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Metastability: very frequent phenomenon for thermodynamic systems close to a first

order phase transition.
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Metastability: very frequent phenomenon for thermodynamic systems close to a first

order phase transition.
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Common classical examples:

• supercooled liquids, supersaturated vapors;

• ferromagnets with magnetization opposed to the field

hysteresis loop



• From the experimental point of view, X ′ shares properties very similar to those of

equilibrium state: “mestastable branch of isothermal curve”.

• A small external perturbation /spontaneous fluctuation allows the formation of a nucleus

of the new phase (“critical droplet”) starting an irreversible process towards state Y .

Metastability may be seen as

“The gentlest of non-equilibrium phenomena”(Gaveau, Schulman)

Natural questions:

• statics: “metastable branch” ?

• dynamics: “lifetime” ?
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Metastability can be observed in big variety of areas

• physics

• biology

• science of materials

• economy

• studies of climate, etc...



A first description – van der Waals - Maxwell theory (≈1870)

vapour-liquid transition

Starting from the equation for “perfect gas” Pv = kT

(v specific volume v = V/N , V volume, N number of molecules)

van der Waals passes to (P + a
v2
)(v − b) = kT,

where a/v2 has to do with inter-molecular attraction and b with the intrinsic volume



A first description – van der Waals - Maxwell theory (≈1870)

vapour-liquid transition (semi-phenomelogical grounds)

Starting from the equation for “perfect gas” Pv = kT

(v specific volume v = V/N , V volume, N number of molecules, k Boltzmann constant)

van der Waals passes to (P + a
v2
)(v − b) = kT, as eq. of state for a mole of a real gas

where a/v2 has to do with inter-molecular attraction and b with the intrinsic volume

(V − bN available volume; a, b > 0)



van der Waals isotherms

                    

Tc = 8a/27kb

{

(P, v) : (P +
a

v2
)(v − b) = kT

}



van der Waals isotherms

 

Problematic for T < Tc



van der Waals isotherms

 

equal areas Maxwell rule

Maxwell correction: partially justified by thermodynamics

Inhomogeneous system // phase coexistence (vapour/liquid)



van der Waals interpretation for “metastable branch”

 

what about the branches?

van der Waals-Maxwell theory: semi-phenomenological, mean field type analysis

The thermodynamical context gives a very partial justification.



Two problems:

(a) A more rigorous justification was needed.

• Kac potentials. Lebowitz-Penrose limit (1966) put van der Waals-Maxwell into a

statistical mechanics context.

• Analytical continuation (branch) as peculiarity of mean field limit (Isakov (1987), Friedli,

Pfister (2004)). We don’t discuss this today

(b) Treated it as a problem in equilibrium (which it is not!)

• Maxwell already comments on the importance of nucleation and dynamical aspects

(Becker e Döring (1935)).
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Dynamical early results:

• van’t Hoff (1884) - Arrhenius (1889) chemical reaction rate theory

R = A exp{−E/kT} (Arrhenius law)

1/R: average reaction time

E: energy

T: temperature



Dynamical early results:

• H. Eyring (1935) H. A. Kramers (1940) - First derivation of Arrhenius law:

A simple (mesoscopic) model for reaction-diffusion in a regime of large viscosity: d = 1,

dX(t) = −U
′(
X(t)

)

dt + ǫ dB(t),

with ǫ a small positive parameter and U(·) a double-well potential (minima at a and b,

local maximum at c), B(·) a Brownian motion.



Simple Paradigma:
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τǫ time needed to overcome the potential barrier. Kramers gives the prefactor K.

Eτǫ ∼ K exp(
2(U(c) − U(a))

ǫ2
) Eyring-Kramers formula

(X(0) near a)

Important developments (d ≥ 2, more general noises, SPDEs): Freidlin-Wentzell theory.

Faris, Jona Lasinio (1982)

Potential theoretical tools ⇒ good control of prefactors. Eckhoff (2000), Bovier, Eckhoff,

Gayrard, Klein (2001)



Evolution of “ensembles”. Lebowitz and Penrose (1970) - From micro to macro

Rigorous proposal to describe Metastability from a statistical mechanical point of view,

taking the dynamics into consideration.

Time evolution with an equilibrium measure µ (Gibbs measure) on some space X .

Describe metastable states through certain conditioned measures µR = µ(·|R). Choice

for R ⊂ X driven by three characteristics:

(i) Only one thermodynamic phase is present.

(ii) The lifetime is large, i.e. it takes a long time to exit from R.

(iii) Once it escaped from R, the return time is much longer.

• L.-P. applied this to discuss vapour-liquid transition in the case of Kac potentials.

• Cappoccacia, Cassandro, Olivieri (1974) extended to the stochastic Ising model.

Basic message: Equilibrium measures restricted to certain “small” subsets of the phase

space; “restricted ensembles” (bottleneck effect).



General remarks about this type of approach:

• Condition (ii) (large lifetime) refers to average behavior;

average lifetime under the measure µ.

Expressed through very small value of the escape rate λ =
dpt
dt |t=0, where pt is the

probability of having escaped from R by time t, if starting from µR.

• Time reversibility (usually) plays important role in the verification of (ii).

• Condition (iii) obtained through µ(R) small.

• Other natural candidates: suitable quasi-stationary measures, conditional ergodicity...

[Miclo (2010), Bianchi, Gaudillière (2016)]



Looking at metastability from a purely dynamical point of view.

It involves two different time scales:

• Thermalization. Time to reach the “metastable state”

• Lifetime of the “metastable state”. Convergence to equilibrium (or stable state)

Mathematical interest:

• Formulation of stochastic models,

• Description of the macroscopic behavior.

• Time scales.



Pathwise approach.

Let (Xn(t))t≥0 be a family of Markov processes in some space X .

• Two distinct probability measures in X : µmeta, µeq.

• Time scales θn, γn with θn/γn → 0 so that the empirical process

ηn(t) =
1

θn

∫ t+θn

t

δXn(s)ds

verifies, as n → ∞:

P
(

ηn(t) ≈ µmeta for all t < τn − θn
)

→ 1,

P
(

ηn(t) ≈ µeq for all t > τn
)

→ 1,

P (τn/γn > t) → e
−t

for all t.

θn: upper bound for the time needed to thermalize around the metastable state.

Cassandro, Galves, Olivieri, V. (1984)

• These or similar ideas have then been developed by several authors, in several directions.



Toy examples:

Easy to make some toy examples. They behave essentially as the one dimensional diffusion

driven by a double well potential under small noise.

• Birth and death chains

• The so-called Curie-Weiss stochastic chains.

Examples:

• A large class of finite and infinite dimensional diffusions with small noise. (Freidlin-

Wentzell regime)

• Supercritical contact process restricted to a finite subgraph (for a large class of graphs)

Interesting relation between cut-off (abrupt convergence to equilibrium) and metastable

behavior.

a Let us focus on the Ising model ⇒



Ising Model (Taking d = 2 since the beginning for simplicity)

Ω = {−1,+1}Z
2
; η ∈ Ω; Λ ⊂ Z

2 finite; ΩΛ = {−1,+1}Λ.

For σ ∈ ΩΛ:

HΛ,η,h(σ) = −
∑

{x,y}⊂Λ
|x−y|=1

σ(x)σ(y) −
h

2

∑

x∈Λ

σ(x) −
∑

x∈Λ,y /∈Λ
|x−y|=1

σ(x)η(y)

and the probability measure on ΩΛ

µΛ,η,h(σ) =
e−βHΛ,η,h(σ)

ZΛ,η,h

where ZΛ,η,h is the normalizing constant (partition function).

1/β represents the temperature (β = 1
kT as before)

Basic interest: It combines simplicity with a rich structure in the limit Λ → Z
2 (also

called thermodynamic limit).

Lenz (1920); Ising (1925) d = 1; Peierls (1936), Onsager (1944) d = 2, Yang and Lee

(1952)...



It exhibits phase transition:

• There exists βc ∈ (0,∞) so that for h = 0 there are multiple limiting measures when

β > βc:

η(·) ≡ −1 brings to µβ,− 6= µβ,+ obtained when η(·) ≡ +1.

• It is a first order phase transition. The phenomenon of spontaneous magnetization

occurs:

lim
h→0+

µβ,h(σ(0)) = µβ,+(σ(0)) = m
∗
β > 0

high temperature (β small) – disorder Simulations by Vincent Beffara
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It exhibits phase transition:

• There exists βc ∈ (0,∞) so that for h = 0 there are multiple limiting measures when

β > βc:

η(·) ≡ −1 brings to µβ,− 6= µβ,+ obtained when η(·) ≡ +1.

• It is a first order phase transition. The phenomenon of spontaneous magnetization

occurs:

lim
h→0+

µβ,h(σ(0)) = µβ,+(σ(0)) = m
∗
β > 0

low temperature (β large) – long-range order Simulations by Vincent Beffara



Our plan: To discuss metastability for fixed β > βc and h ↓ 0 (as in the hysteresis loop)

through an stochastic dynamics.

Continuous time Markov processes on ΩΛ: XΛ,η,h =
(

XΛ,η,h(t)
)

t≥0

with a single spin flip generator

(LΛ,η,hf)(σ) =
∑

x∈Λ

c(σ, σ
x
) (f(σ

x
) − f(σ)) , f : ΩΛ → R, σ ∈ ΩΛ,

where

σ
x
(y) =

{

σ(y) if x 6= y,

−σ(x) if x = y,

and the flip rates c(σ, σx) satisfy the reversibility condition

µΛ,η,h(σ)c(σ, σ
x
) = µΛ,η,h(σ

x
)c(σ

x
, σ), σ ∈ ΩΛ, x ∈ Λ.

Example: Metropolis dynamics with

c(σ, σ
x
) = exp

{

−β
(

HΛ,η,h(σ
x
) − HΛ,η,h(σ)

)+
}

, σ ∈ ΩΛ, x ∈ Λ,

where (a)+ = max{a, 0},



Stochastic Ising models: Many results in the regime β → ∞ (Vanishing temperature)

Neves, Schonmann (1991); Catoni, Cerf (1995), Scoppola (1995), Olivieri, Scoppola

(1995), den Hollander et al (2000), Bovier, Manzo (2001); Ben Arous, Cerf (2001),

Manzo, Olivieri (2001), Larralde, Leyvraz, Sanders (2007), ...

Markov chains in the Freidlin-Wentzell regime: p(β)(i, j) ≈ e−β∆i,j : i, j ∈ X

(Λ fixed, finite)

Main tools: large deviations, renormalization, potential theoretical tools.

Understanding the energy landscape, identifying critical droplets (or critical configurations):
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Stochastic Ising models: Many results in the regime β → ∞ (Vanishing temperature)

Simplest situation: Finite volume Λ, fixed (suitably small) magnetic field h > 0, β → ∞:

Neves, Schonmann (d = 2); Ben Arous, Cerf (d = 3) - pathwise approach applied
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critical droplets when d = 2 and d = 3

Notice: this is not in the regime of the hysteresis loop.

Simulation ⇒



Schonmann and Shlosman (1998): studied infinite volume dynamics for β > βc, h ↓ 0.

Initial measure ν � µ−, considered times t = eα/h. (µ− = µβ,−)

Identify critical αc: f any local observable

• If α < αc, Eν[f(X∞(t))] =
∑

j<k
hj

j!

djµh(f)

dhj

∣

∣

∣

∣

h=0−

+ O(hk) (for any k)≈ µ−(f)

• If α > αc, Eν[f(X∞(t))]≈ µh(f) ≈ µ+(f)

Proved the remarkable formula:

αc =
βw2

β

12m∗
β

an equilibrium quantity!

with wβ is the integrated surface tension of the unitary area Wulff shape W .

Main tools: Large deviations and Wulff shape construction.

Pfister (1991); Dobrushin, Kotecky, Shlosman (1992); Ioffe (1995)



Two drops about the Wulff shape

• Surface tension τ(ϑ): free energy per unit length of an interface between the + and −

phases in the direction orthogonal to (cosϑ, sinϑ).

• Wulff functional of a rectifiable curve γ ⊂ R
2, γ = ∂D D ⊂ R

2 simply connected

domain:

W(γ) =

∮

γ

τ(θs) ds, (ϑs direction of the external normal )

• Wulff shape: its boundary minimizes W among all the rectifiable boundaries of domains

with a given volume.

It is defined for ρ > 0 and up to dilatation and translation by

Wρ =
⋂

ϑ∈[0,2π]

{

x = (u, v) ∈ R
2
: u cosϑ + v sinϑ ≤ ρτ(ϑ)

}

.

W : when ρ is such that area(W ) = 1.



Gaudillière, Milanesi, V. - pathwise description of the transition

Dynamics XΛh,−,h on a suitable domain Λh with area (Bmax/h)
2 for Bmax large enough:

Configurations fixed to η(x) = −1, ∀x /∈ Λh. h > 0, h ↓ 0

• µ− represents the metastable state;

• µβ,h ≈ µ+ represents the stable state.

Configurations described through self-avoiding contours on the dual lattice.

+ + +

+

+ + +

+

+ +

+

+ +

+

+ +

+

_ _ _ _ _ _ _ _ _

_ _ _ _ _ _

_ _ _ _ _ _ _

_ _ _ _ _

_ __ _ _

_ _ _ _ _ _ _

_ _ _ _ _ _ _

_ _ _ _ _ _ _ _ _

_ _ _ _ _ _ _ _ _



Simple heuristics: Free energy of a “plus phase” Wulff droplet of area (B/h)2 in a

“minus phase” (metastable) is estimated by: (for h ≪ 1 and up to an additive constant)

wβ

B

h
− 2m

∗
β

h

2

(

B

h

)2

=
1

h

(

wβB − m
∗
βB

2
)

=
1

h
φ(B)

B- Bc B+

A

A =
w2
β

4m∗
β
max value of φ, attained at Bc =

wβ
2m∗

β
.

• In a sufficiently large volume: droplets with area (B/h)2 with B < Bc (B > Bc) tend

to shrink (grow) due to h > 0.



Mixing time:

tmix,h = inf

{

t ≥ 0 : ∀σ, ∀F,
∣

∣Pσ

(

XΛh,−,h(t) ∈ F
)

− µΛh,−,h(F )
∣

∣ ≤
1

e

}

,

Proposition For any β > βc, Bmax > 2Bc

lim
h→0

h ln(tmix,h) = βA

Notice!

αc =
βA

3



Theorem (Gaudillière, Milanesi, V.)

For all β > βc, Bmax > 2Bc, can choose B+ so that for the process starting with

ν, any observable f , ∃δ > 0, h0 > 0 so that:

(i) If ν = µΛh,−,h(· |R), ∃ random time Th so that:

• Th/tmix,h converges in law to an exponential r.v. of mean 1

• lim
h→0

Pν

(

θ < Th, sup
t<Th−θ

∣

∣Aθ(t, f) − µΛh,−,h

(

f |R
)∣

∣ ≤ ‖f‖∞e
−δ/h

)

= 1,

where

Aθ(t, f) =
1

θ

∫ t+θ

t

f(XΛh,−1,h(u))du

with

θ ≈ exp

{

1

2

(

βA

h

)}

.

(ii) For all h < h0, and any starting measure ν:

|Eν

[

f
(

XΛh,−,h (Th)
)]

− µΛh,−,h(f)| ≤ ‖f‖∞e
−δ/h

.



What is R? How is Th defined?

• We use the sets:

• R: all contours which are not truly small can be included in a certain number (<< 1/h)

of disjoint Wulff shapes total length is at most B+/h.

• Good interpolation between µ(·|R) and the quasi stationary measure.

As for Th we allow some excursions in S \ R, where

• S: the configurations for which there exist an external contour enclosing a Wulff shape

of area (B−/h)
2.

B- Bc B+

A



• More precisely:

Th is the killing time if while in S the process is killed with rate λ.

Main technical point for the proof of the theorem:

The relaxation time of the process restricted to R is much smaller than Th.
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