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Random walks on Zd .

(ξj)j≥1 non zero IID random variables with values in Zd .

The associated random walk with initial condition X0 = x is

Xn = x +
n∑

j=1

ξj , n ≥ 1.

The distribution of the process (Xn)n≥0 is determined by x and by the
transition probability function

p(z) = P(ξ1 = z), z ∈ Zd .

.











































































We call the random walk simple when

d∑
j=1

(p(ej) + p(−ej)) = 1

(ej)1≤j≤d is the canonical basis Zd .

Generalization: Random walks on Graphs, collections of interacting
random walks.

The random walk is symmetric if

p(z) = p(−z) ∀ z ∈ Zd

otherwise it is asymmetric.

The random walk is irreducible if ∀ z ∈ Zd there exists n ≥ 0

P(Xn = z) > 0.

The simple random walk is irreducible if and only if p(z) > 0 for all
z ∈ {±ej : 1 ≤ j ≤ d}.



Basic asymptotic results for simple random walks.

Recurrence/Transience: The random walk is recurrent if

P(Xn = z infinitely often) = 1 ∀z ∈ Zd ,

otherwise it is transient.

Recurrent: symmetric random walks in dimensions d=1,2.

Transient: asymmetric random walks, symmetric random walks in
dimensions d ≥ 3.

https://upload.wikimedia.org/wikipedia/commons/c/cb/
Random_walk_25000.svg

https://upload.wikimedia.org/wikipedia/commons/c/cb/Random_walk_25000.svg
https://upload.wikimedia.org/wikipedia/commons/c/cb/Random_walk_25000.svg


Law of Large Numbers:

lim
n→∞

1
n

n∑
j=1

Xn = v :=
∑
z∈Zd

zp(z) almost surely

Functional Central Limit Theorem:

B̂n
t :=

X⌊nt⌋ − vt

n1/2 , t ≥ 0 ,

(B̂n
t )t≥0

D−−−→
n→∞

(Bt)t≥0

where (Bt)t≥0 is a d-dimensional Brownian Motion.

Local Central Limit Theorem:

P(Xn = z) ≈ e−
(x·Γ−1x)

(2πn)
d
2
√
det Γ



Applications of random walks and its generalizations pop up everywhere:

key model in the fields of computer science, physics, chemistry, biology,
economics, etc.

Computer science:
PageRank. It calculates the importance of web pages by walking
randomly among them. Researchers have developed a series variants of
Random Walk.
Network topology: algorithms based on random walks in the area of
collaborative filtering, link prediction and recommender system.
Compared with other alternative approaches, random walk based
algorithms can incorporate a great deal of contextual information.
Additionally computer vision, semi-supervised learning, complex social
network analysis

Denoise probability models?



The Self Repelling Random Walk

Joint work with Thomas Mountford (EPFL) and Leandro Pimentel
(UFRJ) 2014

Fix a non-decreasing function w : Z → R+ such that

lim
z→∞

(
w(z)− w(−z)

)
> 0 .

(X (k))k≥0 starting at X (0) = 0 is a Self-repelling random walk
(SRRW) if



P
(
X (k + 1) = X (k)± 1

∣∣X (0), ...,X (k)
)

equal to

w
(
∓
(
l+(k ,X (k))− l−(k ,X (k))

))
w
(
l+(k ,X (k))− l−(k ,X (k))

)
+ w

(
l−(k ,X (k))− l+(k,X (k))

) .
where

l±(k , x) = #
{
0 ≤ j ≤ k − 1 : X (j) = x , X (j + 1) = x ± 1

}
,

.





























































































































































































































































































































































































Tóth and B. Vetõ (2008) conjectured that X (k)/
√
k converges in

distribution to the uniform distribution on (−1, 1).

We proved this conjecture and our main result is the following:

Theorem 1

Let (X (k))k≥0 be the SRRW as described above. We have that as
k → ∞, X (k)√

k
converges in distribution to the uniform distribution on

(−1, 1).

Remark: Dumaz and Tóth (2013) obtain an analogous result is shown for
the self repelling random walk with undirected edges. It is also worth
mention that similar questions arise for random walks with site repulsion,
Tóth and B. Vetõ (2011).



The previous Theorem is a straightforward consequence of the following
local central limit theorem for the self-repelling random walk (X (k))k≥0:

Theorem 2

There exists 1/2 < α < 1 such that, for every ϵ > 0, we can take
k0 = k0(ϵ) sufficiently large so that if k ≥ k0 then

P(Xk = x) ≥ 1 − ϵ√
k

,

for every |x | ≤
√
k − k

α
2 with the same parity as k .



The definition of the SRRW leads us naturally to a Ray-Knight approach
in order to obtain results for the SRRW.

The main tool is a representation of the local times on the inverse local
times,

T±
x,m = min

{
k ≥ 0 : l±(k , x) = m

}
,

in terms of independent ergodic Markov chains.

To simplify the notation suppose that:
(1) k = n2 even though, obviously a typical positive integer is not a
perfect square (Term n should be thought of as the integer part of

√
k);

(2) x and n2 are even (note that (X (k))k≥0 has period 2);
(3) x ≤ 0 (the self-repelling walk is symmetric).

Note that P
(
Xn2 = x

)
is equal to

P
(
∃ 0 ≤ m ≤ n2 such that T+

x−1,m = n2)+
P
(
∃ 0 ≤ m ≤ n2 such that T−

x+1,m = n2)
=

n2∑
m=0

P(T+
x−1,m = n2) +

n2∑
m=0

P(T−
x+1,m = n2) . (1)



Our first step is to consider for which values of m the contribution of
P(T+

x−1,m = n2) is relevant in the sum above. We claim that m should
be (n − |x |)/2 plus a term of order

√
n, otherwise the contribution of

P(T+
x−1,m = n2) can be neglected. Indeed this is the content of the

Lemma 3 which also aims at providing precise asymptotics for
P(T+

x−1,m = n2) for the right m. Before we state the result we need to
fix some notation. Recall that σ2 is the variance of the stationary
distribution ν. Also define

θu(v) :=
u

2

(
1 − |v |

u

)
, u > 0 , v ∈ R .



Lemma 3

There exists 1/2 < α < 1 such that, for every ε > 0 and K > 0, there
exists n0 = n0(ϵ,K ) sufficiently large such that√

βnπ n3/2P
(
T±
x,θn(x)+c

√
n
= n2) ≥ e−

4 c2
βn − ε ,

for all n ≥ n0, |x | ≤ n − nα with the same parity as n2 and
c ∈

{
c̃ ∈ (−K ,K ) : θn(x) + c̃

√
n ∈ N

}
, where

βn =
2σ2

(
(1 + |x|

n )3 + (1 − |x|
n )3

)
3

.



Tree Builder Random Walk

Joint work with Giulio Iacobelli (UFRJ), Leonel Zuaznabar (UFABC),
Rodrigo Ribeiro (PUC-Chile) 2022

If T is a tree, V (T ) and E (T ) are its vertex and edge sets.

Ω collection of pairs (T , x), where T is a tree and x ∈ V (T ) is one of its
vertices.

Fix
T0 locally finite tree
s positive integer
ξ = {ξn}n∈N sequence of non-negative integer random variables

The TBRW is a stochastic processes {(Tn,Xn)}n≥0 on Ω defined
according to the following update rules:



1 Obtain Tn+1 from Tn as follows:
if n = 0 mod s, add ξn new leaves to Xn,
if n ̸= 0 mod s, Tn+1 = Tn.

2 Choose uniformly one edge in {{Xn, y} : {Xn, y} ∈ E (Tn+1)}, i.e.,
an edge incident to Xn in Tn+1, and set Xn+1 as the chosen neighbor
of Xn.

If ξ is a sequence of independent random variables, the TBRW process is
a Markov chain.

Denote by PT0,x0,s,ξ(·) the law of {(Tn,Xn)}n∈N when
(T0,X0) = (T0, x0), and by ET0,x0,s,ξ(·) the corresponding expectation.





inf
n∈N

P (ξn ≥ 1) = κ > 0. (UE)

sup
n∈N

E(ξrn) ≤ M < ∞. (M-r)

For Sn :=
∑n

j=1 ξj , we say ξ satisfies assumption (S) if there exists a
positive constant c and a function g : N \ {0} → R+ of non-summable
inverse (

∑∞
n=1

1
g(n) = ∞) such that

P

(
lim sup
n→∞

Sn
g(n)

≤ c

)
= 1; (S)

ξ satisfies condition (I) if there exist a positive constant c and a positive
function f : N \ {0} → R+ of summable inverse (

∑∞
n=1

1
f (n) < ∞), such

that

P

(
lim inf
n→∞

Sn
f (n)

≥ c

)
= 1. (I)



Theorem 4 (Recurrence/Traps for s even)

Consider a (s, ξ)-TBRW process with s even. For every initial state
(T0, x0) with T0 finite, there exist two regimes:
(i) (Recurrence is inherited) if ξ satisfies condition (S), then the

TBRW is recurrent.
(ii) (The dangerous environment) if ξ is an independent environment

satisfying condition (I ), then there exists n such that the walker gets
trapped at time n, PT0,x0,s,ξ-almost surely, i.e.

PT0,x0,s,ξ

(
∃ x ∈ ∪nV (Tn) and k such that Xsn+k = x ∀ n

)
= 1.

Theorem 5 (Null recurrence for s even)

Consider a (s, ξ)− TBRW process with s even and independent
environment ξ satisfying conditions (S), (UE ) and (M1). Then the
TBRW is null recurrent.



Theorem 6 (Ballisticity for s odd)

If s is odd and ξ is an independent environment satisfying (UE) and
(M-r), then the TBRW is ballistic, i.e

lim inf
n→∞

d(Xn, root)

n
> 0

almost surely.

In a recent paper Rodrigo Ribeiro proved a LLN and CLT for the TBRW
with s odd.



Excited Random Walks

Joint work with Giulio Iacobelli (UFRJ) and Rodrigo Alves (PUC-RJ)

Excited random walk (ERW) is a model introduced by Benjamini and
Wilson 2003.

It’s a discrete time RW (Xn) in Zd , d ≥ 2 with X0 = 0 such that

For δ ∈ (1/2, 1] fixed, at the first visit to a site, it will jump in the
following way:

P(Xn+1 = Xn + e1|X0, ...,Xn) = δ/d

P(Xn+1 = Xn − e1|X0, ...,Xn) = (1 − δ)/d

and ∀i ∈ {2, 3, . . . , d}

P(Xn+1 = Xn ± ei |X0, ...,Xn) = 1/2d

On an already visited site, the RW jumps to any nearest neighbor
with uniform probability.



Benjamini and Wilson 2003 proved that ERW in Zd , d ≥ 2 is transient to
the right

lim
n→∞

Xn · e1 = ∞ a.s..

Furthermore, they also show that, if d ≥ 4, ERW is ballistic to the right.

lim inf
n→∞

Xn · e1
n

> 0 a.s..

Kozma 2003 and 2005 extended the proof of ballisticity for ERW to
d = 3 and d = 2, respectively.

Bérnard and Ramirez 2007 proved a Law of Large Numbers and a
Central Limit Theorem for ERW with d ≥ 2.



A more robust technique was developed by Menshikov, Popov, Ramirez
and Vachkovskaia 2012. They also considered a more general model.

on already visited sites the process behaves like a d-dimensional
martingale with bounded jumps (rather than a SSRW),

on the first time a site is visited the process has bounded jumps,
satisfies UEC and drift condition in an arbitrary direction ℓ.

They call this model generalized excited random walk (GERW) and they
showed that GERW with a drift condition in direction ℓ, is ballistic in
that direction.



d ≥ 2

{ξi}i≥1 be the increments of a d-martingale with values in Zd and
zero-mean vector

{γi}i≥1 be a sequence of Zd random vectors

ℓ be a direction in Sd−1 which is the unit sphere of Rd .

Condition I There exists a positive constant K such that

sup
n≥1

||ξn|| ≤ K and sup
n≥1

||γn|| ≤ K ,

on every realization.

Condition II For every n ≥ 1, we have that

E [ξn|Fn−1] = 0 and E [γn · ℓ|Fn−1] ≥ λ ,

where λ is a positive constant.



{Ui}i≥1 sequence of IID random variables with uniform distribution in
[0, 1] independent of the {ξi}i≥1 and {γi}i≥1.

{pn}n≥1 be a sequence such that pn ∈ (0, 1] ∀ n ≥ 1.

Definition of the pn-GERW X = {Xn}n≥0.

X0 = 0 and

Xn :=
n∑

i=1

(
1Ei−1ξi + 1E c

i−1∩{Ui>pi}ξi + 1E c
i−1∩{Ui≤pi}γi

)
, n ≥ 1 ,

where E0 := ∅ and, for i ≥ 1, Ei := {∃ k < i such that Xk = Xi}.



A special case: pn-ERW. {ξi}i≥1 is IID with zero-mean vector and
finite covariance matrix. Additionally, we assume P[ξi · ek = 0] < 1 for all
i ≥ 0 and for each k ∈ {1, 2, . . . , d}. The sequence {γi}i≥1 is also IID
and the sequences {ξi}i≥1 and {γi}i≥1 are independent.

We suppose pn = Cn−β ∧ 1, with β > 1/2 and C > 0.

In some cases we also relax condition I to

Condition I* For all k ≥ 1 and θ < β − 1/2, where β > 1/2, we have

sup
k≥1

E [∥ξk∥]
kθ

< ∞ and sup
k≥1

E [∥γk∥]
kθ

< ∞ .

If a process X satisfies Condition I* and Condition II, we call X a
pn-GERW*.



Figure: 20000 steps simulation of p-ERW for p = 0.03. X20000 = (52,−43)

We obtain v · e1 = 0.002087.



Figure: 20000 steps simulation of p-ERW for p = 0.25. X20000 = (404,−43).

We obtain v · e1 = 0.019856 .



Theorem 7

Let X be a pn-GERW* in direction ℓ with d ≥ 2 and β > 1/2.
Suppose that

lim
k→∞

k−1/2E
[

sup
1≤i≤k

∥ξi∥
]
= 0 ,

and ∃ C = ((ci,j)) continuous d × d matrix-valued function on [0,∞)
satisfying C (0) = 0 and

d∑
i,j=1

(ci,j(t)− ci,j(s))αiαj ≥ 0 for any α ∈ Rd , t > s ≥ 0 ,

such that
1
n

⌊nt⌋∑
i=1

ξiξ
T
i −−−→

n→∞
C (t) in probability .

Then

B̂n
t :=

X⌊nt⌋

n1/2 + (nt − ⌊nt⌋)
(X⌊nt⌋+1 − X⌊nt⌋)

n1/2 , t ≥ 0 ,

converges in distribution to a process with independent Gaussian
increments with sample paths in CRd [0,∞).



Theorem 8

Let X be a pn-ERW in direction ℓ with d = 2, pn = Cn−1/2 ∧ 1. Then
{B̂n

· }n≥1 converges in distribution to a 2-dimensional Brownian Motion.

πd denotes the probability that the d-dimensional random walk with
increments {ξi}i≥1 never returns to the origin.

Theorem 9

Let X be a pn-ERW in direction ℓD with d ≥ 4, pn = Cn−1/2 ∧ 1. Then
{B̂n

· }n≥1 is tight and there exists a Brownian Motion W· such that for
every limit point Y· of {B̂n

· }n≥1{
Wt · ℓD + 2c1

√
t
}
t≥0

⪯ {Yt · ℓD}t≥0 ⪯
{
Wt · ℓD + 2c2

√
t
}
t≥0

,

where c1 = µγ(1 −
√

1 − πd−k), c2 = µγ
√
πd with µγ := E [γi · ℓD].



ℓD

Wt · ℓD + 2c2
√
t

Wt · ℓD + 2c1
√
t

Figure: “Cone” region representation around the direction ℓD.
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Conjecture: Let X be a pn-GERW in direction ℓ ∈ Sd−1 with d ≥ 3,
pn = Cn−1/2 ∧ 1. Then {B̂n

· }n≥1 converges in distribution to

{Wt · ℓ+ 2µγ

√
πd t}t>0,

where W· is a Brownian Motion.

Theorem 10

Let X be a pn-GERW in direction ℓ with d ≥ 2, pn = Cn−1/2 ∧ 1. Let
RX

n be the range of X up to time n. Then, for δ > πd

P[∃nδ such that ∀n ≥ nδ : |RX
n | ≤ δn] = 1 .



πd = 0 for d = 2, whereas for d ≥ 3, πd ∈ (0, 1].

Conjecture: Let X be a pn-ERW in direction ℓ ∈ Sd−1 with d ≥ 3,
pn = Cn−β ∧ 1, with β ≥ 1/2. Let RX

n be the range of the process up to
time n. Then we have

|RX
n |
n

−−−→
n→∞

πd a.s..

If the conjecture holds true, we would be able to extend the result in
Theorem 9 to d = 3 and to any direction in the unit sphere. Moreover
Theorem 9 will hold with c1 = µγ(1 −

√
1 − πd). Note, however, that

this is not yet enough to imply the convergence.



Table: Summary of the results for pn-GERW.

pn-GERW* (β > 1/2, d ≥ 2) Convergence in distribution to a Gaussian
Process.

pn-ERW (β = 1/2, d = 2) Convergence in distribution to a Brownian
Motion.

pn-ERW (β = 1/2, d ≥ 4) All sub-sequences converge, in distribution,
to a process which is stochastically domi-
nated in the drift direction below and above
by a Brownian Motion plus a continuous
function.

pn-GERW (β small, d ≥ 2) Directional transience.


