = - as before)

Basic interest: It combines simplicity with a rich structure in the limit A — Z* (also
called thermodynamic limit).

Lenz (1920); Ising (1925) d = 1; Peierls (1936), Onsager (1944) d = 2, Yang and Lee
(1952)...



It exhibits phase transition:

e There exists 5. € (0, c0) so that for h = 0 there are multiple limiting measures when

B > Be:
n(-) = —1 brings to ug _ # ps + obtained when n(-) = +1.

e It is a first order phase transition. The phenomenon of spontaneous magnetization
OCCurs:

lim p15.(0(0)) = s, (0(0) = mj; > 0

high temperature (5 small) — disorder  Simulations by Vincent Beffara
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It exhibits phase transition:

e There exists 5. € (0, c0) so that for h = 0 there are multiple limiting measures when

B > Be:
n(-) = —1 brings to ug _ # ps + obtained when n(-) = +1.

e It is a first order phase transition. The phenomenon of spontaneous magnetization
OCCurs:

lim p15.(0(0)) = s, (0(0) = mj; > 0

near criticality (3 =~ [B. Simulations by Vincent Beffara




It exhibits phase transition:

e There exists 5. € (0, c0) so that for h = 0 there are multiple limiting measures when

B > Be:
n(-) = —1 brings to ug _ # ps + obtained when n(-) = +1.

e It is a first order phase transition. The phenomenon of spontaneous magnetization
OCCurs:

lim p15.(0(0)) = s, (0(0) = mj; > 0

low temperature (3 large) — long-range order Simulations by Vincent Beffara




Our plan: To discuss metastability for fixed 3 > B. and h | O (as in the hysteresis loop)
through an stochastic dynamics.

Continuous time Markov processes on €25: X 5 = (XAﬂ%h(t))t>o

with a single spin flip generator

(Lannf)(@) =D clo,0") (f(o") = f(0)),  [f:Q =R, o€Qa,

rEA

where
ey J oo(y) ifx#uy,
o (y) = { —o(x) ifx =y,

and the flip rates c(o, o) satisfy the reversibility condition
Example: Metropolis dynamics with

c(o,0") = exp {_B(HA,n,h(Ux) - HA,n,h(U>)+} ) o € (2, T € A,

where (a)" = max{a, 0},



Stochastic Ising models: Many results in the regime 8 — oo (Vanishing temperature)

Neves, Schonmann (1991); Catoni, Cerf (1995), Scoppola (1995), Olivieri, Scoppola
(1995), den Hollander et al (2000), Bovier, Manzo (2001); Ben Arous, Cerf (2001),
Manzo, Olivieri (2001), Larralde, Leyvraz, Sanders (2007), ...

Markov chains in the Freidlin-Wentzell regime: p(ﬁ)(i, j) =~ e PR 1,] € X
(A fixed, finite)

Main tools: large deviations, renormalization, potential theoretical tools.
Understanding the energy landscape, identifying critical droplets (or critical configurations):

xm-l
C(A) C(A)

r(A)
r(A)

F(A)



Stochastic Ising models: Many results in the regime 8 — oo (Vanishing temperature)

Simplest situation: Finite volume A, fixed (suitably small) magnetic field h > 0, 8 — oo:

Neves, Schonmann (d = 2); Ben Arous, Cerf (d = 3) - pathwise approach applied

&
e
".0.'.. R KT
"0 e, '.0'~
T T o o
R

|| +

22
AL
LA TA
o

+ |+ |+ |+ |+
+ |+ |+ |+ |+
+ |+ |+ |+

£*-1

critical droplets when d = 2 and d = 3

Notice: this is not in the regime of the hysteresis loop.

Simulation =



Schonmann and Shlosman (1998): studied infinite volume dynamics for 3 > 3., h | 0.

Initial measure v < p_, considered times t = e/ (- = pp,—)

|dentify critical a.: f any local observable

ol < o BS (X)) = 5,05 DHD) 4 O(") (For any k) ()

o If o > a, EL[f(Xo(t))]= pn(f) =~ pt(f)

Proved the remarkable formula:

Bwj o |
Qe = an equilibrium quantity!
12m;

with wg is the integrated surface tension of the unitary area Wulff shape W'.

Main tools: Large deviations and Wulff shape construction.
Pfister (1991); Dobrushin, Kotecky, Shlosman (1992); loffe (1995)



Two drops about the Wulff shape

e Surface tension 7(19): free energy per unit length of an interface between the 4+ and —
phases in the direction orthogonal to (cos ¥, sin ).

e Waulff functional of a rectifiable curve v C R?* ~ = 8D D C R? simply connected
domain:

W(vy) = 7{7'(98) ds, (95 direction of the external normal )
gl

e Wulff shape: its boundary minimizes VV among all the rectifiable boundaries of domains
with a given volume.

It is defined for p > 0 and up to dilatation and translation by

W, = ﬂ {CB = (u,v) € R*: ucos¥ +vsin 9 < pT(Q‘})}.
¥€[0,27]

W: when p is such that area(W) = 1.



Gaudilliere, Milanesi, V. - pathwise description of the transition

Dynamics X, — 5 on a suitable domain Ay with area (Bmax/h)2 for Bmax large enough:
Configurations fixed to n(x) = —1,Vx &€ Ap. h > 0,h | O

® /. represents the metastable state;

® 113 R [y represents the stable state.

Configurations described through self-avoiding contours on the dual lattice.




Simple heuristics: Free energy of a “plus phase” Wulff droplet of area (B/h)? in a
“minus phase” (metastable) is estimated by: (for h < 1 and up to an additive constant)

B /BN 1 . 1

A

wj wg
2m2 :

A=

i max value of ¢, attained at B, =

e In a sufficiently large volume: droplets with area (B/h)* with B < B, (B > B.) tend
to shrink (grow) due to h > 0.



Mixing time:

1
tunix,n = inf {t > 0: Vo, VF, [Py (X4, —n(t) € F) — pun, —n(F)| < g} ,

Proposition For any 8 > ., Bmax > 2B,

. mix = BA
im 2 In(tmixp) = B

Notice!



Theorem (Gaudilliere, Milanesi, V.)

For all B > B¢, Bmax > 2B, can choose B, so that for the process starting with
v, any observable f, 46 > 0, hg > 0 so that:

(i) If v = pa, — (- |R), 3 random time T}, so that:

® T}, /tmix,n converges in law to an exponential r.v. of mean 1

o pmb, (9 < Th, sup |Ap(t, f) = pay,—n(fIR)] < ||f||ooe‘5/h> =1,
h=0 t<T},—0

where
t46

Aot ) =5 [ Py 1) du

t

s (3(3)

(ii) For all h < hg, and any starting measure v:

with

By [f (Xap—n (Th)] = pag—n (] < [ lloce ™"



What is R? How is T}, defined?

e \We use the sets:

e R: all contours which are not truly small can be included in a certain number (<< 1/h)
of disjoint Wulff shapes total length is at most B, /h.

e Good interpolation between p(-|R) and the quasi stationary measure.
As for T}, we allow some excursions in S \ R, where

e S: the configurations for which there exist an external contour enclosing a Wulff shape
of area (B_/h)=.

o
OUJ
P =4
/
\



e More precisely:
T}, is the killing time if while in S the process is killed with rate .
Main technical point for the proof of the theorem:

The relaxation time of the process restricted to R is much smaller than T},
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